30096
|
1 |
(* Title: Archimedean_Field.thy
|
|
2 |
Author: Brian Huffman
|
|
3 |
*)
|
|
4 |
|
|
5 |
header {* Archimedean Fields, Floor and Ceiling Functions *}
|
|
6 |
|
|
7 |
theory Archimedean_Field
|
|
8 |
imports Main
|
|
9 |
begin
|
|
10 |
|
|
11 |
subsection {* Class of Archimedean fields *}
|
|
12 |
|
|
13 |
text {* Archimedean fields have no infinite elements. *}
|
|
14 |
|
|
15 |
class archimedean_field = ordered_field + number_ring +
|
|
16 |
assumes ex_le_of_int: "\<exists>z. x \<le> of_int z"
|
|
17 |
|
|
18 |
lemma ex_less_of_int:
|
|
19 |
fixes x :: "'a::archimedean_field" shows "\<exists>z. x < of_int z"
|
|
20 |
proof -
|
|
21 |
from ex_le_of_int obtain z where "x \<le> of_int z" ..
|
|
22 |
then have "x < of_int (z + 1)" by simp
|
|
23 |
then show ?thesis ..
|
|
24 |
qed
|
|
25 |
|
|
26 |
lemma ex_of_int_less:
|
|
27 |
fixes x :: "'a::archimedean_field" shows "\<exists>z. of_int z < x"
|
|
28 |
proof -
|
|
29 |
from ex_less_of_int obtain z where "- x < of_int z" ..
|
|
30 |
then have "of_int (- z) < x" by simp
|
|
31 |
then show ?thesis ..
|
|
32 |
qed
|
|
33 |
|
|
34 |
lemma ex_less_of_nat:
|
|
35 |
fixes x :: "'a::archimedean_field" shows "\<exists>n. x < of_nat n"
|
|
36 |
proof -
|
|
37 |
obtain z where "x < of_int z" using ex_less_of_int ..
|
|
38 |
also have "\<dots> \<le> of_int (int (nat z))" by simp
|
|
39 |
also have "\<dots> = of_nat (nat z)" by (simp only: of_int_of_nat_eq)
|
|
40 |
finally show ?thesis ..
|
|
41 |
qed
|
|
42 |
|
|
43 |
lemma ex_le_of_nat:
|
|
44 |
fixes x :: "'a::archimedean_field" shows "\<exists>n. x \<le> of_nat n"
|
|
45 |
proof -
|
|
46 |
obtain n where "x < of_nat n" using ex_less_of_nat ..
|
|
47 |
then have "x \<le> of_nat n" by simp
|
|
48 |
then show ?thesis ..
|
|
49 |
qed
|
|
50 |
|
|
51 |
text {* Archimedean fields have no infinitesimal elements. *}
|
|
52 |
|
|
53 |
lemma ex_inverse_of_nat_Suc_less:
|
|
54 |
fixes x :: "'a::archimedean_field"
|
|
55 |
assumes "0 < x" shows "\<exists>n. inverse (of_nat (Suc n)) < x"
|
|
56 |
proof -
|
|
57 |
from `0 < x` have "0 < inverse x"
|
|
58 |
by (rule positive_imp_inverse_positive)
|
|
59 |
obtain n where "inverse x < of_nat n"
|
|
60 |
using ex_less_of_nat ..
|
|
61 |
then obtain m where "inverse x < of_nat (Suc m)"
|
|
62 |
using `0 < inverse x` by (cases n) (simp_all del: of_nat_Suc)
|
|
63 |
then have "inverse (of_nat (Suc m)) < inverse (inverse x)"
|
|
64 |
using `0 < inverse x` by (rule less_imp_inverse_less)
|
|
65 |
then have "inverse (of_nat (Suc m)) < x"
|
|
66 |
using `0 < x` by (simp add: nonzero_inverse_inverse_eq)
|
|
67 |
then show ?thesis ..
