| author | wenzelm | 
| Mon, 12 Oct 2020 15:58:37 +0200 | |
| changeset 72454 | 549391271e74 | 
| parent 71989 | bad75618fb82 | 
| child 80914 | d97fdabd9e2b | 
| permissions | -rw-r--r-- | 
| 59189 | 1 | section \<open>The Proof System\<close> | 
| 13020 | 2 | |
| 16417 | 3 | theory RG_Hoare imports RG_Tran begin | 
| 13020 | 4 | |
| 59189 | 5 | subsection \<open>Proof System for Component Programs\<close> | 
| 13020 | 6 | |
| 54859 | 7 | declare Un_subset_iff [simp del] sup.bounded_iff [simp del] | 
| 15102 | 8 | |
| 59189 | 9 | definition stable :: "'a set \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> bool" where
 | 
| 10 | "stable \<equiv> \<lambda>f g. (\<forall>x y. x \<in> f \<longrightarrow> (x, y) \<in> g \<longrightarrow> y \<in> f)" | |
| 13020 | 11 | |
| 23746 | 12 | inductive | 
| 59189 | 13 |   rghoare :: "['a com, 'a set, ('a \<times> 'a) set, ('a \<times> 'a) set, 'a set] \<Rightarrow> bool"
 | 
| 23746 | 14 |     ("\<turnstile> _ sat [_, _, _, _]" [60,0,0,0,0] 45)
 | 
| 15 | where | |
| 59189 | 16 |   Basic: "\<lbrakk> pre \<subseteq> {s. f s \<in> post}; {(s,t). s \<in> pre \<and> (t=f s \<or> t=s)} \<subseteq> guar;
 | 
| 17 | stable pre rely; stable post rely \<rbrakk> | |
| 13020 | 18 | \<Longrightarrow> \<turnstile> Basic f sat [pre, rely, guar, post]" | 
| 19 | ||
| 59189 | 20 | | Seq: "\<lbrakk> \<turnstile> P sat [pre, rely, guar, mid]; \<turnstile> Q sat [mid, rely, guar, post] \<rbrakk> | 
| 13020 | 21 | \<Longrightarrow> \<turnstile> Seq P Q sat [pre, rely, guar, post]" | 
| 22 | ||
| 23746 | 23 | | Cond: "\<lbrakk> stable pre rely; \<turnstile> P1 sat [pre \<inter> b, rely, guar, post]; | 
| 13020 | 24 | \<turnstile> P2 sat [pre \<inter> -b, rely, guar, post]; \<forall>s. (s,s)\<in>guar \<rbrakk> | 
| 25 | \<Longrightarrow> \<turnstile> Cond b P1 P2 sat [pre, rely, guar, post]" | |
| 26 | ||
| 23746 | 27 | | While: "\<lbrakk> stable pre rely; (pre \<inter> -b) \<subseteq> post; stable post rely; | 
| 13020 | 28 | \<turnstile> P sat [pre \<inter> b, rely, guar, pre]; \<forall>s. (s,s)\<in>guar \<rbrakk> | 
| 29 | \<Longrightarrow> \<turnstile> While b P sat [pre, rely, guar, post]" | |
| 30 | ||
| 59189 | 31 | | Await: "\<lbrakk> stable pre rely; stable post rely; | 
| 32 |             \<forall>V. \<turnstile> P sat [pre \<inter> b \<inter> {V}, {(s, t). s = t},
 | |
| 13022 
b115b305612f
New order in the loading of theories (Quote-antiquote right before the OG_Syntax and RG_Syntax respectively)
 prensani parents: 
13020diff
changeset | 33 |                 UNIV, {s. (V, s) \<in> guar} \<inter> post] \<rbrakk>
 | 
| 13020 | 34 | \<Longrightarrow> \<turnstile> Await b P sat [pre, rely, guar, post]" | 
| 59189 | 35 | |
| 23746 | 36 | | Conseq: "\<lbrakk> pre \<subseteq> pre'; rely \<subseteq> rely'; guar' \<subseteq> guar; post' \<subseteq> post; | 
| 13020 | 37 | \<turnstile> P sat [pre', rely', guar', post'] \<rbrakk> | 
| 38 | \<Longrightarrow> \<turnstile> P sat [pre, rely, guar, post]" | |
| 39 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32687diff
changeset | 40 | definition Pre :: "'a rgformula \<Rightarrow> 'a set" where | 
| 13020 | 41 | "Pre x \<equiv> fst(snd x)" | 
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32687diff
changeset | 42 | |
| 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32687diff
changeset | 43 | definition Post :: "'a rgformula \<Rightarrow> 'a set" where | 
| 13020 | 44 | "Post x \<equiv> snd(snd(snd(snd x)))" | 
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32687diff
changeset | 45 | |
| 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32687diff
changeset | 46 | definition Rely :: "'a rgformula \<Rightarrow> ('a \<times> 'a) set" where
 | 
| 13020 | 47 | "Rely x \<equiv> fst(snd(snd x))" | 
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32687diff
changeset | 48 | |
| 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32687diff
changeset | 49 | definition Guar :: "'a rgformula \<Rightarrow> ('a \<times> 'a) set" where
 | 
| 13020 | 50 | "Guar x \<equiv> fst(snd(snd(snd x)))" | 
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32687diff
changeset | 51 | |
| 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32687diff
changeset | 52 | definition Com :: "'a rgformula \<Rightarrow> 'a com" where | 
| 13020 | 53 | "Com x \<equiv> fst x" | 
| 54 | ||
| 59189 | 55 | subsection \<open>Proof System for Parallel Programs\<close> | 
| 13020 | 56 | |
| 42174 | 57 | type_synonym 'a par_rgformula = | 
| 58 |   "('a rgformula) list \<times> 'a set \<times> ('a \<times> 'a) set \<times> ('a \<times> 'a) set \<times> 'a set"
 | |
| 13020 | 59 | |
| 23746 | 60 | inductive | 
| 61 |   par_rghoare :: "('a rgformula) list \<Rightarrow> 'a set \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> 'a set \<Rightarrow> bool"
 | |
| 62 |     ("\<turnstile> _ SAT [_, _, _, _]" [60,0,0,0,0] 45)
 | |
| 63 | where | |
| 59189 | 64 | Parallel: | 
| 13020 | 65 |   "\<lbrakk> \<forall>i<length xs. rely \<union> (\<Union>j\<in>{j. j<length xs \<and> j\<noteq>i}. Guar(xs!j)) \<subseteq> Rely(xs!i);
 | 
| 66 |     (\<Union>j\<in>{j. j<length xs}. Guar(xs!j)) \<subseteq> guar;
 | |
| 59189 | 67 |      pre \<subseteq> (\<Inter>i\<in>{i. i<length xs}. Pre(xs!i));
 | 
| 13020 | 68 |     (\<Inter>i\<in>{i. i<length xs}. Post(xs!i)) \<subseteq> post;
 | 
| 69 | \<forall>i<length xs. \<turnstile> Com(xs!i) sat [Pre(xs!i),Rely(xs!i),Guar(xs!i),Post(xs!i)] \<rbrakk> | |
| 70 | \<Longrightarrow> \<turnstile> xs SAT [pre, rely, guar, post]" | |
| 71 | ||
| 59189 | 72 | section \<open>Soundness\<close> | 
| 13020 | 73 | |
| 59189 | 74 | subsubsection \<open>Some previous lemmas\<close> | 
| 13020 | 75 | |
| 59189 | 76 | lemma tl_of_assum_in_assum: | 
| 77 | "(P, s) # (P, t) # xs \<in> assum (pre, rely) \<Longrightarrow> stable pre rely | |
| 13020 | 78 | \<Longrightarrow> (P, t) # xs \<in> assum (pre, rely)" | 
| 79 | apply(simp add:assum_def) | |
| 80 | apply clarify | |
| 81 | apply(rule conjI) | |
| 82 | apply(erule_tac x=0 in allE) | |
| 83 | apply(simp (no_asm_use)only:stable_def) | |
| 84 | apply(erule allE,erule allE,erule impE,assumption,erule mp) | |
| 85 | apply(simp add:Env) | |
| 86 | apply clarify | |
| 87 | apply(erule_tac x="Suc i" in allE) | |
| 88 | apply simp | |
| 89 | done | |
| 90 | ||
| 59189 | 91 | lemma etran_in_comm: | 
| 13020 | 92 | "(P, t) # xs \<in> comm(guar, post) \<Longrightarrow> (P, s) # (P, t) # xs \<in> comm(guar, post)" | 
| 93 | apply(simp add:comm_def) | |
| 94 | apply clarify | |
| 95 | apply(case_tac i,simp+) | |
| 96 | done | |
| 97 | ||
| 59189 | 98 | lemma ctran_in_comm: | 
| 99 | "\<lbrakk>(s, s) \<in> guar; (Q, s) # xs \<in> comm(guar, post)\<rbrakk> | |
| 13020 | 100 | \<Longrightarrow> (P, s) # (Q, s) # xs \<in> comm(guar, post)" | 
| 101 | apply(simp add:comm_def) | |
| 102 | apply clarify | |
| 103 | apply(case_tac i,simp+) | |
| 104 | done | |
| 105 | ||
| 59189 | 106 | lemma takecptn_is_cptn [rule_format, elim!]: | 
| 13020 | 107 | "\<forall>j. c \<in> cptn \<longrightarrow> take (Suc j) c \<in> cptn" | 
| 108 | apply(induct "c") | |
| 23746 | 109 | apply(force elim: cptn.cases) | 
| 13020 | 110 | apply clarify | 
| 59189 | 111 | apply(case_tac j) | 
| 13020 | 112 | apply simp | 
| 113 | apply(rule CptnOne) | |
| 114 | apply simp | |
| 23746 | 115 | apply(force intro:cptn.intros elim:cptn.cases) | 
| 13020 | 116 | done | 
| 117 | ||
| 59189 | 118 | lemma dropcptn_is_cptn [rule_format,elim!]: | 
| 13020 | 119 | "\<forall>j<length c. c \<in> cptn \<longrightarrow> drop j c \<in> cptn" | 
| 120 | apply(induct "c") | |
| 23746 | 121 | apply(force elim: cptn.cases) | 
| 13020 | 122 | apply clarify | 
| 59189 | 123 | apply(case_tac j,simp+) | 
| 23746 | 124 | apply(erule cptn.cases) | 
| 13020 | 125 | apply simp | 
| 126 | apply force | |
| 127 | apply force | |
| 128 | done | |
| 129 | ||
| 59189 | 130 | lemma takepar_cptn_is_par_cptn [rule_format,elim]: | 
| 13020 | 131 | "\<forall>j. c \<in> par_cptn \<longrightarrow> take (Suc j) c \<in> par_cptn" | 
| 132 | apply(induct "c") | |
| 23746 | 133 | apply(force elim: cptn.cases) | 
| 13020 | 134 | apply clarify | 
| 59189 | 135 | apply(case_tac j,simp) | 
| 13020 | 136 | apply(rule ParCptnOne) | 
| 23746 | 137 | apply(force intro:par_cptn.intros elim:par_cptn.cases) | 
| 13020 | 138 | done | 
| 139 | ||
| 140 | lemma droppar_cptn_is_par_cptn [rule_format]: | |
| 141 | "\<forall>j<length c. c \<in> par_cptn \<longrightarrow> drop j c \<in> par_cptn" | |
| 142 | apply(induct "c") | |
| 23746 | 143 | apply(force elim: par_cptn.cases) | 
| 13020 | 144 | apply clarify | 
| 59189 | 145 | apply(case_tac j,simp+) | 
| 23746 | 146 | apply(erule par_cptn.cases) | 
| 13020 | 147 | apply simp | 
| 148 | apply force | |
| 149 | apply force | |
| 150 | done | |
| 151 | ||
| 152 | lemma tl_of_cptn_is_cptn: "\<lbrakk>x # xs \<in> cptn; xs \<noteq> []\<rbrakk> \<Longrightarrow> xs \<in> cptn" | |
| 59189 | 153 | apply(subgoal_tac "1 < length (x # xs)") | 
| 13020 | 154 | apply(drule dropcptn_is_cptn,simp+) | 
| 155 | done | |
| 156 | ||
| 59189 | 157 | lemma not_ctran_None [rule_format]: | 
| 13020 | 158 | "\<forall>s. (None, s)#xs \<in> cptn \<longrightarrow> (\<forall>i<length xs. ((None, s)#xs)!i -e\<rightarrow> xs!i)" | 
| 159 | apply(induct xs,simp+) | |
| 160 | apply clarify | |
| 23746 | 161 | apply(erule cptn.cases,simp) | 
| 13020 | 162 | apply simp | 
| 163 | apply(case_tac i,simp) | |
| 164 | apply(rule Env) | |
| 165 | apply simp | |
| 23746 | 166 | apply(force elim:ctran.cases) | 
| 13020 | 167 | done | 
| 168 | ||
| 169 | lemma cptn_not_empty [simp]:"[] \<notin> cptn" | |
| 23746 | 170 | apply(force elim:cptn.cases) | 
| 13020 | 171 | done | 
| 172 | ||
| 59189 | 173 | lemma etran_or_ctran [rule_format]: | 
| 174 | "\<forall>m i. x\<in>cptn \<longrightarrow> m \<le> length x | |
| 175 | \<longrightarrow> (\<forall>i. Suc i < m \<longrightarrow> \<not> x!i -c\<rightarrow> x!Suc i) \<longrightarrow> Suc i < m | |
| 13022 
b115b305612f
New order in the loading of theories (Quote-antiquote right before the OG_Syntax and RG_Syntax respectively)
 prensani parents: 
13020diff
changeset | 176 | \<longrightarrow> x!i -e\<rightarrow> x!Suc i" | 
| 71989 
bad75618fb82
extraction of equations x = t from premises beneath meta-all
 haftmann parents: 
71836diff
changeset | 177 | supply [[simproc del: defined_all]] | 
| 13020 | 178 | apply(induct x,simp) | 
| 179 | apply clarify | |
| 23746 | 180 | apply(erule cptn.cases,simp) | 
| 13020 | 181 | apply(case_tac i,simp) | 
| 182 | apply(rule Env) | |
| 183 | apply simp | |
| 184 | apply(erule_tac x="m - 1" in allE) | |
| 185 | apply(case_tac m,simp,simp) | |
| 186 | apply(subgoal_tac "(\<forall>i. Suc i < nata \<longrightarrow> (((P, t) # xs) ! i, xs ! i) \<notin> ctran)") | |
| 187 | apply force | |
| 188 | apply clarify | |
| 71989 
bad75618fb82
