author | wenzelm |
Tue, 03 Mar 2009 14:07:43 +0100 | |
changeset 30211 | 556d1810cdad |
parent 16417 | 9bc16273c2d4 |
child 36862 | 952b2b102a0a |
permissions | -rw-r--r-- |
5737 | 1 |
(* Title: HOL/Induct/ABexp.thy |
2 |
ID: $Id$ |
|
3 |
Author: Stefan Berghofer, TU Muenchen |
|
4 |
*) |
|
5 |
||
11046
b5f5942781a0
Induct: converted some theories to new-style format;
wenzelm
parents:
5802
diff
changeset
|
6 |
header {* Arithmetic and boolean expressions *} |
b5f5942781a0
Induct: converted some theories to new-style format;
wenzelm
parents:
5802
diff
changeset
|
7 |
|
16417 | 8 |
theory ABexp imports Main begin |
5737 | 9 |
|
11046
b5f5942781a0
Induct: converted some theories to new-style format;
wenzelm
parents:
5802
diff
changeset
|
10 |
datatype 'a aexp = |
b5f5942781a0
Induct: converted some theories to new-style format;
wenzelm
parents:
5802
diff
changeset
|
11 |
IF "'a bexp" "'a aexp" "'a aexp" |
b5f5942781a0
Induct: converted some theories to new-style format;
wenzelm
parents:
5802
diff
changeset
|
12 |
| Sum "'a aexp" "'a aexp" |
b5f5942781a0
Induct: converted some theories to new-style format;
wenzelm
parents:
5802
diff
changeset
|
13 |
| Diff "'a aexp" "'a aexp" |
b5f5942781a0
Induct: converted some theories to new-style format;
wenzelm
parents:
5802
diff
changeset
|
14 |
| Var 'a |
b5f5942781a0
Induct: converted some theories to new-style format;
wenzelm
parents:
5802
diff
changeset
|
15 |
| Num nat |
b5f5942781a0
Induct: converted some theories to new-style format;
wenzelm
parents:
5802
diff
changeset
|
16 |
and 'a bexp = |
b5f5942781a0
Induct: converted some theories to new-style format;
wenzelm
parents:
5802
diff
changeset
|
17 |
Less "'a aexp" "'a aexp" |
b5f5942781a0
Induct: converted some theories to new-style format;
wenzelm
parents:
5802
diff
changeset
|
18 |
| And "'a bexp" "'a bexp" |
b5f5942781a0
Induct: converted some theories to new-style format;
wenzelm
parents:
5802
diff
changeset
|
19 |
| Neg "'a bexp" |
5737 | 20 |
|
21 |
||
11046
b5f5942781a0
Induct: converted some theories to new-style format;
wenzelm
parents:
5802
diff
changeset
|
22 |
text {* \medskip Evaluation of arithmetic and boolean expressions *} |
5737 | 23 |
|
24 |
consts |
|
11046
b5f5942781a0
Induct: converted some theories to new-style format;
wenzelm
parents:
5802
diff
changeset
|
25 |
evala :: "('a => nat) => 'a aexp => nat" |
b5f5942781a0
Induct: converted some theories to new-style format;
wenzelm
parents:
5802
diff
changeset
|
26 |
evalb :: "('a => nat) => 'a bexp => bool" |
5737 | 27 |
|
28 |
primrec |
|
11046
b5f5942781a0
Induct: converted some theories to new-style format;
wenzelm
parents:
5802
diff
changeset
|
29 |
"evala env (IF b a1 a2) = (if evalb env b then evala env a1 else evala env a2)" |
5802 | 30 |
"evala env (Sum a1 a2) = evala env a1 + evala env a2" |
31 |
"evala env (Diff a1 a2) = evala env a1 - evala env a2" |
|
32 |
"evala env (Var v) = env v" |
|
33 |
"evala env (Num n) = n" |
|
5737 | 34 |
|
5802 | 35 |
"evalb env (Less a1 a2) = (evala env a1 < evala env a2)" |
11046
b5f5942781a0
Induct: converted some theories to new-style format;
wenzelm
parents:
5802
diff
changeset
|
36 |
"evalb env (And b1 b2) = (evalb env b1 \<and> evalb env b2)" |
b5f5942781a0
Induct: converted some theories to new-style format;
wenzelm
parents:
5802
diff
changeset
|
37 |
"evalb env (Neg b) = (\<not> evalb env b)" |
5737 | 38 |
|
39 |
||
11046
b5f5942781a0
Induct: converted some theories to new-style format;
wenzelm
parents:
5802
diff
changeset
|
40 |
text {* \medskip Substitution on arithmetic and boolean expressions *} |
5737 | 41 |
|
42 |
consts |
|
11046
b5f5942781a0
Induct: converted some theories to new-style format;
wenzelm
parents:
5802
diff
changeset
|
43 |
substa :: "('a => 'b aexp) => 'a aexp => 'b aexp" |
b5f5942781a0
Induct: converted some theories to new-style format;
wenzelm
parents:
5802
diff
changeset
|
44 |
substb :: "('a => 'b aexp) => 'a bexp => 'b bexp" |
5737 | 45 |
|
46 |
primrec |
|
11046
b5f5942781a0
Induct: converted some theories to new-style format;
wenzelm
parents:
5802
diff
changeset
|
47 |
"substa f (IF b a1 a2) = IF (substb f b) (substa f a1) (substa f a2)" |
5802 | 48 |
"substa f (Sum a1 a2) = Sum (substa f a1) (substa f a2)" |
49 |
"substa f (Diff a1 a2) = Diff (substa f a1) (substa f a2)" |
|
50 |
"substa f (Var v) = f v" |
|
51 |
"substa f (Num n) = Num n" |
|
5737 | 52 |
|
5802 | 53 |
"substb f (Less a1 a2) = Less (substa f a1) (substa f a2)" |
54 |
"substb f (And b1 b2) = And (substb f b1) (substb f b2)" |
|
55 |
"substb f (Neg b) = Neg (substb f b)" |
|
5737 | 56 |
|
12171 | 57 |
lemma subst1_aexp: |
58 |
"evala env (substa (Var (v := a')) a) = evala (env (v := evala env a')) a" |
|
59 |
and subst1_bexp: |
|
60 |
"evalb env (substb (Var (v := a')) b) = evalb (env (v := evala env a')) b" |
|
11046
b5f5942781a0
Induct: converted some theories to new-style format;
wenzelm
parents:
5802
diff
changeset
|
61 |
-- {* one variable *} |
12171 | 62 |
by (induct a and b) simp_all |
11046
b5f5942781a0
Induct: converted some theories to new-style format;
wenzelm
parents:
5802
diff
changeset
|
63 |
|
12171 | 64 |
lemma subst_all_aexp: |
65 |
"evala env (substa s a) = evala (\<lambda>x. evala env (s x)) a" |
|
66 |
and subst_all_bexp: |
|
67 |
"evalb env (substb s b) = evalb (\<lambda>x. evala env (s x)) b" |
|
68 |
by (induct a and b) auto |
|
11046
b5f5942781a0
Induct: converted some theories to new-style format;
wenzelm
parents:
5802
diff
changeset
|
69 |
|
5737 | 70 |
end |