|
|
68 |
qed
|
|
69 |
|
|
70 |
lemma ex_inverse_of_nat_less:
|
|
71 |
fixes x :: "'a::archimedean_field"
|
|
72 |
assumes "0 < x" shows "\<exists>n>0. inverse (of_nat n) < x"
|
|
73 |
using ex_inverse_of_nat_Suc_less [OF `0 < x`] by auto
|
|
74 |
|
|
75 |
lemma ex_less_of_nat_mult:
|
|
76 |
fixes x :: "'a::archimedean_field"
|
|
77 |
assumes "0 < x" shows "\<exists>n. y < of_nat n * x"
|
|
78 |
proof -
|
|
79 |
obtain n where "y / x < of_nat n" using ex_less_of_nat ..
|
|
80 |
with `0 < x` have "y < of_nat n * x" by (simp add: pos_divide_less_eq)
|
|
81 |
then show ?thesis ..
|
|
82 |
qed
|
|
83 |
|
|
84 |
|
|
85 |
subsection {* Existence and uniqueness of floor function *}
|
|
86 |
|
|
87 |
lemma exists_least_lemma:
|
|
88 |
assumes "\<not> P 0" and "\<exists>n. P n"
|
|
89 |
shows "\<exists>n. \<not> P n \<and> P (Suc n)"
|
|
90 |
proof -
|
|
91 |
from `\<exists>n. P n` have "P (Least P)" by (rule LeastI_ex)
|
|
92 |
with `\<not> P 0` obtain n where "Least P = Suc n"
|
|
93 |
by (cases "Least P") auto
|
|
94 |
then have "n < Least P" by simp
|
|
95 |
then have "\<not> P n" by (rule not_less_Least)
|
|
96 |
then have "\<not> P n \<and> P (Suc n)"
|
|
97 |
using `P (Least P)` `Least P = Suc n` by simp
|
|
98 |
then show ?thesis ..
|
|
99 |
qed
|
|
100 |
|
|
101 |
lemma floor_exists:
|
|
102 |
fixes x :: "'a::archimedean_field"
|
|
103 |
shows "\<exists>z. of_int z \<le> x \<and> x < of_int (z + 1)"
|
|
104 |
proof (cases)
|
|
105 |
assume "0 \<le> x"
|
|
106 |
then have "\<not> x < of_nat 0" by simp
|
|
107 |
then have "\<exists>n. \<not> x < of_nat n \<and> x < of_nat (Suc n)"
|
|
108 |
using ex_less_of_nat by (rule exists_least_lemma)
|
|
109 |
then obtain n where "\<not> x < of_nat n \<and> x < of_nat (Suc n)" ..
|
|
110 |
then have "of_int (int n) \<le> x \<and> x < of_int (int n + 1)" by simp
|
|
111 |
then show ?thesis ..
|
|
112 |
next
|
|
113 |
assume "\<not> 0 \<le> x"
|
|
114 |
then have "\<not> - x \<le> of_nat 0" by simp
|
|
115 |
then have "\<exists>n. \<not> - x \<le> of_nat n \<and> - x \<le> of_nat (Suc n)"
|
|
116 |
using ex_le_of_nat by (rule exists_least_lemma)
|
|
117 |
then obtain n where "\<not> - x \<le> of_nat n \<and> - x \<le> of_nat (Suc n)" ..
|
|
118 |
then have "of_int (- int n - 1) \<le> x \<and> x < of_int (- int n - 1 + 1)" by simp
|
|
119 |
then show ?thesis ..