extraction of equations x = t from premises beneath meta-all
 haftmann parents: 
71836diff
changeset | 189 | apply(erule_tac x="Suc ia" in allE,simp) | 
| 59807 | 190 | apply(erule_tac x="0" and P="\<lambda>j. H j \<longrightarrow> (J j) \<notin> ctran" for H J in allE,simp) | 
| 13020 | 191 | done | 
| 192 | ||
| 59189 | 193 | lemma etran_or_ctran2 [rule_format]: | 
| 13020 | 194 | "\<forall>i. Suc i<length x \<longrightarrow> x\<in>cptn \<longrightarrow> (x!i -c\<rightarrow> x!Suc i \<longrightarrow> \<not> x!i -e\<rightarrow> x!Suc i) | 
| 195 | \<or> (x!i -e\<rightarrow> x!Suc i \<longrightarrow> \<not> x!i -c\<rightarrow> x!Suc i)" | |
| 196 | apply(induct x) | |
| 197 | apply simp | |
| 198 | apply clarify | |
| 23746 | 199 | apply(erule cptn.cases,simp) | 
| 13020 | 200 | apply(case_tac i,simp+) | 
| 201 | apply(case_tac i,simp) | |
| 23746 | 202 | apply(force elim:etran.cases) | 
| 13020 | 203 | apply simp | 
| 204 | done | |
| 205 | ||
| 59189 | 206 | lemma etran_or_ctran2_disjI1: | 
| 13020 | 207 | "\<lbrakk> x\<in>cptn; Suc i<length x; x!i -c\<rightarrow> x!Suc i\<rbrakk> \<Longrightarrow> \<not> x!i -e\<rightarrow> x!Suc i" | 
| 208 | by(drule etran_or_ctran2,simp_all) | |
| 209 | ||
| 59189 | 210 | lemma etran_or_ctran2_disjI2: | 
| 13020 | 211 | "\<lbrakk> x\<in>cptn; Suc i<length x; x!i -e\<rightarrow> x!Suc i\<rbrakk> \<Longrightarrow> \<not> x!i -c\<rightarrow> x!Suc i" | 
| 212 | by(drule etran_or_ctran2,simp_all) | |
| 213 | ||
| 59189 | 214 | lemma not_ctran_None2 [rule_format]: | 
| 13020 | 215 | "\<lbrakk> (None, s) # xs \<in>cptn; i<length xs\<rbrakk> \<Longrightarrow> \<not> ((None, s) # xs) ! i -c\<rightarrow> xs ! i" | 
| 216 | apply(frule not_ctran_None,simp) | |
| 217 | apply(case_tac i,simp) | |
| 23746 | 218 | apply(force elim:etranE) | 
| 13020 | 219 | apply simp | 
| 220 | apply(rule etran_or_ctran2_disjI2,simp_all) | |
| 221 | apply(force intro:tl_of_cptn_is_cptn) | |
| 222 | done | |
| 223 | ||
| 58860 | 224 | lemma Ex_first_occurrence [rule_format]: "P (n::nat) \<longrightarrow> (\<exists>m. P m \<and> (\<forall>i<m. \<not> P i))" | 
| 13020 | 225 | apply(rule nat_less_induct) | 
| 226 | apply clarify | |
| 227 | apply(case_tac "\<forall>m. m<n \<longrightarrow> \<not> P m") | |
| 228 | apply auto | |
| 229 | done | |
| 59189 | 230 | |
| 231 | lemma stability [rule_format]: | |
| 13020 | 232 | "\<forall>j k. x \<in> cptn \<longrightarrow> stable p rely \<longrightarrow> j\<le>k \<longrightarrow> k<length x \<longrightarrow> snd(x!j)\<in>p \<longrightarrow> | 
| 59189 | 233 | (\<forall>i. (Suc i)<length x \<longrightarrow> | 
| 234 | (x!i -e\<rightarrow> x!(Suc i)) \<longrightarrow> (snd(x!i), snd(x!(Suc i))) \<in> rely) \<longrightarrow> | |
| 13020 | 235 | (\<forall>i. j\<le>i \<and> i<k \<longrightarrow> x!i -e\<rightarrow> x!Suc i) \<longrightarrow> snd(x!k)\<in>p \<and> fst(x!j)=fst(x!k)" | 
| 71989 
bad75618fb82
extraction of equations x = t from premises beneath meta-all
 haftmann parents: 
71836diff
changeset | 236 | supply [[simproc del: defined_all]] | 
| 13020 | 237 | apply(induct x) | 
| 238 | apply clarify | |
| 23746 | 239 | apply(force elim:cptn.cases) | 
| 13020 | 240 | apply clarify | 
| 23746 | 241 | apply(erule cptn.cases,simp) | 
| 13020 | 242 | apply simp | 
| 243 | apply(case_tac k,simp,simp) | |
| 59189 | 244 | apply(case_tac j,simp) | 
| 13020 | 245 | apply(erule_tac x=0 in allE) | 
| 59807 | 246 | apply(erule_tac x="nat" and P="\<lambda>j. (0\<le>j) \<longrightarrow> (J j)" for J in allE,simp) | 
| 13020 | 247 | apply(subgoal_tac "t\<in>p") | 
| 248 | apply(subgoal_tac "(\<forall>i. i < length xs \<longrightarrow> ((P, t) # xs) ! i -e\<rightarrow> xs ! i \<longrightarrow> (snd (((P, t) # xs) ! i), snd (xs ! i)) \<in> rely)") | |
| 249 | apply clarify | |
| 59807 | 250 | apply(erule_tac x="Suc i" and P="\<lambda>j. (H j) \<longrightarrow> (J j)\<in>etran" for H J in allE,simp) | 
| 13020 | 251 | apply clarify | 
| 59807 | 252 | apply(erule_tac x="Suc i" and P="\<lambda>j. (H j) \<longrightarrow> (J j) \<longrightarrow> (T j)\<in>rely" for H J T in allE,simp) | 
| 253 | apply(erule_tac x=0 and P="\<lambda>j. (H j) \<longrightarrow> (J j)\<in>etran \<longrightarrow> T j" for H J T in allE,simp) | |
| 13020 | 254 | apply(simp(no_asm_use) only:stable_def) | 
| 255 | apply(erule_tac x=s in allE) | |
| 256 | apply(erule_tac x=t in allE) | |
| 59189 | 257 | apply simp | 
| 13020 | 258 | apply(erule mp) | 
| 259 | apply(erule mp) | |
| 260 | apply(rule Env) | |
| 261 | apply simp | |
| 262 | apply(erule_tac x="nata" in allE) | |
| 59807 | 263 | apply(erule_tac x="nat" and P="\<lambda>j. (s\<le>j) \<longrightarrow> (J j)" for s J in allE,simp) | 
| 13020 | 264 | apply(subgoal_tac "(\<forall>i. i < length xs \<longrightarrow> ((P, t) # xs) ! i -e\<rightarrow> xs ! i \<longrightarrow> (snd (((P, t) # xs) ! i), snd (xs ! i)) \<in> rely)") | 
| 265 | apply clarify | |
| 59807 | 266 | apply(erule_tac x="Suc i" and P="\<lambda>j. (H j) \<longrightarrow> (J j)\<in>etran" for H J in allE,simp) | 
| 13020 | 267 | apply clarify | 
| 59807 | 268 | apply(erule_tac x="Suc i" and P="\<lambda>j. (H j) \<longrightarrow> (J j) \<longrightarrow> (T j)\<in>rely" for H J T in allE,simp) | 
| 13020 | 269 | apply(case_tac k,simp,simp) | 
| 270 | apply(case_tac j) | |
| 59807 | 271 | apply(erule_tac x=0 and P="\<lambda>j. (H j) \<longrightarrow> (J j)\<in>etran" for H J in allE,simp) | 
| 23746 | 272 | apply(erule etran.cases,simp) | 
| 13020 | 273 | apply(erule_tac x="nata" in allE) | 
| 59807 | 274 | apply(erule_tac x="nat" and P="\<lambda>j. (s\<le>j) \<longrightarrow> (J j)" for s J in allE,simp) | 
| 13020 | 275 | apply(subgoal_tac "(\<forall>i. i < length xs \<longrightarrow> ((Q, t) # xs) ! i -e\<rightarrow> xs ! i \<longrightarrow> (snd (((Q, t) # xs) ! i), snd (xs ! i)) \<in> rely)") | 
| 276 | apply clarify | |
| 59807 | 277 | apply(erule_tac x="Suc i" and P="\<lambda>j. (H j) \<longrightarrow> (J j)\<in>etran" for H J in allE,simp) | 
| 13020 | 278 | apply clarify | 
| 59807 | 279 | apply(erule_tac x="Suc i" and P="\<lambda>j. (H j) \<longrightarrow> (J j) \<longrightarrow> (T j)\<in>rely" for H J T in allE,simp) | 
| 13020 | 280 | done | 
| 281 | ||
| 59189 | 282 | subsection \<open>Soundness of the System for Component Programs\<close> | 
| 13020 | 283 | |
| 59189 | 284 | subsubsection \<open>Soundness of the Basic rule\<close> | 
| 13020 | 285 | |
| 59189 | 286 | lemma unique_ctran_Basic [rule_format]: | 
| 287 | "\<forall>s i. x \<in> cptn \<longrightarrow> x ! 0 = (Some (Basic f), s) \<longrightarrow> | |
| 288 | Suc i<length x \<longrightarrow> x!i -c\<rightarrow> x!Suc i \<longrightarrow> | |
| 13022 
b115b305612f
New order in the loading of theories (Quote-antiquote right before the OG_Syntax and RG_Syntax respectively)
 prensani parents: 
13020diff
changeset | 289 | (\<forall>j. Suc j<length x \<longrightarrow> i\<noteq>j \<longrightarrow> x!j -e\<rightarrow> x!Suc j)" | 
| 13020 | 290 | apply(induct x,simp) | 
| 291 | apply simp | |
| 292 | apply clarify | |
| 23746 | 293 | apply(erule cptn.cases,simp) | 
| 13020 | 294 | apply(case_tac i,simp+) | 
| 295 | apply clarify | |
| 296 | apply(case_tac j,simp) | |
| 297 | apply(rule Env) | |
| 298 | apply simp | |
| 299 | apply clarify | |
| 300 | apply simp | |
| 301 | apply(case_tac i) | |
| 302 | apply(case_tac j,simp,simp) | |
| 23746 | 303 | apply(erule ctran.cases,simp_all) | 
| 13020 | 304 | apply(force elim: not_ctran_None) | 
| 23746 | 305 | apply(ind_cases "((Some (Basic f), sa), Q, t) \<in> ctran" for sa Q t) | 
| 13020 | 306 | apply simp | 
| 307 | apply(drule_tac i=nat in not_ctran_None,simp) | |
| 23746 | 308 | apply(erule etranE,simp) | 
| 13020 | 309 | done | 
| 310 | ||
| 59189 | 311 | lemma exists_ctran_Basic_None [rule_format]: | 
| 312 | "\<forall>s i. x \<in> cptn \<longrightarrow> x ! 0 = (Some (Basic f), s) | |
| 13020 | 313 | \<longrightarrow> i<length x \<longrightarrow> fst(x!i)=None \<longrightarrow> (\<exists>j<i. x!j -c\<rightarrow> x!Suc j)" | 
| 314 | apply(induct x,simp) | |
| 315 | apply simp | |
| 316 | apply clarify | |
| 23746 | 317 | apply(erule cptn.cases,simp) | 
| 13020 | 318 | apply(case_tac i,simp,simp) | 
| 319 | apply(erule_tac x=nat in allE,simp) | |
| 320 | apply clarify | |
| 321 | apply(rule_tac x="Suc j" in exI,simp,simp) | |
| 322 | apply clarify | |
| 323 | apply(case_tac i,simp,simp) | |
| 324 | apply(rule_tac x=0 in exI,simp) | |
| 325 | done | |
| 326 | ||
| 59189 | 327 | lemma Basic_sound: | 
| 328 |   " \<lbrakk>pre \<subseteq> {s. f s \<in> post}; {(s, t). s \<in> pre \<and> t = f s} \<subseteq> guar;
 | |
| 13020 | 329 | stable pre rely; stable post rely\<rbrakk> | 
| 330 | \<Longrightarrow> \<Turnstile> Basic f sat [pre, rely, guar, post]" | |
| 71989 
bad75618fb82
extraction of equations x = t from premises beneath meta-all
 haftmann parents: 
71836diff
changeset | 331 | supply [[simproc del: defined_all]] | 
| 13020 | 332 | apply(unfold com_validity_def) | 
| 333 | apply clarify | |
| 334 | apply(simp add:comm_def) | |
| 335 | apply(rule conjI) | |
| 336 | apply clarify | |
| 337 | apply(simp add:cp_def assum_def) | |
| 338 | apply clarify | |
| 339 | apply(frule_tac j=0 and k=i and p=pre in stability) | |
| 340 | apply simp_all | |
| 341 | apply(erule_tac x=ia in allE,simp) | |
| 342 | apply(erule_tac i=i and f=f in unique_ctran_Basic,simp_all) | |
| 343 | apply(erule subsetD,simp) | |
| 344 | apply(case_tac "x!i") | |
| 345 | apply clarify | |
| 346 | apply(drule_tac s="Some (Basic f)" in sym,simp) | |
| 59807 | 347 | apply(thin_tac "\<forall>j. H j" for H) | 
| 23746 | 348 | apply(force elim:ctran.cases) | 
| 13020 | 349 | apply clarify | 
| 350 | apply(simp add:cp_def) | |
| 351 | apply clarify | |
| 352 | apply(frule_tac i="length x - 1" and f=f in exists_ctran_Basic_None,simp+) | |
| 353 | apply(case_tac x,simp+) | |
| 354 | apply(rule last_fst_esp,simp add:last_length) | |
| 355 | apply (case_tac x,simp+) | |
| 356 | apply(simp add:assum_def) | |
| 357 | apply clarify | |
| 358 | apply(frule_tac j=0 and k="j" and p=pre in stability) | |
| 359 | apply simp_all | |
| 360 | apply(erule_tac x=i in allE,simp) | |
| 361 | apply(erule_tac i=j and f=f in unique_ctran_Basic,simp_all) | |
| 362 | apply(case_tac "x!j") | |
| 363 | apply clarify | |
| 364 | apply simp | |
| 365 | apply(drule_tac s="Some (Basic f)" in sym,simp) | |
| 366 | apply(case_tac "x!Suc j",simp) | |
| 23746 | 367 | apply(rule ctran.cases,simp) | 
| 20432 
07ec57376051
lin_arith_prover: splitting reverted because of performance loss
 webertj parents: 
20272diff
changeset | 368 | apply(simp_all) | 
| 13020 | 369 | apply(drule_tac c=sa in subsetD,simp) | 
| 370 | apply clarify | |
| 371 | apply(frule_tac j="Suc j" and k="length x - 1" and p=post in stability,simp_all) | |
| 20432 
07ec57376051
lin_arith_prover: splitting reverted because of performance loss
 webertj parents: 
20272diff
changeset | 372 | apply(case_tac x,simp+) | 
| 13020 | 373 | apply(erule_tac x=i in allE) | 
| 20432 
07ec57376051
lin_arith_prover: splitting reverted because of performance loss
 webertj parents: 
20272diff
changeset | 374 | apply(erule_tac i=j and f=f in unique_ctran_Basic,simp_all) | 
| 
07ec57376051
lin_arith_prover: splitting reverted because of performance loss
 webertj parents: 
20272diff
changeset | 375 | apply arith+ | 
| 13020 | 376 | apply(case_tac x) | 
| 20432 
07ec57376051
lin_arith_prover: splitting reverted because of performance loss
 webertj parents: 
20272diff
changeset | 377 | apply(simp add:last_length)+ | 
| 13020 | 378 | done | 
| 379 | ||
| 59189 | 380 | subsubsection\<open>Soundness of the Await rule\<close> | 
| 13020 | 381 | |
| 59189 | 382 | lemma unique_ctran_Await [rule_format]: | 
| 383 | "\<forall>s i. x \<in> cptn \<longrightarrow> x ! 0 = (Some (Await b c), s) \<longrightarrow> | |
| 384 | Suc i<length x \<longrightarrow> x!i -c\<rightarrow> x!Suc i \<longrightarrow> | |
| 13022 
b115b305612f
New order in the loading of theories (Quote-antiquote right before the OG_Syntax and RG_Syntax respectively)
 prensani parents: 
13020diff
changeset | 385 | (\<forall>j. Suc j<length x \<longrightarrow> i\<noteq>j \<longrightarrow> x!j -e\<rightarrow> x!Suc j)" | 
| 13020 | 386 | apply(induct x,simp+) | 
| 387 | apply clarify | |
| 23746 | 388 | apply(erule cptn.cases,simp) | 
| 13020 | 389 | apply(case_tac i,simp+) | 
| 390 | apply clarify | |
| 391 | apply(case_tac j,simp) | |
| 392 | apply(rule Env) | |
| 393 | apply simp | |
| 394 | apply clarify | |
| 395 | apply simp | |
| 396 | apply(case_tac i) | |
| 397 | apply(case_tac j,simp,simp) | |
| 23746 | 398 | apply(erule ctran.cases,simp_all) | 
| 13020 | 399 | apply(force elim: not_ctran_None) | 
| 23746 | 400 | apply(ind_cases "((Some (Await b c), sa), Q, t) \<in> ctran" for sa Q t,simp) | 
| 13020 | 401 | apply(drule_tac i=nat in not_ctran_None,simp) | 
| 23746 | 402 | apply(erule etranE,simp) | 
| 13020 | 403 | done | 
| 404 | ||
| 59189 | 405 | lemma exists_ctran_Await_None [rule_format]: | 
| 406 | "\<forall>s i. x \<in> cptn \<longrightarrow> x ! 0 = (Some (Await b c), s) | |
| 13020 | 407 | \<longrightarrow> i<length x \<longrightarrow> fst(x!i)=None \<longrightarrow> (\<exists>j<i. x!j -c\<rightarrow> x!Suc j)" | 
| 408 | apply(induct x,simp+) | |
| 409 | apply clarify | |
| 23746 | 410 | apply(erule cptn.cases,simp) | 
| 13020 | 411 | apply(case_tac i,simp+) | 
| 412 | apply(erule_tac x=nat in allE,simp) | |
| 413 | apply clarify | |
| 414 | apply(rule_tac x="Suc j" in exI,simp,simp) | |
| 415 | apply clarify | |
| 416 | apply(case_tac i,simp,simp) | |
| 417 | apply(rule_tac x=0 in exI,simp) | |
| 418 | done | |
| 419 | ||
| 59189 | 420 | lemma Star_imp_cptn: | 
| 13020 | 421 | "(P, s) -c*\<rightarrow> (R, t) \<Longrightarrow> \<exists>l \<in> cp P s. (last l)=(R, t) | 
| 422 | \<and> (\<forall>i. Suc i<length l \<longrightarrow> l!i -c\<rightarrow> l!Suc i)" | |
| 423 | apply (erule converse_rtrancl_induct2) | |
| 424 | apply(rule_tac x="[(R,t)]" in bexI) | |
| 425 | apply simp | |
| 426 | apply(simp add:cp_def) | |
| 427 | apply(rule CptnOne) | |
| 428 | apply clarify | |
| 429 | apply(rule_tac x="(a, b)#l" in bexI) | |
| 430 | apply (rule conjI) | |
| 431 | apply(case_tac l,simp add:cp_def) | |
| 432 | apply(simp add:last_length) | |
| 433 | apply clarify | |
| 434 | apply(case_tac i,simp) | |
| 435 | apply(simp add:cp_def) | |
| 436 | apply force | |
| 437 | apply(simp add:cp_def) | |
| 438 | apply(case_tac l) | |
| 23746 | 439 | apply(force elim:cptn.cases) | 
| 13020 | 440 | apply simp | 
| 441 | apply(erule CptnComp) | |
| 442 | apply clarify | |
| 443 | done | |
| 59189 | 444 | |
| 445 | lemma Await_sound: | |
| 13020 | 446 | "\<lbrakk>stable pre rely; stable post rely; | 
| 59189 | 447 |   \<forall>V. \<turnstile> P sat [pre \<inter> b \<inter> {s. s = V}, {(s, t). s = t},
 | 
| 13022 
b115b305612f
New order in the loading of theories (Quote-antiquote right before the OG_Syntax and RG_Syntax respectively)
 prensani parents: 
13020diff
changeset | 448 |                  UNIV, {s. (V, s) \<in> guar} \<inter> post] \<and>
 | 
| 59189 | 449 |   \<Turnstile> P sat [pre \<inter> b \<inter> {s. s = V}, {(s, t). s = t},
 | 
| 13022 
b115b305612f
New order in the loading of theories (Quote-antiquote right before the OG_Syntax and RG_Syntax respectively)
 prensani parents: 
13020diff
changeset | 450 |                  UNIV, {s. (V, s) \<in> guar} \<inter> post] \<rbrakk>
 | 
| 13020 | 451 | \<Longrightarrow> \<Turnstile> Await b P sat [pre, rely, guar, post]" | 
| 452 | apply(unfold com_validity_def) | |
| 453 | apply clarify | |
| 454 | apply(simp add:comm_def) | |
| 455 | apply(rule conjI) | |
| 456 | apply clarify | |
| 457 | apply(simp add:cp_def assum_def) | |
| 458 | apply clarify | |
| 459 | apply(frule_tac j=0 and k=i and p=pre in stability,simp_all) | |
| 460 | apply(erule_tac x=ia in allE,simp) | |
| 461 | apply(subgoal_tac "x\<in> cp (Some(Await b P)) s") | |
| 462 | apply(erule_tac i=i in unique_ctran_Await,force,simp_all) | |
| 463 | apply(simp add:cp_def) | |
| 67443 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 wenzelm parents: 
62343diff
changeset | 464 | \<comment> \<open>here starts the different part.\<close> | 
| 23746 | 465 | apply(erule ctran.cases,simp_all) | 
| 59189 | 466 | apply(drule Star_imp_cptn) | 
| 13020 | 467 | apply clarify | 
| 468 | apply(erule_tac x=sa in allE) | |
| 469 | apply clarify | |
| 470 | apply(erule_tac x=sa in allE) | |
| 471 | apply(drule_tac c=l in subsetD) | |
| 472 | apply (simp add:cp_def) | |
| 473 | apply clarify | |
| 59807 | 474 | apply(erule_tac x=ia and P="\<lambda>i. H i \<longrightarrow> (J i, I i)\<in>ctran" for H J I in allE,simp) | 
| 23746 | 475 | apply(erule etranE,simp) | 
| 13020 | 476 | apply simp | 
| 477 | apply clarify | |
| 478 | apply(simp add:cp_def) | |
| 479 | apply clarify | |
| 480 | apply(frule_tac i="length x - 1" in exists_ctran_Await_None,force) | |
| 481 | apply (case_tac x,simp+) | |
| 482 | apply(rule last_fst_esp,simp add:last_length) | |
| 52597 
a8a81453833d
more precise fact declarations -- fewer warnings;
 wenzelm parents: 
42174diff
changeset | 483 | apply(case_tac x, simp+) | 
| 13020 | 484 | apply clarify | 
| 485 | apply(simp add:assum_def) | |
| 486 | apply clarify | |
| 487 | apply(frule_tac j=0 and k="j" and p=pre in stability,simp_all) | |
| 488 | apply(erule_tac x=i in allE,simp) | |
| 489 | apply(erule_tac i=j in unique_ctran_Await,force,simp_all) | |
| 490 | apply(case_tac "x!j") | |
| 491 | apply clarify | |
| 492 | apply simp | |
| 493 | apply(drule_tac s="Some (Await b P)" in sym,simp) | |
| 494 | apply(case_tac "x!Suc j",simp) | |
| 23746 | 495 | apply(rule ctran.cases,simp) | 
| 20432 
07ec57376051
lin_arith_prover: splitting reverted because of performance loss
 webertj parents: 
20272diff
changeset | 496 | apply(simp_all) | 
| 59189 | 497 | apply(drule Star_imp_cptn) | 
| 13020 | 498 | apply clarify | 
| 499 | apply(erule_tac x=sa in allE) | |
| 500 | apply clarify | |
| 501 | apply(erule_tac x=sa in allE) | |
| 502 | apply(drule_tac c=l in subsetD) | |
| 503 | apply (simp add:cp_def) | |
| 504 | apply clarify | |
| 59807 | 505 | apply(erule_tac x=i and P="\<lambda>i. H i \<longrightarrow> (J i, I i)\<in>ctran" for H J I in allE,simp) | 
| 23746 | 506 | apply(erule etranE,simp) | 
| 13020 | 507 | apply simp | 
| 508 | apply clarify | |
| 509 | apply(frule_tac j="Suc j" and k="length x - 1" and p=post in stability,simp_all) | |
| 20432 
07ec57376051
lin_arith_prover: splitting reverted because of performance loss
 webertj parents: 
20272diff
changeset | 510 | apply(case_tac x,simp+) | 
| 13020 | 511 | apply(erule_tac x=i in allE) | 
| 20432 
07ec57376051
lin_arith_prover: splitting reverted because of performance loss
 webertj parents: 
20272diff
changeset | 512 | apply(erule_tac i=j in unique_ctran_Await,force,simp_all) | 
| 
07ec57376051
lin_arith_prover: splitting reverted because of performance loss
 webertj parents: 
20272diff
changeset | 513 | apply arith+ | 
| 13020 | 514 | apply(case_tac x) | 
| 20432 
07ec57376051
lin_arith_prover: splitting reverted because of performance loss
 webertj parents: 
20272diff
changeset | 515 | apply(simp add:last_length)+ | 
| 13020 | 516 | done | 
| 517 | ||
| 59189 | 518 | subsubsection\<open>Soundness of the Conditional rule\<close> | 
| 13020 | 519 | |
| 59189 | 520 | lemma Cond_sound: | 
| 521 | "\<lbrakk> stable pre rely; \<Turnstile> P1 sat [pre \<inter> b, rely, guar, post]; | |
| 13020 | 522 | \<Turnstile> P2 sat [pre \<inter> - b, rely, guar, post]; \<forall>s. (s,s)\<in>guar\<rbrakk> | 
| 523 | \<Longrightarrow> \<Turnstile> (Cond b P1 P2) sat [pre, rely, guar, post]" | |
| 524 | apply(unfold com_validity_def) | |
| 525 | apply clarify | |
| 526 | apply(simp add:cp_def comm_def) | |
| 527 | apply(case_tac "\<exists>i. Suc i<length x \<and> x!i -c\<rightarrow> x!Suc i") | |
| 528 | prefer 2 | |
| 529 | apply simp | |
| 530 | apply clarify | |
| 531 | apply(frule_tac j="0" and k="length x - 1" and p=pre in stability,simp+) | |
| 532 | apply(case_tac x,simp+) | |
| 533 | apply(simp add:assum_def) | |
| 534 | apply(simp add:assum_def) | |
| 535 | apply(erule_tac m="length x" in etran_or_ctran,simp+) | |
| 536 | apply(case_tac x, (simp add:last_length)+) | |
| 537 | apply(erule exE) | |
| 59807 | 538 | apply(drule_tac n=i and P="\<lambda>i. H i \<and> (J i, I i) \<in> ctran" for H J I in Ex_first_occurrence) | 
| 13020 | 539 | apply clarify | 
| 540 | apply (simp add:assum_def) | |
| 541 | apply(frule_tac j=0 and k="m" and p=pre in stability,simp+) | |
| 542 | apply(erule_tac m="Suc m" in etran_or_ctran,simp+) | |
| 23746 | 543 | apply(erule ctran.cases,simp_all) | 
| 13020 | 544 | apply(erule_tac x="sa" in allE) | 
| 545 | apply(drule_tac c="drop (Suc m) x" in subsetD) | |
| 546 | apply simp | |
| 547 | apply clarify | |
| 548 | apply simp | |
| 17528 
2a602a8462d5
fixed proof script of lemma Cond_sound (Why did it stop working anyway?);
 wenzelm parents: 
16417diff
changeset | 549 | apply clarify | 
| 
2a602a8462d5
fixed proof script of lemma Cond_sound (Why did it stop working anyway?);
 wenzelm parents: 
16417diff
changeset | 550 | apply(case_tac "i\<le>m") | 
| 
2a602a8462d5
fixed proof script of lemma Cond_sound (Why did it stop working anyway?);
 wenzelm parents: 
16417diff
changeset | 551 | apply(drule le_imp_less_or_eq) | 
| 
2a602a8462d5
fixed proof script of lemma Cond_sound (Why did it stop working anyway?);
 wenzelm parents: 
16417diff
changeset | 552 | apply(erule disjE) | 
| 
2a602a8462d5
fixed proof script of lemma Cond_sound (Why did it stop working anyway?);
 wenzelm parents: 
16417diff