|
|
120 |
qed
|
|
121 |
|
|
122 |
lemma floor_exists1:
|
|
123 |
fixes x :: "'a::archimedean_field"
|
|
124 |
shows "\<exists>!z. of_int z \<le> x \<and> x < of_int (z + 1)"
|
|
125 |
proof (rule ex_ex1I)
|
|
126 |
show "\<exists>z. of_int z \<le> x \<and> x < of_int (z + 1)"
|
|
127 |
by (rule floor_exists)
|
|
128 |
next
|
|
129 |
fix y z assume
|
|
130 |
"of_int y \<le> x \<and> x < of_int (y + 1)"
|
|
131 |
"of_int z \<le> x \<and> x < of_int (z + 1)"
|
|
132 |
then have
|
|
133 |
"of_int y \<le> x" "x < of_int (y + 1)"
|
|
134 |
"of_int z \<le> x" "x < of_int (z + 1)"
|
|
135 |
by simp_all
|
|
136 |
from le_less_trans [OF `of_int y \<le> x` `x < of_int (z + 1)`]
|
|
137 |
le_less_trans [OF `of_int z \<le> x` `x < of_int (y + 1)`]
|
|
138 |
show "y = z" by (simp del: of_int_add)
|
|
139 |
qed
|
|
140 |
|
|
141 |
|
|
142 |
subsection {* Floor function *}
|
|
143 |
|
|
144 |
definition
|
|
145 |
floor :: "'a::archimedean_field \<Rightarrow> int" where
|
|
146 |
[code del]: "floor x = (THE z. of_int z \<le> x \<and> x < of_int (z + 1))"
|
|
147 |
|
|
148 |
notation (xsymbols)
|
|
149 |
floor ("\<lfloor>_\<rfloor>")
|
|
150 |
|
|
151 |
notation (HTML output)
|
|
152 |
floor ("\<lfloor>_\<rfloor>")
|
|
153 |
|
|
154 |
lemma floor_correct: "of_int (floor x) \<le> x \<and> x < of_int (floor x + 1)"
|
|
155 |
unfolding floor_def using floor_exists1 by (rule theI')
|
|
156 |
|
|
157 |
lemma floor_unique: "\<lbrakk>of_int z \<le> x; x < of_int z + 1\<rbrakk> \<Longrightarrow> floor x = z"
|
|
158 |
using floor_correct [of x] floor_exists1 [of x] by auto
|
|
159 |
|
|
160 |
lemma of_int_floor_le: "of_int (floor x) \<le> x"
|
|
161 |
using floor_correct ..
|
|
162 |
|
|
163 |
lemma le_floor_iff: "z \<le> floor x \<longleftrightarrow> of_int z \<le> x"
|
|
164 |
proof
|
|
165 |
assume "z \<le> floor x"
|
|
166 |
then have "(of_int z :: 'a) \<le> of_int (floor x)" by simp
|
|
167 |
also have "of_int (floor x) \<le> x" by (rule of_int_floor_le)
|
|
168 |
finally show "of_int z \<le> x" .
|
|
169 |
next
|
|
170 |
assume "of_int z \<le> x"
|
|
171 |
also have "x < of_int (floor x + 1)" using floor_correct ..
|
|
172 |
finally show "z \<le> floor x" by (simp del: of_int_add)
|
|
173 |
qed
|
|
174 |
|
|
175 |
lemma floor_less_iff: "floor x < z \<longleftrightarrow> x < of_int z"
|
|
176 |
by (simp add: not_le [symmetric] le_floor_iff)
|
|
177 |
|
|
178 |
lemma less_floor_iff: "z < floor x \<longleftrightarrow> of_int z + 1 \<le> x"
|
|
179 |
using le_floor_iff [of "z + 1" x] by auto
|
|
180 |
|
|
181 |
lemma floor_le_iff: "floor x \<le> z \<longleftrightarrow> x < of_int z + 1"
|
|
182 |
by (simp add: not_less [symmetric] less_floor_iff)
|
|
183 |
|
|
184 |
lemma floor_mono: assumes "x \<le> y" shows "floor x \<le> floor y"
|
|
185 |
proof -
|
|
186 |
have "of_int (floor x) \<le> x" by (rule of_int_floor_le)
|
|
187 |
also note `x \<le> y`
|
|
188 |
finally show ?thesis by (simp add: le_floor_iff)
|
|
189 |
qed
|
|
190 |
|
|
191 |
lemma floor_less_cancel: "floor x < floor y \<Longrightarrow> x < y"
|
|
192 |
by (auto simp add: not_le [symmetric] floor_mono)
|
|
193 |
|
|
194 |
lemma floor_of_int [simp]: "floor (of_int z) = z"
|
|
195 |
by (rule floor_unique) simp_all
|
|
196 |
|
|
197 |
lemma floor_of_nat [simp]: "floor (of_nat n) = int n"
|
|
198 |
using floor_of_int [of "of_nat n"] by simp
|
|
199 |
|
|
200 |
text {* Floor with numerals *}
|
|
201 |
|
|
202 |
lemma floor_zero [simp]: "floor 0 = 0"
|
|
203 |
using floor_of_int [of 0] by simp
|
|
204 |
|
|
205 |
lemma floor_one [simp]: "floor 1 = 1"
|
|
206 |
using floor_of_int [of 1] by simp
|
|
207 |
|
|
208 |
lemma floor_number_of [simp]: "floor (number_of v) = number_of v"