changeset | 553 | apply(erule_tac x=i in allE, erule impE, assumption) | 
| 
2a602a8462d5
fixed proof script of lemma Cond_sound (Why did it stop working anyway?);
 wenzelm parents: 
16417diff
changeset | 554 | apply simp+ | 
| 59807 | 555 | apply(erule_tac x="i - (Suc m)" and P="\<lambda>j. H j \<longrightarrow> J j \<longrightarrow> (I j)\<in>guar" for H J I in allE) | 
| 20432 
07ec57376051
lin_arith_prover: splitting reverted because of performance loss
 webertj parents: 
20272diff
changeset | 556 | apply(subgoal_tac "(Suc m)+(i - Suc m) \<le> length x") | 
| 
07ec57376051
lin_arith_prover: splitting reverted because of performance loss
 webertj parents: 
20272diff
changeset | 557 | apply(subgoal_tac "(Suc m)+Suc (i - Suc m) \<le> length x") | 
| 
07ec57376051
lin_arith_prover: splitting reverted because of performance loss
 webertj parents: 
20272diff
changeset | 558 | apply(rotate_tac -2) | 
| 13020 | 559 | apply simp | 
| 560 | apply arith | |
| 561 | apply arith | |
| 20432 
07ec57376051
lin_arith_prover: splitting reverted because of performance loss
 webertj parents: 
20272diff
changeset | 562 | apply(case_tac "length (drop (Suc m) x)",simp) | 
| 
07ec57376051
lin_arith_prover: splitting reverted because of performance loss
 webertj parents: 
20272diff
changeset | 563 | apply(erule_tac x="sa" in allE) | 
| 
07ec57376051
lin_arith_prover: splitting reverted because of performance loss
 webertj parents: 
20272diff
changeset | 564 | back | 
| 
07ec57376051
lin_arith_prover: splitting reverted because of performance loss
 webertj parents: 
20272diff
changeset | 565 | apply(drule_tac c="drop (Suc m) x" in subsetD,simp) | 
| 
07ec57376051
lin_arith_prover: splitting reverted because of performance loss
 webertj parents: 
20272diff
changeset | 566 | apply clarify | 
| 
07ec57376051
lin_arith_prover: splitting reverted because of performance loss
 webertj parents: 
20272diff
changeset | 567 | apply simp | 
| 
07ec57376051
lin_arith_prover: splitting reverted because of performance loss
 webertj parents: 
20272diff
changeset | 568 | apply clarify | 
| 
07ec57376051
lin_arith_prover: splitting reverted because of performance loss
 webertj parents: 
20272diff
changeset | 569 | apply(case_tac "i\<le>m") | 
| 
07ec57376051
lin_arith_prover: splitting reverted because of performance loss
 webertj parents: 
20272diff
changeset | 570 | apply(drule le_imp_less_or_eq) | 
| 
07ec57376051
lin_arith_prover: splitting reverted because of performance loss
 webertj parents: 
20272diff
changeset | 571 | apply(erule disjE) | 
| 
07ec57376051
lin_arith_prover: splitting reverted because of performance loss
 webertj parents: 
20272diff
changeset | 572 | apply(erule_tac x=i in allE, erule impE, assumption) | 
| 
07ec57376051
lin_arith_prover: splitting reverted because of performance loss
 webertj parents: 
20272diff
changeset | 573 | apply simp | 
| 
07ec57376051
lin_arith_prover: splitting reverted because of performance loss
 webertj parents: 
20272diff
changeset | 574 | apply simp | 
| 59807 | 575 | apply(erule_tac x="i - (Suc m)" and P="\<lambda>j. H j \<longrightarrow> J j \<longrightarrow> (I j)\<in>guar" for H J I in allE) | 
| 20432 
07ec57376051
lin_arith_prover: splitting reverted because of performance loss
 webertj parents: 
20272diff
changeset | 576 | apply(subgoal_tac "(Suc m)+(i - Suc m) \<le> length x") | 
| 
07ec57376051
lin_arith_prover: splitting reverted because of performance loss
 webertj parents: 
20272diff
changeset | 577 | apply(subgoal_tac "(Suc m)+Suc (i - Suc m) \<le> length x") | 
| 
07ec57376051
lin_arith_prover: splitting reverted because of performance loss
 webertj parents: 
20272diff
changeset | 578 | apply(rotate_tac -2) | 
| 
07ec57376051
lin_arith_prover: splitting reverted because of performance loss
 webertj parents: 
20272diff
changeset | 579 | apply simp | 
| 
07ec57376051
lin_arith_prover: splitting reverted because of performance loss
 webertj parents: 
20272diff
changeset | 580 | apply arith | 
| 
07ec57376051
lin_arith_prover: splitting reverted because of performance loss
 webertj parents: 
20272diff
changeset | 581 | apply arith | 
| 20217 
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
 webertj parents: 
18576diff
changeset | 582 | done | 
| 13020 | 583 | |
| 59189 | 584 | subsubsection\<open>Soundness of the Sequential rule\<close> | 
| 13020 | 585 | |
| 586 | inductive_cases Seq_cases [elim!]: "(Some (Seq P Q), s) -c\<rightarrow> t" | |
| 587 | ||
| 588 | lemma last_lift_not_None: "fst ((lift Q) ((x#xs)!(length xs))) \<noteq> None" | |
| 589 | apply(subgoal_tac "length xs<length (x # xs)") | |
| 590 | apply(drule_tac Q=Q in lift_nth) | |
| 591 | apply(erule ssubst) | |
| 592 | apply (simp add:lift_def) | |
| 593 | apply(case_tac "(x # xs) ! length xs",simp) | |
| 594 | apply simp | |
| 595 | done | |
| 596 | ||
| 59189 | 597 | lemma Seq_sound1 [rule_format]: | 
| 598 | "x\<in> cptn_mod \<Longrightarrow> \<forall>s P. x !0=(Some (Seq P Q), s) \<longrightarrow> | |
| 599 | (\<forall>i<length x. fst(x!i)\<noteq>Some Q) \<longrightarrow> | |
| 13020 | 600 | (\<exists>xs\<in> cp (Some P) s. x=map (lift Q) xs)" | 
| 71989 
bad75618fb82
extraction of equations x = t from premises beneath meta-all
 haftmann parents: 
71836diff
changeset | 601 | supply [[simproc del: defined_all]] | 
| 13020 | 602 | apply(erule cptn_mod.induct) | 
| 603 | apply(unfold cp_def) | |
| 604 | apply safe | |
| 605 | apply simp_all | |
| 606 | apply(simp add:lift_def) | |
| 607 | apply(rule_tac x="[(Some Pa, sa)]" in exI,simp add:CptnOne) | |
| 608 | apply(subgoal_tac "(\<forall>i < Suc (length xs). fst (((Some (Seq Pa Q), t) # xs) ! i) \<noteq> Some Q)") | |
| 609 | apply clarify | |
| 14025 | 610 | apply(rule_tac x="(Some Pa, sa) #(Some Pa, t) # zs" in exI,simp) | 
| 13020 | 611 | apply(rule conjI,erule CptnEnv) | 
| 13601 | 612 | apply(simp (no_asm_use) add:lift_def) | 
| 13020 | 613 | apply clarify | 
| 614 | apply(erule_tac x="Suc i" in allE, simp) | |
| 23746 | 615 | apply(ind_cases "((Some (Seq Pa Q), sa), None, t) \<in> ctran" for Pa sa t) | 
| 13020 | 616 | apply(rule_tac x="(Some P, sa) # xs" in exI, simp add:cptn_iff_cptn_mod lift_def) | 
| 617 | apply(erule_tac x="length xs" in allE, simp) | |
| 618 | apply(simp only:Cons_lift_append) | |
| 619 | apply(subgoal_tac "length xs < length ((Some P, sa) # xs)") | |
| 620 | apply(simp only :nth_append length_map last_length nth_map) | |
| 621 | apply(case_tac "last((Some P, sa) # xs)") | |
| 622 | apply(simp add:lift_def) | |
| 623 | apply simp | |
| 624 | done | |
| 625 | ||
| 59189 | 626 | lemma Seq_sound2 [rule_format]: | 
| 627 | "x \<in> cptn \<Longrightarrow> \<forall>s P i. x!0=(Some (Seq P Q), s) \<longrightarrow> i<length x | |
| 13022 
b115b305612f
New order in the loading of theories (Quote-antiquote right before the OG_Syntax and RG_Syntax respectively)
 prensani parents: 
13020diff
changeset | 628 | \<longrightarrow> fst(x!i)=Some Q \<longrightarrow> | 
| 13020 | 629 | (\<forall>j<i. fst(x!j)\<noteq>(Some Q)) \<longrightarrow> | 
| 59189 | 630 | (\<exists>xs ys. xs \<in> cp (Some P) s \<and> length xs=Suc i | 
| 13022 
b115b305612f
New order in the loading of theories (Quote-antiquote right before the OG_Syntax and RG_Syntax respectively)
 prensani parents: 
13020diff
changeset | 631 | \<and> ys \<in> cp (Some Q) (snd(xs !i)) \<and> x=(map (lift Q) xs)@tl ys)" | 
| 71989 
bad75618fb82
extraction of equations x = t from premises beneath meta-all
 haftmann parents: 
71836diff
changeset | 632 | supply [[simproc del: defined_all]] | 
| 13020 | 633 | apply(erule cptn.induct) | 
| 634 | apply(unfold cp_def) | |
| 635 | apply safe | |
| 636 | apply simp_all | |
| 637 | apply(case_tac i,simp+) | |
| 638 | apply(erule allE,erule impE,assumption,simp) | |
| 639 | apply clarify | |
| 640 | apply(subgoal_tac "(\<forall>j < nat. fst (((Some (Seq Pa Q), t) # xs) ! j) \<noteq> Some Q)",clarify) | |
| 641 | prefer 2 | |
| 642 | apply force | |
| 643 | apply(case_tac xsa,simp,simp) | |
| 55417 
01fbfb60c33e
adapted to 'xxx_{case,rec}' renaming, to new theorem names, and to new variable names in theorems
 blanchet parents: 
54859diff
changeset | 644 | apply(rename_tac list) | 
| 13020 | 645 | apply(rule_tac x="(Some Pa, sa) #(Some Pa, t) # list" in exI,simp) | 
| 646 | apply(rule conjI,erule CptnEnv) | |
| 13601 | 647 | apply(simp (no_asm_use) add:lift_def) | 
| 13020 | 648 | apply(rule_tac x=ys in exI,simp) | 
| 23746 | 649 | apply(ind_cases "((Some (Seq Pa Q), sa), t) \<in> ctran" for Pa sa t) | 
| 13020 | 650 | apply simp | 
| 651 | apply(rule_tac x="(Some Pa, sa)#[(None, ta)]" in exI,simp) | |
| 652 | apply(rule conjI) | |
| 653 | apply(drule_tac xs="[]" in CptnComp,force simp add:CptnOne,simp) | |
| 654 | apply(case_tac i, simp+) | |
| 655 | apply(case_tac nat,simp+) | |
| 656 | apply(rule_tac x="(Some Q,ta)#xs" in exI,simp add:lift_def) | |
| 657 | apply(case_tac nat,simp+) | |
| 658 | apply(force) | |
| 659 | apply(case_tac i, simp+) | |
| 660 | apply(case_tac nat,simp+) | |
| 661 | apply(erule_tac x="Suc nata" in allE,simp) | |
| 662 | apply clarify | |
| 663 | apply(subgoal_tac "(\<forall>j<Suc nata. fst (((Some (Seq P2 Q), ta) # xs) ! j) \<noteq> Some Q)",clarify) | |
| 664 | prefer 2 | |
| 665 | apply clarify | |
| 666 | apply force | |
| 667 | apply(rule_tac x="(Some Pa, sa)#(Some P2, ta)#(tl xsa)" in exI,simp) | |
| 668 | apply(rule conjI,erule CptnComp) | |
| 669 | apply(rule nth_tl_if,force,simp+) | |
| 670 | apply(rule_tac x=ys in exI,simp) | |
| 671 | apply(rule conjI) | |
| 672 | apply(rule nth_tl_if,force,simp+) | |
| 673 | apply(rule tl_zero,simp+) | |
| 674 | apply force | |
| 675 | apply(rule conjI,simp add:lift_def) | |
| 59189 | 676 | apply(subgoal_tac "lift Q (Some P2, ta) =(Some (Seq P2 Q), ta)") | 
| 55465 | 677 | apply(simp add:Cons_lift del:list.map) | 
| 13020 | 678 | apply(rule nth_tl_if) | 
| 679 | apply force | |
| 680 | apply simp+ | |
| 681 | apply(simp add:lift_def) | |
| 682 | done | |
| 683 | (* | |
| 684 | lemma last_lift_not_None3: "fst (last (map (lift Q) (x#xs))) \<noteq> None" | |
| 685 | apply(simp only:last_length [THEN sym]) | |
| 686 | apply(subgoal_tac "length xs<length (x # xs)") | |
| 687 | apply(drule_tac Q=Q in lift_nth) | |
| 688 | apply(erule ssubst) | |
| 689 | apply (simp add:lift_def) | |
| 690 | apply(case_tac "(x # xs) ! length xs",simp) | |
| 691 | apply simp | |
| 692 | done | |
| 693 | *) | |
| 694 | ||
| 695 | lemma last_lift_not_None2: "fst ((lift Q) (last (x#xs))) \<noteq> None" | |
| 696 | apply(simp only:last_length [THEN sym]) | |
| 697 | apply(subgoal_tac "length xs<length (x # xs)") | |
| 698 | apply(drule_tac Q=Q in lift_nth) | |
| 699 | apply(erule ssubst) | |
| 700 | apply (simp add:lift_def) | |
| 701 | apply(case_tac "(x # xs) ! length xs",simp) | |
| 702 | apply simp | |
| 703 | done | |
| 704 | ||
| 59189 | 705 | lemma Seq_sound: | 
| 13020 | 706 | "\<lbrakk>\<Turnstile> P sat [pre, rely, guar, mid]; \<Turnstile> Q sat [mid, rely, guar, post]\<rbrakk> | 
| 707 | \<Longrightarrow> \<Turnstile> Seq P Q sat [pre, rely, guar, post]" | |
| 708 | apply(unfold com_validity_def) | |
| 709 | apply clarify | |
| 710 | apply(case_tac "\<exists>i<length x. fst(x!i)=Some Q") | |
| 711 | prefer 2 | |
| 712 | apply (simp add:cp_def cptn_iff_cptn_mod) | |
| 713 | apply clarify | |
| 714 | apply(frule_tac Seq_sound1,force) | |
| 715 | apply force | |
| 716 | apply clarify | |
| 717 | apply(erule_tac x=s in allE,simp) | |
| 718 | apply(drule_tac c=xs in subsetD,simp add:cp_def cptn_iff_cptn_mod) | |
| 719 | apply(simp add:assum_def) | |
| 720 | apply clarify | |
| 59807 | 721 | apply(erule_tac P="\<lambda>j. H j \<longrightarrow> J j \<longrightarrow> I j" for H J I in allE,erule impE, assumption) | 
| 13020 | 722 | apply(simp add:snd_lift) | 
| 723 | apply(erule mp) | |
| 23746 | 724 | apply(force elim:etranE intro:Env simp add:lift_def) | 
| 13020 | 725 | apply(simp add:comm_def) | 
| 726 | apply(rule conjI) | |
| 727 | apply clarify | |
| 59807 | 728 | apply(erule_tac P="\<lambda>j. H j \<longrightarrow> J j \<longrightarrow> I j" for H J I in allE,erule impE, assumption) | 
| 13020 | 729 | apply(simp add:snd_lift) | 
| 730 | apply(erule mp) | |
| 731 | apply(case_tac "(xs!i)") | |
| 732 | apply(case_tac "(xs! Suc i)") | |
| 733 | apply(case_tac "fst(xs!i)") | |
| 734 | apply(erule_tac x=i in allE, simp add:lift_def) | |
| 735 | apply(case_tac "fst(xs!Suc i)") | |
| 736 | apply(force simp add:lift_def) | |
| 737 | apply(force simp add:lift_def) | |
| 738 | apply clarify | |
| 739 | apply(case_tac xs,simp add:cp_def) | |
| 740 | apply clarify | |
| 55465 | 741 | apply (simp del:list.map) | 
| 55417 
01fbfb60c33e
adapted to 'xxx_{case,rec}' renaming, to new theorem names, and to new variable names in theorems
 blanchet parents: 
54859diff
changeset | 742 | apply (rename_tac list) | 
| 13020 | 743 | apply(subgoal_tac "(map (lift Q) ((a, b) # list))\<noteq>[]") | 
| 17588 | 744 | apply(drule last_conv_nth) | 
| 55465 | 745 | apply (simp del:list.map) | 
| 13020 | 746 | apply(simp only:last_lift_not_None) | 
| 747 | apply simp | |
| 67443 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 wenzelm parents: 
62343diff
changeset | 748 | \<comment> \<open>\<open>\<exists>i<length x. fst (x ! i) = Some Q\<close>\<close> | 
| 13020 | 749 | apply(erule exE) | 
| 750 | apply(drule_tac n=i and P="\<lambda>i. i < length x \<and> fst (x ! i) = Some Q" in Ex_first_occurrence) | |
| 751 | apply clarify | |
| 752 | apply (simp add:cp_def) | |
| 753 | apply clarify | |
| 754 | apply(frule_tac i=m in Seq_sound2,force) | |
| 755 | apply simp+ | |
| 756 | apply clarify | |
| 757 | apply(simp add:comm_def) | |
| 758 | apply(erule_tac x=s in allE) | |
| 759 | apply(drule_tac c=xs in subsetD,simp) | |
| 760 | apply(case_tac "xs=[]",simp) | |
| 761 | apply(simp add:cp_def assum_def nth_append) | |
| 762 | apply clarify | |
| 763 | apply(erule_tac x=i in allE) | |
| 59189 | 764 | back | 
| 13020 | 765 | apply(simp add:snd_lift) | 
| 766 | apply(erule mp) | |
| 23746 | 767 | apply(force elim:etranE intro:Env simp add:lift_def) | 
| 13020 | 768 | apply simp | 
| 769 | apply clarify | |
| 770 | apply(erule_tac x="snd(xs!m)" in allE) | |
| 771 | apply(drule_tac c=ys in subsetD,simp add:cp_def assum_def) | |
| 772 | apply(case_tac "xs\<noteq>[]") | |
| 17588 | 773 | apply(drule last_conv_nth,simp) | 
| 13020 | 774 | apply(rule conjI) | 
| 775 | apply(erule mp) | |
| 776 | apply(case_tac "xs!m") | |
| 777 | apply(case_tac "fst(xs!m)",simp) | |
| 778 | apply(simp add:lift_def nth_append) | |
| 779 | apply clarify | |
| 780 | apply(erule_tac x="m+i" in allE) | |
| 781 | back | |
| 782 | back | |
| 783 | apply(case_tac ys,(simp add:nth_append)+) | |
| 784 | apply (case_tac i, (simp add:snd_lift)+) | |
| 785 | apply(erule mp) | |
| 786 | apply(case_tac "xs!m") | |
| 23746 | 787 | apply(force elim:etran.cases intro:Env simp add:lift_def) | 
| 59189 | 788 | apply simp | 
| 13020 | 789 | apply simp | 
| 790 | apply clarify | |
| 791 | apply(rule conjI,clarify) | |
| 792 | apply(case_tac "i<m",simp add:nth_append) | |
| 793 | apply(simp add:snd_lift) | |
| 794 | apply(erule allE, erule impE, assumption, erule mp) | |
| 795 | apply(case_tac "(xs ! i)") | |
| 59189 | 796 | apply(case_tac "(xs ! Suc i)") | 
| 797 | apply(case_tac "fst(xs ! i)",force simp add:lift_def) | |
| 13020 | 798 | apply(case_tac "fst(xs ! Suc i)") | 
| 799 | apply (force simp add:lift_def) | |
| 800 | apply (force simp add:lift_def) | |
| 59189 | 801 | apply(erule_tac x="i-m" in allE) | 
| 13020 | 802 | back | 
| 803 | back | |
| 804 | apply(subgoal_tac "Suc (i - m) < length ys",simp) | |
| 805 | prefer 2 | |
| 806 | apply arith | |
| 807 | apply(simp add:nth_append snd_lift) | |
| 808 | apply(rule conjI,clarify) | |
| 809 | apply(subgoal_tac "i=m") | |
| 810 | prefer 2 | |
| 811 | apply arith | |
| 812 | apply clarify | |
| 813 | apply(simp add:cp_def) | |
| 814 | apply(rule tl_zero) | |
| 815 | apply(erule mp) | |
| 816 | apply(case_tac "lift Q (xs!m)",simp add:snd_lift) | |
| 817 | apply(case_tac "xs!m",case_tac "fst(xs!m)",simp add:lift_def snd_lift) | |
| 818 | apply(case_tac ys,simp+) | |
| 819 | apply(simp add:lift_def) | |
| 59189 | 820 | apply simp | 
| 13020 | 821 | apply force | 
| 822 | apply clarify | |
| 823 | apply(rule tl_zero) | |
| 824 | apply(rule tl_zero) | |
| 825 | apply (subgoal_tac "i-m=Suc(i-Suc m)") | |
| 826 | apply simp | |
| 827 | apply(erule mp) | |
| 828 | apply(case_tac ys,simp+) | |
| 829 | apply force | |
| 830 | apply arith | |
| 831 | apply force | |
| 832 | apply clarify | |
| 833 | apply(case_tac "(map (lift Q) xs @ tl ys)\<noteq>[]") | |
| 17588 | 834 | apply(drule last_conv_nth) | 
| 13020 | 835 | apply(simp add: snd_lift nth_append) | 
| 836 | apply(rule conjI,clarify) | |
| 837 | apply(case_tac ys,simp+) | |
| 838 | apply clarify | |
| 839 | apply(case_tac ys,simp+) | |
| 840 | done | |
| 841 | ||
| 59189 | 842 | subsubsection\<open>Soundness of the While rule\<close> | 
| 13020 | 843 | |
| 844 | lemma last_append[rule_format]: | |
| 845 | "\<forall>xs. ys\<noteq>[] \<longrightarrow> ((xs@ys)!(length (xs@ys) - (Suc 0)))=(ys!(length ys - (Suc 0)))" | |
| 846 | apply(induct ys) | |
| 847 | apply simp | |
| 848 | apply clarify | |
| 52597 
a8a81453833d
more precise fact declarations -- fewer warnings;
 wenzelm parents: 
42174diff
changeset | 849 | apply (simp add:nth_append) | 
| 13020 | 850 | done | 
| 851 | ||
| 59189 | 852 | lemma assum_after_body: | 
| 853 | "\<lbrakk> \<Turnstile> P sat [pre \<inter> b, rely, guar, pre]; | |
| 13020 | 854 | (Some P, s) # xs \<in> cptn_mod; fst (last ((Some P, s) # xs)) = None; s \<in> b; | 
| 59189 | 855 | (Some (While b P), s) # (Some (Seq P (While b P)), s) # | 
| 13022 
b115b305612f
New order in the loading of theories (Quote-antiquote right before the OG_Syntax and RG_Syntax respectively)
 prensani parents: 
13020diff
changeset | 856 | map (lift (While b P)) xs @ ys \<in> assum (pre, rely)\<rbrakk> | 
| 13020 | 857 | \<Longrightarrow> (Some (While b P), snd (last ((Some P, s) # xs))) # ys \<in> assum (pre, rely)" | 
| 858 | apply(simp add:assum_def com_validity_def cp_def cptn_iff_cptn_mod) | |
| 859 | apply clarify | |
| 860 | apply(erule_tac x=s in allE) | |
| 861 | apply(drule_tac c="(Some P, s) # xs" in subsetD,simp) | |
| 862 | apply clarify | |
| 863 | apply(erule_tac x="Suc i" in allE) | |
| 864 | apply simp | |
| 55465 | 865 | apply(simp add:Cons_lift_append nth_append snd_lift del:list.map) | 
| 13020 | 866 | apply(erule mp) | 
| 23746 | 867 | apply(erule etranE,simp) | 
| 13020 | 868 | apply(case_tac "fst(((Some P, s) # xs) ! i)") | 
| 869 | apply(force intro:Env simp add:lift_def) | |
| 870 | apply(force intro:Env simp add:lift_def) | |
| 871 | apply(rule conjI) | |
| 872 | apply clarify | |
| 873 | apply(simp add:comm_def last_length) | |
| 874 | apply clarify | |
| 875 | apply(rule conjI) | |
| 876 | apply(simp add:comm_def) | |
| 877 | apply clarify | |
| 878 | apply(erule_tac x="Suc(length xs + i)" in allE,simp) | |
| 41842 | 879 | apply(case_tac i, simp add:nth_append Cons_lift_append snd_lift last_conv_nth lift_def split_def) | 
| 880 | apply(simp add:Cons_lift_append nth_append snd_lift) | |
| 13020 | 881 | done | 
| 882 | ||
| 59189 | 883 | lemma While_sound_aux [rule_format]: | 
| 13020 | 884 | "\<lbrakk> pre \<inter> - b \<subseteq> post; \<Turnstile> P sat [pre \<inter> b, rely, guar, pre]; \<forall>s. (s, s) \<in> guar; | 
| 59189 | 885 | stable pre rely; stable post rely; x \<in> cptn_mod \<rbrakk> | 
| 13020 | 886 | \<Longrightarrow> \<forall>s xs. x=(Some(While b P),s)#xs \<longrightarrow> x\<in>assum(pre, rely) \<longrightarrow> x \<in> comm (guar, post)" | 
| 71989 
bad75618fb82
extraction of equations x = t from premises beneath meta-all
 haftmann parents: 
71836diff
changeset | 887 | supply [[simproc del: defined_all]] | 
| 13020 | 888 | apply(erule cptn_mod.induct) | 
| 889 | apply safe | |
| 890 | apply (simp_all del:last.simps) | |
| 67443 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 wenzelm parents: 
62343diff
changeset | 891 | \<comment> \<open>5 subgoals left\<close> | 
| 13020 | 892 | apply(simp add:comm_def) | 
| 67443 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 wenzelm parents: 
62343diff
changeset | 893 | \<comment> \<open>4 subgoals left\<close> | 
| 13020 | 894 | apply(rule etran_in_comm) | 
| 895 | apply(erule mp) | |
| 896 | apply(erule tl_of_assum_in_assum,simp) | |
| 67443 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 wenzelm parents: 
62343diff
changeset | 897 | \<comment> \<open>While-None\<close> | 
| 23746 | 898 | apply(ind_cases "((Some (While b P), s), None, t) \<in> ctran" for s t) | 
| 13020 | 899 | apply(simp add:comm_def) | 
| 900 | apply(simp add:cptn_iff_cptn_mod [THEN sym]) | |
| 901 | apply(rule conjI,clarify) | |
| 902 | apply(force simp add:assum_def) | |
| 903 | apply clarify | |
| 904 | apply(rule conjI, clarify) | |
| 905 | apply(case_tac i,simp,simp) | |
| 906 | apply(force simp add:not_ctran_None2) | |
| 23746 | 907 | apply(subgoal_tac "\<forall>i. Suc i < length ((None, t) # xs) \<longrightarrow> (((None, t) # xs) ! i, ((None, t) # xs) ! Suc i)\<in> etran") | 
| 13020 | 908 | prefer 2 | 
| 909 | apply clarify | |
| 910 | apply(rule_tac m="length ((None, s) # xs)" in etran_or_ctran,simp+) | |
| 911 | apply(erule not_ctran_None2,simp) | |
| 912 | apply simp+ | |
| 913 | apply(frule_tac j="0" and k="length ((None, s) # xs) - 1" and p=post in stability,simp+) | |
| 914 | apply(force simp add:assum_def subsetD) | |
| 915 | apply(simp add:assum_def) | |
| 916 | apply clarify | |
| 59189 | 917 | apply(erule_tac x="i" in allE,simp) | 
| 918 | apply(erule_tac x="Suc i" in allE,simp) | |