|
|
209 |
using floor_of_int [of "number_of v"] by simp
|
|
210 |
|
|
211 |
lemma zero_le_floor [simp]: "0 \<le> floor x \<longleftrightarrow> 0 \<le> x"
|
|
212 |
by (simp add: le_floor_iff)
|
|
213 |
|
|
214 |
lemma one_le_floor [simp]: "1 \<le> floor x \<longleftrightarrow> 1 \<le> x"
|
|
215 |
by (simp add: le_floor_iff)
|
|
216 |
|
|
217 |
lemma number_of_le_floor [simp]: "number_of v \<le> floor x \<longleftrightarrow> number_of v \<le> x"
|
|
218 |
by (simp add: le_floor_iff)
|
|
219 |
|
|
220 |
lemma zero_less_floor [simp]: "0 < floor x \<longleftrightarrow> 1 \<le> x"
|
|
221 |
by (simp add: less_floor_iff)
|
|
222 |
|
|
223 |
lemma one_less_floor [simp]: "1 < floor x \<longleftrightarrow> 2 \<le> x"
|
|
224 |
by (simp add: less_floor_iff)
|
|
225 |
|
|
226 |
lemma number_of_less_floor [simp]:
|
|
227 |
"number_of v < floor x \<longleftrightarrow> number_of v + 1 \<le> x"
|
|
228 |
by (simp add: less_floor_iff)
|
|
229 |
|
|
230 |
lemma floor_le_zero [simp]: "floor x \<le> 0 \<longleftrightarrow> x < 1"
|
|
231 |
by (simp add: floor_le_iff)
|
|
232 |
|
|
233 |
lemma floor_le_one [simp]: "floor x \<le> 1 \<longleftrightarrow> x < 2"
|
|
234 |
by (simp add: floor_le_iff)
|
|
235 |
|
|
236 |
lemma floor_le_number_of [simp]:
|
|
237 |
"floor x \<le> number_of v \<longleftrightarrow> x < number_of v + 1"
|
|
238 |
by (simp add: floor_le_iff)
|
|
239 |
|
|
240 |
lemma floor_less_zero [simp]: "floor x < 0 \<longleftrightarrow> x < 0"
|
|
241 |
by (simp add: floor_less_iff)
|
|
242 |
|
|
243 |
lemma floor_less_one [simp]: "floor x < 1 \<longleftrightarrow> x < 1"
|
|
244 |
by (simp add: floor_less_iff)
|
|
245 |
|
|
246 |
lemma floor_less_number_of [simp]:
|
|
247 |
"floor x < number_of v \<longleftrightarrow> x < number_of v"
|
|
248 |
by (simp add: floor_less_iff)
|
|
249 |
|
|
250 |
text {* Addition and subtraction of integers *}
|
|
251 |
|
|
252 |
lemma floor_add_of_int [simp]: "floor (x + of_int z) = floor x + z"
|
|
253 |
using floor_correct [of x] by (simp add: floor_unique)
|
|
254 |
|
|
255 |
lemma floor_add_number_of [simp]:
|
|
256 |
"floor (x + number_of v) = floor x + number_of v"
|
|
257 |
using floor_add_of_int [of x "number_of v"] by simp
|
|
258 |
|
|
259 |
lemma floor_add_one [simp]: "floor (x + 1) = floor x + 1"
|
|
260 |
using floor_add_of_int [of x 1] by simp
|
|
261 |
|
|
262 |
lemma floor_diff_of_int [simp]: "floor (x - of_int z) = floor x - z"
|
|
263 |
using floor_add_of_int [of x "- z"] by (simp add: algebra_simps)
|
|
264 |
|
|
265 |
lemma floor_diff_number_of [simp]:
|
|
266 |
"floor (x - number_of v) = floor x - number_of v"
|
|
267 |
using floor_diff_of_int [of x "number_of v"] by simp
|
|
268 |
|
|
269 |
lemma floor_diff_one [simp]: "floor (x - 1) = floor x - 1"
|
|
270 |
using floor_diff_of_int [of x 1] by simp
|
|
271 |
|
|
272 |
|
|
273 |
subsection {* Ceiling function *}
|
|
274 |
|
|
275 |
definition
|
|
276 |
ceiling :: "'a::archimedean_field \<Rightarrow> int" where
|
|
277 |
[code del]: "ceiling x = - floor (- x)"
|
|
278 |
|
|
279 |
notation (xsymbols)
|
|
280 |
ceiling ("\<lceil>_\<rceil>")
|
|
281 |
|
|
282 |
notation (HTML output)
|
|
283 |
ceiling ("\<lceil>_\<rceil>")
|
|
284 |
|
|
285 |
lemma ceiling_correct: "of_int (ceiling x) - 1 < x \<and> x \<le> of_int (ceiling x)"
|
|
286 |
unfolding ceiling_def using floor_correct [of "- x"] by simp
|
|
287 |
|
|
288 |
lemma ceiling_unique: "\<lbrakk>of_int z - 1 < x; x \<le> of_int z\<rbrakk> \<Longrightarrow> ceiling x = z"
|
|
289 |
unfolding ceiling_def using floor_unique [of "- z" "- x"] by simp
|
|
290 |
|
|
291 |
lemma le_of_int_ceiling: "x \<le> of_int (ceiling x)"
|
|
292 |
using ceiling_correct ..