| 13020 | 919 | apply simp | 
| 920 | apply clarify | |
| 921 | apply (simp add:last_length) | |
| 67443 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 wenzelm parents: 
62343diff
changeset | 922 | \<comment> \<open>WhileOne\<close> | 
| 13020 | 923 | apply(rule ctran_in_comm,simp) | 
| 55465 | 924 | apply(simp add:Cons_lift del:list.map) | 
| 925 | apply(simp add:comm_def del:list.map) | |
| 13020 | 926 | apply(rule conjI) | 
| 927 | apply clarify | |
| 928 | apply(case_tac "fst(((Some P, sa) # xs) ! i)") | |
| 929 | apply(case_tac "((Some P, sa) # xs) ! i") | |
| 930 | apply (simp add:lift_def) | |
| 23746 | 931 | apply(ind_cases "(Some (While b P), ba) -c\<rightarrow> t" for ba t) | 
| 13020 | 932 | apply simp | 
| 933 | apply simp | |
| 55465 | 934 | apply(simp add:snd_lift del:list.map) | 
| 13020 | 935 | apply(simp only:com_validity_def cp_def cptn_iff_cptn_mod) | 
| 936 | apply(erule_tac x=sa in allE) | |
| 937 | apply(drule_tac c="(Some P, sa) # xs" in subsetD) | |
| 55465 | 938 | apply (simp add:assum_def del:list.map) | 
| 13020 | 939 | apply clarify | 
| 55465 | 940 | apply(erule_tac x="Suc ia" in allE,simp add:snd_lift del:list.map) | 
| 13020 | 941 | apply(erule mp) | 
| 942 | apply(case_tac "fst(((Some P, sa) # xs) ! ia)") | |
| 23746 | 943 | apply(erule etranE,simp add:lift_def) | 
| 13020 | 944 | apply(rule Env) | 
| 23746 | 945 | apply(erule etranE,simp add:lift_def) | 
| 13020 | 946 | apply(rule Env) | 
| 55465 | 947 | apply (simp add:comm_def del:list.map) | 
| 13020 | 948 | apply clarify | 
| 949 | apply(erule allE,erule impE,assumption) | |
| 950 | apply(erule mp) | |
| 951 | apply(case_tac "((Some P, sa) # xs) ! i") | |
| 952 | apply(case_tac "xs!i") | |
| 953 | apply(simp add:lift_def) | |
| 954 | apply(case_tac "fst(xs!i)") | |
| 955 | apply force | |
| 956 | apply force | |
| 67443 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 wenzelm parents: 
62343diff
changeset | 957 | \<comment> \<open>last=None\<close> | 
| 13020 | 958 | apply clarify | 
| 959 | apply(subgoal_tac "(map (lift (While b P)) ((Some P, sa) # xs))\<noteq>[]") | |
| 17588 | 960 | apply(drule last_conv_nth) | 
| 55465 | 961 | apply (simp del:list.map) | 
| 13020 | 962 | apply(simp only:last_lift_not_None) | 
| 963 | apply simp | |
| 67443 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 wenzelm parents: 
62343diff
changeset | 964 | \<comment> \<open>WhileMore\<close> | 
| 13020 | 965 | apply(rule ctran_in_comm,simp del:last.simps) | 
| 67443 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 wenzelm parents: 
62343diff
changeset | 966 | \<comment> \<open>metiendo la hipotesis antes de dividir la conclusion.\<close> | 
| 13020 | 967 | apply(subgoal_tac "(Some (While b P), snd (last ((Some P, sa) # xs))) # ys \<in> assum (pre, rely)") | 
| 968 | apply (simp del:last.simps) | |
| 969 | prefer 2 | |
| 970 | apply(erule assum_after_body) | |
| 971 | apply (simp del:last.simps)+ | |
| 67443 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 wenzelm parents: 
62343diff
changeset | 972 | \<comment> \<open>lo de antes.\<close> | 
| 55465 | 973 | apply(simp add:comm_def del:list.map last.simps) | 
| 13020 | 974 | apply(rule conjI) | 
| 975 | apply clarify | |
| 976 | apply(simp only:Cons_lift_append) | |
| 977 | apply(case_tac "i<length xs") | |
| 55465 | 978 | apply(simp add:nth_append del:list.map last.simps) | 
| 13020 | 979 | apply(case_tac "fst(((Some P, sa) # xs) ! i)") | 
| 980 | apply(case_tac "((Some P, sa) # xs) ! i") | |
| 981 | apply (simp add:lift_def del:last.simps) | |
| 23746 | 982 | apply(ind_cases "(Some (While b P), ba) -c\<rightarrow> t" for ba t) | 
| 13020 | 983 | apply simp | 
| 984 | apply simp | |
| 55465 | 985 | apply(simp add:snd_lift del:list.map last.simps) | 
| 59807 | 986 | apply(thin_tac " \<forall>i. i < length ys \<longrightarrow> P i" for P) | 
| 13020 | 987 | apply(simp only:com_validity_def cp_def cptn_iff_cptn_mod) | 
| 988 | apply(erule_tac x=sa in allE) | |
| 989 | apply(drule_tac c="(Some P, sa) # xs" in subsetD) | |
| 55465 | 990 | apply (simp add:assum_def del:list.map last.simps) | 
| 13020 | 991 | apply clarify | 
| 55465 | 992 | apply(erule_tac x="Suc ia" in allE,simp add:nth_append snd_lift del:list.map last.simps, erule mp) | 
| 13020 | 993 | apply(case_tac "fst(((Some P, sa) # xs) ! ia)") | 
| 23746 | 994 | apply(erule etranE,simp add:lift_def) | 
| 13020 | 995 | apply(rule Env) | 
| 23746 | 996 | apply(erule etranE,simp add:lift_def) | 
| 13020 | 997 | apply(rule Env) | 
| 55465 | 998 | apply (simp add:comm_def del:list.map) | 
| 13020 | 999 | apply clarify | 
| 1000 | apply(erule allE,erule impE,assumption) | |
| 1001 | apply(erule mp) | |
| 1002 | apply(case_tac "((Some P, sa) # xs) ! i") | |
| 1003 | apply(case_tac "xs!i") | |
| 1004 | apply(simp add:lift_def) | |
| 1005 | apply(case_tac "fst(xs!i)") | |
| 1006 | apply force | |
| 1007 | apply force | |
| 67443 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 wenzelm parents: 
62343diff
changeset | 1008 | \<comment> \<open>\<open>i \<ge> length xs\<close>\<close> | 
| 59189 | 1009 | apply(subgoal_tac "i-length xs <length ys") | 
| 13020 | 1010 | prefer 2 | 
| 1011 | apply arith | |
| 1012 | apply(erule_tac x="i-length xs" in allE,clarify) | |
| 1013 | apply(case_tac "i=length xs") | |
| 55465 | 1014 | apply (simp add:nth_append snd_lift del:list.map last.simps) | 
| 13020 | 1015 | apply(simp add:last_length del:last.simps) | 
| 1016 | apply(erule mp) | |
| 1017 | apply(case_tac "last((Some P, sa) # xs)") | |
| 1018 | apply(simp add:lift_def del:last.simps) | |
| 67443 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 wenzelm parents: 
62343diff
changeset | 1019 | \<comment> \<open>\<open>i>length xs\<close>\<close> | 
| 13020 | 1020 | apply(case_tac "i-length xs") | 
| 1021 | apply arith | |
| 55465 | 1022 | apply(simp add:nth_append del:list.map last.simps) | 
| 13187 | 1023 | apply(rotate_tac -3) | 
| 13020 | 1024 | apply(subgoal_tac "i- Suc (length xs)=nat") | 
| 1025 | prefer 2 | |
| 1026 | apply arith | |
| 1027 | apply simp | |
| 67443 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 wenzelm parents: 
62343diff
changeset | 1028 | \<comment> \<open>last=None\<close> | 
| 13020 | 1029 | apply clarify | 
| 1030 | apply(case_tac ys) | |
| 55465 | 1031 | apply(simp add:Cons_lift del:list.map last.simps) | 
| 13020 | 1032 | apply(subgoal_tac "(map (lift (While b P)) ((Some P, sa) # xs))\<noteq>[]") | 
| 17588 | 1033 | apply(drule last_conv_nth) | 
| 55465 | 1034 | apply (simp del:list.map) | 
| 13020 | 1035 | apply(simp only:last_lift_not_None) | 
| 1036 | apply simp | |
| 1037 | apply(subgoal_tac "((Some (Seq P (While b P)), sa) # map (lift (While b P)) xs @ ys)\<noteq>[]") | |
| 17588 | 1038 | apply(drule last_conv_nth) | 
| 55465 | 1039 | apply (simp del:list.map last.simps) | 
| 13020 | 1040 | apply(simp add:nth_append del:last.simps) | 
| 55417 
01fbfb60c33e
adapted to 'xxx_{case,rec}' renaming, to new theorem names, and to new variable names in theorems
 blanchet parents: 
54859diff
changeset | 1041 | apply(rename_tac a list) | 
| 13020 | 1042 | apply(subgoal_tac "((Some (While b P), snd (last ((Some P, sa) # xs))) # a # list)\<noteq>[]") | 
| 17588 | 1043 | apply(drule last_conv_nth) | 
| 55465 | 1044 | apply (simp del:list.map last.simps) | 
| 13020 | 1045 | apply simp | 
| 1046 | apply simp | |
| 1047 | done | |
| 1048 | ||
| 59189 | 1049 | lemma While_sound: | 
| 13020 | 1050 | "\<lbrakk>stable pre rely; pre \<inter> - b \<subseteq> post; stable post rely; | 
| 1051 | \<Turnstile> P sat [pre \<inter> b, rely, guar, pre]; \<forall>s. (s,s)\<in>guar\<rbrakk> | |
| 1052 | \<Longrightarrow> \<Turnstile> While b P sat [pre, rely, guar, post]" | |
| 1053 | apply(unfold com_validity_def) | |
| 1054 | apply clarify | |
| 1055 | apply(erule_tac xs="tl x" in While_sound_aux) | |
| 1056 | apply(simp add:com_validity_def) | |
| 1057 | apply force | |
| 1058 | apply simp_all | |
| 1059 | apply(simp add:cptn_iff_cptn_mod cp_def) | |
| 1060 | apply(simp add:cp_def) | |
| 1061 | apply clarify | |
| 1062 | apply(rule nth_equalityI) | |
| 1063 | apply simp_all | |
| 1064 | apply(case_tac x,simp+) | |
| 1065 | apply(case_tac i,simp+) | |
| 1066 | apply(case_tac x,simp+) | |
| 1067 | done | |
| 1068 | ||
| 59189 | 1069 | subsubsection\<open>Soundness of the Rule of Consequence\<close> | 
| 13020 | 1070 | |
| 59189 | 1071 | lemma Conseq_sound: | 
| 1072 | "\<lbrakk>pre \<subseteq> pre'; rely \<subseteq> rely'; guar' \<subseteq> guar; post' \<subseteq> post; | |
| 13020 | 1073 | \<Turnstile> P sat [pre', rely', guar', post']\<rbrakk> | 
| 1074 | \<Longrightarrow> \<Turnstile> P sat [pre, rely, guar, post]" | |
| 1075 | apply(simp add:com_validity_def assum_def comm_def) | |
| 1076 | apply clarify | |
| 1077 | apply(erule_tac x=s in allE) | |
| 1078 | apply(drule_tac c=x in subsetD) | |
| 1079 | apply force | |
| 1080 | apply force | |
| 1081 | done | |
| 1082 | ||
| 59189 | 1083 | subsubsection \<open>Soundness of the system for sequential component programs\<close> | 
| 13020 | 1084 | |
| 59189 | 1085 | theorem rgsound: | 
| 13020 | 1086 | "\<turnstile> P sat [pre, rely, guar, post] \<Longrightarrow> \<Turnstile> P sat [pre, rely, guar, post]" | 
| 1087 | apply(erule rghoare.induct) | |
| 1088 | apply(force elim:Basic_sound) | |
| 1089 | apply(force elim:Seq_sound) | |
| 1090 | apply(force elim:Cond_sound) | |
| 1091 | apply(force elim:While_sound) | |
| 1092 | apply(force elim:Await_sound) | |
| 1093 | apply(erule Conseq_sound,simp+) | |
| 59189 | 1094 | done | 
| 13020 | 1095 | |
| 59189 | 1096 | subsection \<open>Soundness of the System for Parallel Programs\<close> | 
| 13020 | 1097 | |
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32687diff
changeset | 1098 | definition ParallelCom :: "('a rgformula) list \<Rightarrow> 'a par_com" where
 | 
| 59189 | 1099 | "ParallelCom Ps \<equiv> map (Some \<circ> fst) Ps" | 
| 13020 | 1100 | |
| 59189 | 1101 | lemma two: | 
| 1102 |   "\<lbrakk> \<forall>i<length xs. rely \<union> (\<Union>j\<in>{j. j < length xs \<and> j \<noteq> i}. Guar (xs ! j))
 | |
| 13022 
b115b305612f
New order in the loading of theories (Quote-antiquote right before the OG_Syntax and RG_Syntax respectively)
 prensani parents: 
13020diff
changeset | 1103 | \<subseteq> Rely (xs ! i); | 
| 
b115b305612f
New order in the loading of theories (Quote-antiquote right before the OG_Syntax and RG_Syntax respectively)
 prensani parents: 
13020diff
changeset | 1104 |    pre \<subseteq> (\<Inter>i\<in>{i. i < length xs}. Pre (xs ! i));
 | 
| 59189 | 1105 | \<forall>i<length xs. | 
| 13022 
b115b305612f
New order in the loading of theories (Quote-antiquote right before the OG_Syntax and RG_Syntax respectively)
 prensani parents: 
13020diff
changeset | 1106 | \<Turnstile> Com (xs ! i) sat [Pre (xs ! i), Rely (xs ! i), Guar (xs ! i), Post (xs ! i)]; | 
| 
b115b305612f
New order in the loading of theories (Quote-antiquote right before the OG_Syntax and RG_Syntax respectively)
 prensani parents: 
13020diff
changeset | 1107 | length xs=length clist; x \<in> par_cp (ParallelCom xs) s; x\<in>par_assum(pre, rely); | 
| 13020 | 1108 | \<forall>i<length clist. clist!i\<in>cp (Some(Com(xs!i))) s; x \<propto> clist \<rbrakk> | 
| 59189 | 1109 | \<Longrightarrow> \<forall>j i. i<length clist \<and> Suc j<length x \<longrightarrow> (clist!i!j) -c\<rightarrow> (clist!i!Suc j) | 
| 13020 | 1110 | \<longrightarrow> (snd(clist!i!j), snd(clist!i!Suc j)) \<in> Guar(xs!i)" | 
| 1111 | apply(unfold par_cp_def) | |
| 59189 | 1112 | apply (rule ccontr) | 
| 67443 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 wenzelm parents: 
62343diff
changeset | 1113 | \<comment> \<open>By contradiction:\<close> | 
| 52597 
a8a81453833d
more precise fact declarations -- fewer warnings;
 wenzelm parents: 
42174diff
changeset | 1114 | apply simp | 
| 13020 | 1115 | apply(erule exE) | 
| 67443 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 wenzelm parents: 
62343diff
changeset | 1116 | \<comment> \<open>the first c-tran that does not satisfy the guarantee-condition is from \<open>\<sigma>_i\<close> at step \<open>m\<close>.\<close> | 
| 59807 | 1117 | apply(drule_tac n=j and P="\<lambda>j. \<exists>i. H i j" for H in Ex_first_occurrence) | 
| 13020 | 1118 | apply(erule exE) | 
| 1119 | apply clarify | |
| 67443 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 wenzelm parents: 
62343diff
changeset | 1120 | \<comment> \<open>\<open>\<sigma>_i \<in> A(pre, rely_1)\<close>\<close> | 
| 13020 | 1121 | apply(subgoal_tac "take (Suc (Suc m)) (clist!i) \<in> assum(Pre(xs!i), Rely(xs!i))") | 
| 67443 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 wenzelm parents: 
62343diff
changeset | 1122 | \<comment> \<open>but this contradicts \<open>\<Turnstile> \<sigma>_i sat [pre_i,rely_i,guar_i,post_i]\<close>\<close> | 
| 59807 | 1123 | apply(erule_tac x=i and P="\<lambda>i. H i \<longrightarrow> \<Turnstile> (J i) sat [I i,K i,M i,N i]" for H J I K M N in allE,erule impE,assumption) | 
| 13020 | 1124 | apply(simp add:com_validity_def) | 
| 1125 | apply(erule_tac x=s in allE) | |
| 1126 | apply(simp add:cp_def comm_def) | |
| 1127 | apply(drule_tac c="take (Suc (Suc m)) (clist ! i)" in subsetD) | |
| 1128 | apply simp | |
| 59189 | 1129 | apply (blast intro: takecptn_is_cptn) | 
| 13020 | 1130 | apply simp | 
| 1131 | apply clarify | |
| 59807 | 1132 | apply(erule_tac x=m and P="\<lambda>j. I j \<and> J j \<longrightarrow> H j" for I J H in allE) | 
| 13020 | 1133 | apply (simp add:conjoin_def same_length_def) | 
| 52597 
a8a81453833d
more precise fact declarations -- fewer warnings;
 wenzelm parents: 
42174diff
changeset | 1134 | apply(simp add:assum_def) | 
| 13020 | 1135 | apply(rule conjI) | 
| 59807 | 1136 | apply(erule_tac x=i and P="\<lambda>j. H j \<longrightarrow> I j \<in>cp (K j) (J j)" for H I K J in allE) | 
| 13020 | 1137 | apply(simp add:cp_def par_assum_def) | 
| 1138 | apply(drule_tac c="s" in subsetD,simp) | |
| 1139 | apply simp | |
| 1140 | apply clarify | |
| 69313 | 1141 | apply(erule_tac x=i and P="\<lambda>j. H j \<longrightarrow> M \<union> \<Union>((T j) ` (S j)) \<subseteq> (L j)" for H M S T L in allE) | 
| 52597 
a8a81453833d
more precise fact declarations -- fewer warnings;
 wenzelm parents: 
42174diff
changeset | 1142 | apply simp | 
| 13020 | 1143 | apply(erule subsetD) | 
| 1144 | apply simp | |
| 1145 | apply(simp add:conjoin_def compat_label_def) | |
| 1146 | apply clarify | |
| 59807 | 1147 | apply(erule_tac x=ia and P="\<lambda>j. H j \<longrightarrow> (P j) \<or> Q j" for H P Q in allE,simp) | 
| 67443 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 wenzelm parents: 
62343diff
changeset | 1148 | \<comment> \<open>each etran in \<open>\<sigma>_1[0\<dots>m]\<close> corresponds to\<close> | 
| 13020 | 1149 | apply(erule disjE) | 
| 67443 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 wenzelm parents: 
62343diff
changeset | 1150 | \<comment> \<open>a c-tran in some \<open>\<sigma>_{ib}\<close>\<close>
 | 
| 13020 | 1151 | apply clarify | 
| 1152 | apply(case_tac "i=ib",simp) | |
| 23746 | 1153 | apply(erule etranE,simp) | 
| 59807 | 1154 | apply(erule_tac x="ib" and P="\<lambda>i. H i \<longrightarrow> (I i) \<or> (J i)" for H I J in allE) | 
| 23746 | 1155 | apply (erule etranE) | 
| 13020 | 1156 | apply(case_tac "ia=m",simp) | 
| 13601 | 1157 | apply simp | 
| 59807 | 1158 | apply(erule_tac x=ia and P="\<lambda>j. H j \<longrightarrow> (\<forall>i. P i j)" for H P in allE) | 
| 13020 | 1159 | apply(subgoal_tac "ia<m",simp) | 
| 1160 | prefer 2 | |
| 1161 | apply arith | |
| 59807 | 1162 | apply(erule_tac x=ib and P="\<lambda>j. (I j, H j) \<in> ctran \<longrightarrow> P i j" for I H P in allE,simp) | 
| 13020 | 1163 | apply(simp add:same_state_def) | 
| 59807 | 1164 | apply(erule_tac x=i and P="\<lambda>j. (T j) \<longrightarrow> (\<forall>i. (H j i) \<longrightarrow> (snd (d j i))=(snd (e j i)))" for T H d e in all_dupE) | 
| 1165 | apply(erule_tac x=ib and P="\<lambda>j. (T j) \<longrightarrow> (\<forall>i. (H j i) \<longrightarrow> (snd (d j i))=(snd (e j i)))" for T H d e in allE,simp) | |
| 67443 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 wenzelm parents: 
62343diff
changeset | 1166 | \<comment> \<open>or an e-tran in \<open>\<sigma>\<close>, | 
| 62042 | 1167 | therefore it satisfies \<open>rely \<or> guar_{ib}\<close>\<close>
 | 
| 13020 | 1168 | apply (force simp add:par_assum_def same_state_def) | 
| 1169 | done | |
| 1170 | ||
| 15102 | 1171 | |
| 59189 | 1172 | lemma three [rule_format]: | 
| 1173 |   "\<lbrakk> xs\<noteq>[]; \<forall>i<length xs. rely \<union> (\<Union>j\<in>{j. j < length xs \<and> j \<noteq> i}. Guar (xs ! j))
 | |
| 13022 
b115b305612f
New order in the loading of theories (Quote-antiquote right before the OG_Syntax and RG_Syntax respectively)
 prensani parents: 
13020diff
changeset | 1174 | \<subseteq> Rely (xs ! i); | 
| 
b115b305612f
New order in the loading of theories (Quote-antiquote right before the OG_Syntax and RG_Syntax respectively)
 prensani parents: 
13020diff
changeset | 1175 |    pre \<subseteq> (\<Inter>i\<in>{i. i < length xs}. Pre (xs ! i));
 | 
| 59189 | 1176 | \<forall>i<length xs. | 
| 13022 
b115b305612f
New order in the loading of theories (Quote-antiquote right before the OG_Syntax and RG_Syntax respectively)
 prensani parents: 
13020diff
changeset | 1177 | \<Turnstile> Com (xs ! i) sat [Pre (xs ! i), Rely (xs ! i), Guar (xs ! i), Post (xs ! i)]; | 
| 
b115b305612f
New order in the loading of theories (Quote-antiquote right before the OG_Syntax and RG_Syntax respectively)
 prensani parents: 
13020diff
changeset | 1178 | length xs=length clist; x \<in> par_cp (ParallelCom xs) s; x \<in> par_assum(pre, rely); | 
| 13020 | 1179 | \<forall>i<length clist. clist!i\<in>cp (Some(Com(xs!i))) s; x \<propto> clist \<rbrakk> | 
| 59189 | 1180 | \<Longrightarrow> \<forall>j i. i<length clist \<and> Suc j<length x \<longrightarrow> (clist!i!j) -e\<rightarrow> (clist!i!Suc j) | 
| 13020 | 1181 |   \<longrightarrow> (snd(clist!i!j), snd(clist!i!Suc j)) \<in> rely \<union> (\<Union>j\<in>{j. j < length xs \<and> j \<noteq> i}. Guar (xs ! j))"
 | 
| 1182 | apply(drule two) | |
| 1183 | apply simp_all | |
| 1184 | apply clarify | |
| 1185 | apply(simp add:conjoin_def compat_label_def) | |
| 1186 | apply clarify | |
| 59807 | 1187 | apply(erule_tac x=j and P="\<lambda>j. H j \<longrightarrow> (J j \<and> (\<exists>i. P i j)) \<or> I j" for H J P I in allE,simp) | 
| 13020 | 1188 | apply(erule disjE) | 
| 1189 | prefer 2 | |
| 1190 | apply(force simp add:same_state_def par_assum_def) | |
| 1191 | apply clarify | |
| 1192 | apply(case_tac "i=ia",simp) | |
| 23746 | 1193 | apply(erule etranE,simp) | 
| 59807 | 1194 | apply(erule_tac x="ia" and P="\<lambda>i. H i \<longrightarrow> (I i) \<or> (J i)" for H I J in allE,simp) | 
| 1195 | apply(erule_tac x=j and P="\<lambda>j. \<forall>i. S j i \<longrightarrow> (I j i, H j i) \<in> ctran \<longrightarrow> P i j" for S I H P in allE) | |
| 1196 | apply(erule_tac x=ia and P="\<lambda>j. S j \<longrightarrow> (I j, H j) \<in> ctran \<longrightarrow> P j" for S I H P in allE) | |
| 13020 | 1197 | apply(simp add:same_state_def) | 
| 59807 | 1198 | apply(erule_tac x=i and P="\<lambda>j. T j \<longrightarrow> (\<forall>i. H j i \<longrightarrow> (snd (d j i))=(snd (e j i)))" for T H d e in all_dupE) | 
| 1199 | apply(erule_tac x=ia and P="\<lambda>j. T j \<longrightarrow> (\<forall>i. H j i \<longrightarrow> (snd (d j i))=(snd (e j i)))" for T H d e in allE,simp) | |
| 13020 | 1200 | done | 
| 1201 | ||
| 59189 | 1202 | lemma four: | 
| 1203 |   "\<lbrakk>xs\<noteq>[]; \<forall>i < length xs. rely \<union> (\<Union>j\<in>{j. j < length xs \<and> j \<noteq> i}. Guar (xs ! j))
 | |
| 13022 
b115b305612f
New order in the loading of theories (Quote-antiquote right before the OG_Syntax and RG_Syntax respectively)
 prensani parents: 
13020diff
changeset | 1204 | \<subseteq> Rely (xs ! i); | 
| 59189 | 1205 |    (\<Union>j\<in>{j. j < length xs}. Guar (xs ! j)) \<subseteq> guar;
 | 
| 13022 
b115b305612f
New order in the loading of theories (Quote-antiquote right before the OG_Syntax and RG_Syntax respectively)
 prensani parents: 
13020diff
changeset | 1206 |    pre \<subseteq> (\<Inter>i\<in>{i. i < length xs}. Pre (xs ! i));
 | 
| 
b115b305612f
New order in the loading of theories (Quote-antiquote right before the OG_Syntax and RG_Syntax respectively)
 prensani parents: 
13020diff
changeset | 1207 | \<forall>i < length xs. | 
| 
b115b305612f
New order in the loading of theories (Quote-antiquote right before the OG_Syntax and RG_Syntax respectively)
 prensani parents: 
13020diff
changeset | 1208 | \<Turnstile> Com (xs ! i) sat [Pre (xs ! i), Rely (xs ! i), Guar (xs ! i), Post (xs ! i)]; | 
| 59189 | 1209 | x \<in> par_cp (ParallelCom xs) s; x \<in> par_assum (pre, rely); Suc i < length x; | 
| 13022 
b115b305612f
New order in the loading of theories (Quote-antiquote right before the OG_Syntax and RG_Syntax respectively)
 prensani parents: 
13020diff
changeset | 1210 | x ! i -pc\<rightarrow> x ! Suc i\<rbrakk> | 
| 13020 | 1211 | \<Longrightarrow> (snd (x ! i), snd (x ! Suc i)) \<in> guar" | 
| 52597 
a8a81453833d
more precise fact declarations -- fewer warnings;
 wenzelm parents: 
42174diff
changeset | 1212 | apply(simp add: ParallelCom_def) | 
| 13020 | 1213 | apply(subgoal_tac "(map (Some \<circ> fst) xs)\<noteq>[]") | 
| 1214 | prefer 2 | |
| 1215 | apply simp | |
| 1216 | apply(frule rev_subsetD) | |
| 1217 | apply(erule one [THEN equalityD1]) | |
| 1218 | apply(erule subsetD) | |
| 52597 
a8a81453833d
more precise fact declarations -- fewer warnings;
 wenzelm parents: 