|
|
293 |
|
|
294 |
lemma ceiling_le_iff: "ceiling x \<le> z \<longleftrightarrow> x \<le> of_int z"
|
|
295 |
unfolding ceiling_def using le_floor_iff [of "- z" "- x"] by auto
|
|
296 |
|
|
297 |
lemma less_ceiling_iff: "z < ceiling x \<longleftrightarrow> of_int z < x"
|
|
298 |
by (simp add: not_le [symmetric] ceiling_le_iff)
|
|
299 |
|
|
300 |
lemma ceiling_less_iff: "ceiling x < z \<longleftrightarrow> x \<le> of_int z - 1"
|
|
301 |
using ceiling_le_iff [of x "z - 1"] by simp
|
|
302 |
|
|
303 |
lemma le_ceiling_iff: "z \<le> ceiling x \<longleftrightarrow> of_int z - 1 < x"
|
|
304 |
by (simp add: not_less [symmetric] ceiling_less_iff)
|
|
305 |
|
|
306 |
lemma ceiling_mono: "x \<ge> y \<Longrightarrow> ceiling x \<ge> ceiling y"
|
|
307 |
unfolding ceiling_def by (simp add: floor_mono)
|
|
308 |
|
|
309 |
lemma ceiling_less_cancel: "ceiling x < ceiling y \<Longrightarrow> x < y"
|
|
310 |
by (auto simp add: not_le [symmetric] ceiling_mono)
|
|
311 |
|
|
312 |
lemma ceiling_of_int [simp]: "ceiling (of_int z) = z"
|
|
313 |
by (rule ceiling_unique) simp_all
|
|
314 |
|
|
315 |
lemma ceiling_of_nat [simp]: "ceiling (of_nat n) = int n"
|
|
316 |
using ceiling_of_int [of "of_nat n"] by simp
|
|
317 |
|
|
318 |
text {* Ceiling with numerals *}
|
|
319 |
|
|
320 |
lemma ceiling_zero [simp]: "ceiling 0 = 0"
|
|
321 |
using ceiling_of_int [of 0] by simp
|
|
322 |
|
|
323 |
lemma ceiling_one [simp]: "ceiling 1 = 1"
|
|
324 |
using ceiling_of_int [of 1] by simp
|
|
325 |
|
|
326 |
lemma ceiling_number_of [simp]: "ceiling (number_of v) = number_of v"
|
|
327 |
using ceiling_of_int [of "number_of v"] by simp
|
|
328 |
|
|
329 |
lemma ceiling_le_zero [simp]: "ceiling x \<le> 0 \<longleftrightarrow> x \<le> 0"
|
|
330 |
by (simp add: ceiling_le_iff)
|
|
331 |
|
|
332 |
lemma ceiling_le_one [simp]: "ceiling x \<le> 1 \<longleftrightarrow> x \<le> 1"
|
|
333 |
by (simp add: ceiling_le_iff)
|
|
334 |
|
|
335 |
lemma ceiling_le_number_of [simp]:
|
|
336 |
"ceiling x \<le> number_of v \<longleftrightarrow> x \<le> number_of v"
|
|
337 |
by (simp add: ceiling_le_iff)
|
|
338 |
|
|
339 |
lemma ceiling_less_zero [simp]: "ceiling x < 0 \<longleftrightarrow> x \<le> -1"
|
|
340 |
by (simp add: ceiling_less_iff)
|
|
341 |
|
|
342 |
lemma ceiling_less_one [simp]: "ceiling x < 1 \<longleftrightarrow> x \<le> 0"
|
|
343 |
by (simp add: ceiling_less_iff)
|
|
344 |
|
|
345 |
lemma ceiling_less_number_of [simp]:
|
|
346 |
"ceiling x < number_of v \<longleftrightarrow> x \<le> number_of v - 1"
|
|
347 |
by (simp add: ceiling_less_iff)
|
|
348 |
|
|
349 |
lemma zero_le_ceiling [simp]: "0 \<le> ceiling x \<longleftrightarrow> -1 < x"
|
|
350 |
by (simp add: le_ceiling_iff)
|
|
351 |
|
|
352 |
lemma one_le_ceiling [simp]: "1 \<le> ceiling x \<longleftrightarrow> 0 < x"
|
|
353 |
by (simp add: le_ceiling_iff)
|
|
354 |
|
|
355 |
lemma number_of_le_ceiling [simp]:
|
|
356 |
"number_of v \<le> ceiling x\<longleftrightarrow> number_of v - 1 < x"
|
|
357 |
by (simp add: le_ceiling_iff)
|
|
358 |
|
|
359 |
lemma zero_less_ceiling [simp]: "0 < ceiling x \<longleftrightarrow> 0 < x"
|
|
360 |
by (simp add: less_ceiling_iff)
|
|
361 |
|
|
362 |
lemma one_less_ceiling [simp]: "1 < ceiling x \<longleftrightarrow> 1 < x"
|
|
363 |
by (simp add: less_ceiling_iff)
|
|
364 |
|
|
365 |
lemma number_of_less_ceiling [simp]:
|
|
366 |
"number_of v < ceiling x \<longleftrightarrow> number_of v < x"
|
|
367 |
by (simp add: less_ceiling_iff)
|
|
368 |
|
|
369 |
text {* Addition and subtraction of integers *}
|
|
370 |
|
|
371 |
lemma ceiling_add_of_int [simp]: "ceiling (x + of_int z) = ceiling x + z"
|
|
372 |
using ceiling_correct [of x] by (simp add: ceiling_unique)
|
|
373 |
|
|
374 |
lemma ceiling_add_number_of [simp]:
|
|
375 |
"ceiling (x + number_of v) = ceiling x + number_of v"
|
|
376 |
using ceiling_add_of_int [of x "number_of v"] by simp
|
|
377 |
|
|
378 |
lemma ceiling_add_one [simp]: "ceiling (x + 1) = ceiling x + 1"
|
|
379 |
using ceiling_add_of_int [of x 1] by simp
|
|
380 |
|
|
381 |
lemma ceiling_diff_of_int [simp]: "ceiling (x - of_int z) = ceiling x - z"
|
|
382 |
using ceiling_add_of_int [of x "- z"] by (simp add: algebra_simps)
|
|
383 |
|
|
384 |
lemma ceiling_diff_number_of [simp]:
|
|
385 |
"ceiling (x - number_of v) = ceiling x - number_of v"
|
|
386 |
using ceiling_diff_of_int [of x "number_of v"] by simp
|
|
387 |
|
|
388 |
lemma ceiling_diff_one [simp]: "ceiling (x - 1) = ceiling x - 1"
|
|
389 |
using ceiling_diff_of_int [of x 1] by simp
|
|
390 |
|
|
391 |
|
|
392 |
subsection {* Negation *}
|
|
393 |
|
30102
|
394 |
lemma floor_minus: "floor (- x) = - ceiling x"
|
30096
|
395 |
unfolding ceiling_def by simp
|
|
396 |
|
30102
|
397 |
lemma ceiling_minus: "ceiling (- x) = - floor x"
|
30096
|
398 |
unfolding ceiling_def by simp
|
|
399 |
|
|
400 |
end
|