42174diff
changeset | 1219 | apply simp | 
| 13020 | 1220 | apply clarify | 
| 1221 | apply(drule_tac pre=pre and rely=rely and x=x and s=s and xs=xs and clist=clist in two) | |
| 1222 | apply(assumption+) | |
| 1223 | apply(erule sym) | |
| 1224 | apply(simp add:ParallelCom_def) | |
| 1225 | apply assumption | |
| 1226 | apply(simp add:Com_def) | |
| 1227 | apply assumption | |
| 1228 | apply(simp add:conjoin_def same_program_def) | |
| 1229 | apply clarify | |
| 59807 | 1230 | apply(erule_tac x=i and P="\<lambda>j. H j \<longrightarrow> fst(I j)=(J j)" for H I J in all_dupE) | 
| 1231 | apply(erule_tac x="Suc i" and P="\<lambda>j. H j \<longrightarrow> fst(I j)=(J j)" for H I J in allE) | |
| 23746 | 1232 | apply(erule par_ctranE,simp) | 
| 59807 | 1233 | apply(erule_tac x=i and P="\<lambda>j. \<forall>i. S j i \<longrightarrow> (I j i, H j i) \<in> ctran \<longrightarrow> P i j" for S I H P in allE) | 
| 1234 | apply(erule_tac x=ia and P="\<lambda>j. S j \<longrightarrow> (I j, H j) \<in> ctran \<longrightarrow> P j" for S I H P in allE) | |
| 13020 | 1235 | apply(rule_tac x=ia in exI) | 
| 1236 | apply(simp add:same_state_def) | |
| 59807 | 1237 | apply(erule_tac x=ia and P="\<lambda>j. T j \<longrightarrow> (\<forall>i. H j i \<longrightarrow> (snd (d j i))=(snd (e j i)))" for T H d e in all_dupE,simp) | 
| 1238 | apply(erule_tac x=ia and P="\<lambda>j. T j \<longrightarrow> (\<forall>i. H j i \<longrightarrow> (snd (d j i))=(snd (e j i)))" for T H d e in allE,simp) | |
| 1239 | apply(erule_tac x=i and P="\<lambda>j. H j \<longrightarrow> (snd (d j))=(snd (e j))" for H d e in all_dupE) | |
| 1240 | apply(erule_tac x=i and P="\<lambda>j. H j \<longrightarrow> (snd (d j))=(snd (e j))" for H d e in all_dupE,simp) | |
| 1241 | apply(erule_tac x="Suc i" and P="\<lambda>j. H j \<longrightarrow> (snd (d j))=(snd (e j))" for H d e in allE,simp) | |
| 13020 | 1242 | apply(erule mp) | 
| 1243 | apply(subgoal_tac "r=fst(clist ! ia ! Suc i)",simp) | |
| 1244 | apply(drule_tac i=ia in list_eq_if) | |
| 1245 | back | |
| 1246 | apply simp_all | |
| 1247 | done | |
| 1248 | ||
| 1249 | lemma parcptn_not_empty [simp]:"[] \<notin> par_cptn" | |
| 23746 | 1250 | apply(force elim:par_cptn.cases) | 
| 13020 | 1251 | done | 
| 1252 | ||
| 59189 | 1253 | lemma five: | 
| 13022 
b115b305612f
New order in the loading of theories (Quote-antiquote right before the OG_Syntax and RG_Syntax respectively)
 prensani parents: 
13020diff
changeset | 1254 |   "\<lbrakk>xs\<noteq>[]; \<forall>i<length xs. rely \<union> (\<Union>j\<in>{j. j < length xs \<and> j \<noteq> i}. Guar (xs ! j))
 | 
| 
b115b305612f
New order in the loading of theories (Quote-antiquote right before the OG_Syntax and RG_Syntax respectively)
 prensani parents: 
13020diff
changeset | 1255 | \<subseteq> Rely (xs ! i); | 
| 59189 | 1256 |    pre \<subseteq> (\<Inter>i\<in>{i. i < length xs}. Pre (xs ! i));
 | 
| 13022 
b115b305612f
New order in the loading of theories (Quote-antiquote right before the OG_Syntax and RG_Syntax respectively)
 prensani parents: 
13020diff
changeset | 1257 |    (\<Inter>i\<in>{i. i < length xs}. Post (xs ! i)) \<subseteq> post;
 | 
| 
b115b305612f
New order in the loading of theories (Quote-antiquote right before the OG_Syntax and RG_Syntax respectively)
 prensani parents: 
13020diff
changeset | 1258 | \<forall>i < length xs. | 
| 
b115b305612f
New order in the loading of theories (Quote-antiquote right before the OG_Syntax and RG_Syntax respectively)
 prensani parents: 
13020diff
changeset | 1259 | \<Turnstile> Com (xs ! i) sat [Pre (xs ! i), Rely (xs ! i), Guar (xs ! i), Post (xs ! i)]; | 
| 59189 | 1260 | x \<in> par_cp (ParallelCom xs) s; x \<in> par_assum (pre, rely); | 
| 13022 
b115b305612f
New order in the loading of theories (Quote-antiquote right before the OG_Syntax and RG_Syntax respectively)
 prensani parents: 
13020diff
changeset | 1261 | All_None (fst (last x)) \<rbrakk> \<Longrightarrow> snd (last x) \<in> post" | 
| 52597 
a8a81453833d
more precise fact declarations -- fewer warnings;
 wenzelm parents: 
42174diff
changeset | 1262 | apply(simp add: ParallelCom_def) | 
| 13020 | 1263 | apply(subgoal_tac "(map (Some \<circ> fst) xs)\<noteq>[]") | 
| 1264 | prefer 2 | |
| 1265 | apply simp | |
| 1266 | apply(frule rev_subsetD) | |
| 1267 | apply(erule one [THEN equalityD1]) | |
| 1268 | apply(erule subsetD) | |
| 52597 
a8a81453833d
more precise fact declarations -- fewer warnings;
 wenzelm parents: 
42174diff
changeset | 1269 | apply simp | 
| 13020 | 1270 | apply clarify | 
| 1271 | apply(subgoal_tac "\<forall>i<length clist. clist!i\<in>assum(Pre(xs!i), Rely(xs!i))") | |
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62042diff
changeset | 1272 | apply(erule_tac x=xa and P="\<lambda>i. H i \<longrightarrow> \<Turnstile> (J i) sat [I i,K i,M i,N i]" for H J I K M N in allE,erule impE,assumption) | 
| 13020 | 1273 | apply(simp add:com_validity_def) | 
| 1274 | apply(erule_tac x=s in allE) | |
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62042diff
changeset | 1275 | apply(erule_tac x=xa and P="\<lambda>j. H j \<longrightarrow> (I j) \<in> cp (J j) s" for H I J in allE,simp) | 
| 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62042diff
changeset | 1276 | apply(drule_tac c="clist!xa" in subsetD) | 
| 13020 | 1277 | apply (force simp add:Com_def) | 
| 1278 | apply(simp add:comm_def conjoin_def same_program_def del:last.simps) | |
| 1279 | apply clarify | |
| 59807 | 1280 | apply(erule_tac x="length x - 1" and P="\<lambda>j. H j \<longrightarrow> fst(I j)=(J j)" for H I J in allE) | 
| 13020 | 1281 | apply (simp add:All_None_def same_length_def) | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62042diff
changeset | 1282 | apply(erule_tac x=xa and P="\<lambda>j. H j \<longrightarrow> length(J j)=(K j)" for H J K in allE) | 
| 13020 | 1283 | apply(subgoal_tac "length x - 1 < length x",simp) | 
| 1284 | apply(case_tac "x\<noteq>[]") | |
| 17588 | 1285 | apply(simp add: last_conv_nth) | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62042diff
changeset | 1286 | apply(erule_tac x="clist!xa" in ballE) | 
| 13020 | 1287 | apply(simp add:same_state_def) | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62042diff
changeset | 1288 | apply(subgoal_tac "clist!xa\<noteq>[]") | 
| 17588 | 1289 | apply(simp add: last_conv_nth) | 
| 13020 | 1290 | apply(case_tac x) | 
| 1291 | apply (force simp add:par_cp_def) | |
| 1292 | apply (force simp add:par_cp_def) | |
| 1293 | apply force | |
| 1294 | apply (force simp add:par_cp_def) | |
| 1295 | apply(case_tac x) | |
| 1296 | apply (force simp add:par_cp_def) | |
| 1297 | apply (force simp add:par_cp_def) | |
| 1298 | apply clarify | |
| 1299 | apply(simp add:assum_def) | |
| 1300 | apply(rule conjI) | |
| 1301 | apply(simp add:conjoin_def same_state_def par_cp_def) | |
| 1302 | apply clarify | |
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62042diff
changeset | 1303 | apply(erule_tac x=i and P="\<lambda>j. T j \<longrightarrow> (\<forall>i. H j i \<longrightarrow> (snd (d j i))=(snd (e j i)))" for T H d e in allE,simp) | 
| 59807 | 1304 | apply(erule_tac x=0 and P="\<lambda>j. H j \<longrightarrow> (snd (d j))=(snd (e j))" for H d e in allE) | 
| 13020 | 1305 | apply(case_tac x,simp+) | 
| 1306 | apply (simp add:par_assum_def) | |
| 1307 | apply clarify | |
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62042diff
changeset | 1308 | apply(drule_tac c="snd (clist ! i ! 0)" in subsetD) | 
| 13020 | 1309 | apply assumption | 
| 1310 | apply simp | |
| 1311 | apply clarify | |
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62042diff
changeset | 1312 | apply(erule_tac x=i in all_dupE) | 
| 13601 | 1313 | apply(rule subsetD, erule mp, assumption) | 
| 13020 | 1314 | apply(erule_tac pre=pre and rely=rely and x=x and s=s in three) | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62042diff
changeset | 1315 | apply(erule_tac x=ib in allE,erule mp) | 
| 13020 | 1316 | apply simp_all | 
| 1317 | apply(simp add:ParallelCom_def) | |
| 1318 | apply(force simp add:Com_def) | |
| 1319 | apply(simp add:conjoin_def same_length_def) | |
| 1320 | done | |
| 1321 | ||
| 59189 | 1322 | lemma ParallelEmpty [rule_format]: | 
| 1323 | "\<forall>i s. x \<in> par_cp (ParallelCom []) s \<longrightarrow> | |
| 13020 | 1324 | Suc i < length x \<longrightarrow> (x ! i, x ! Suc i) \<notin> par_ctran" | 
| 1325 | apply(induct_tac x) | |
| 1326 | apply(simp add:par_cp_def ParallelCom_def) | |
| 1327 | apply clarify | |
| 1328 | apply(case_tac list,simp,simp) | |
| 1329 | apply(case_tac i) | |
| 1330 | apply(simp add:par_cp_def ParallelCom_def) | |
| 23746 | 1331 | apply(erule par_ctranE,simp) | 
| 13020 | 1332 | apply(simp add:par_cp_def ParallelCom_def) | 
| 1333 | apply clarify | |
| 23746 | 1334 | apply(erule par_cptn.cases,simp) | 
| 13020 | 1335 | apply simp | 
| 23746 | 1336 | apply(erule par_ctranE) | 
| 13020 | 1337 | back | 
| 1338 | apply simp | |
| 1339 | done | |
| 1340 | ||
| 59189 | 1341 | theorem par_rgsound: | 
| 1342 | "\<turnstile> c SAT [pre, rely, guar, post] \<Longrightarrow> | |
| 13022 
b115b305612f
New order in the loading of theories (Quote-antiquote right before the OG_Syntax and RG_Syntax respectively)
 prensani parents: 
13020diff
changeset | 1343 | \<Turnstile> (ParallelCom c) SAT [pre, rely, guar, post]" | 
| 13020 | 1344 | apply(erule par_rghoare.induct) | 
| 1345 | apply(case_tac xs,simp) | |
| 1346 | apply(simp add:par_com_validity_def par_comm_def) | |
| 1347 | apply clarify | |
| 1348 | apply(case_tac "post=UNIV",simp) | |
| 1349 | apply clarify | |
| 1350 | apply(drule ParallelEmpty) | |
| 1351 | apply assumption | |
| 1352 | apply simp | |
| 1353 | apply clarify | |
| 1354 | apply simp | |
| 1355 | apply(subgoal_tac "xs\<noteq>[]") | |
| 1356 | prefer 2 | |
| 1357 | apply simp | |
| 55417 
01fbfb60c33e
adapted to 'xxx_{case,rec}' renaming, to new theorem names, and to new variable names in theorems
 blanchet parents: 
54859diff
changeset | 1358 | apply(rename_tac a list) | 
| 13020 | 1359 | apply(thin_tac "xs = a # list") | 
| 1360 | apply(simp add:par_com_validity_def par_comm_def) | |
| 1361 | apply clarify | |
| 1362 | apply(rule conjI) | |
| 1363 | apply clarify | |
| 1364 | apply(erule_tac pre=pre and rely=rely and guar=guar and x=x and s=s and xs=xs in four) | |
| 1365 | apply(assumption+) | |
| 1366 | apply clarify | |
| 1367 | apply (erule allE, erule impE, assumption,erule rgsound) | |
| 1368 | apply(assumption+) | |
| 1369 | apply clarify | |
| 1370 | apply(erule_tac pre=pre and rely=rely and post=post and x=x and s=s and xs=xs in five) | |
| 1371 | apply(assumption+) | |
| 1372 | apply clarify | |
| 1373 | apply (erule allE, erule impE, assumption,erule rgsound) | |
| 59189 | 1374 | apply(assumption+) | 
| 13020 | 1375 | done | 
| 1376 | ||
| 13187 | 1377 | end |