488
|
1 |
(* Title: ZF/InfDatatype.ML
|
|
2 |
ID: $Id$
|
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
|
|
4 |
Copyright 1994 University of Cambridge
|
|
5 |
|
|
6 |
Infinite-Branching Datatype Definitions
|
|
7 |
*)
|
|
8 |
|
|
9 |
val fun_Limit_VfromE =
|
|
10 |
[apply_funtype, InfCard_csucc RS InfCard_is_Limit] MRS Limit_VfromE
|
|
11 |
|> standard;
|
|
12 |
|
|
13 |
goal InfDatatype.thy
|
|
14 |
"!!K. [| f: K -> Vfrom(A,csucc(K)); InfCard(K) \
|
|
15 |
\ |] ==> EX j. f: K -> Vfrom(A,j) & j < csucc(K)";
|
|
16 |
by (res_inst_tac [("x", "UN k:K. LEAST i. f`k : Vfrom(A,i)")] exI 1);
|
|
17 |
by (resolve_tac [conjI] 1);
|
|
18 |
by (resolve_tac [ballI RSN (2,cardinal_UN_Ord_lt_csucc)] 2);
|
|
19 |
by (eresolve_tac [fun_Limit_VfromE] 3 THEN REPEAT_SOME assume_tac);
|
|
20 |
by (fast_tac (ZF_cs addEs [Least_le RS lt_trans1, ltE]) 2);
|
|
21 |
by (resolve_tac [Pi_type] 1);
|
|
22 |
by (rename_tac "k" 2);
|
|
23 |
by (eresolve_tac [fun_Limit_VfromE] 2 THEN REPEAT_SOME assume_tac);
|
|
24 |
by (subgoal_tac "f`k : Vfrom(A, LEAST i. f`k : Vfrom(A,i))" 1);
|
|
25 |
by (fast_tac (ZF_cs addEs [LeastI, ltE]) 2);
|
|
26 |
by (eresolve_tac [[subset_refl, UN_upper] MRS Vfrom_mono RS subsetD] 1);
|
|
27 |
by (assume_tac 1);
|
|
28 |
val fun_Vfrom_csucc_lemma = result();
|
|
29 |
|
|
30 |
goal InfDatatype.thy
|
|
31 |
"!!K. InfCard(K) ==> K -> Vfrom(A,csucc(K)) <= Vfrom(A,csucc(K))";
|
|
32 |
by (safe_tac (ZF_cs addSDs [fun_Vfrom_csucc_lemma]));
|
|
33 |
by (resolve_tac [Vfrom RS ssubst] 1);
|
|
34 |
by (eresolve_tac [PiE] 1);
|
|
35 |
(*This level includes the function, and is below csucc(K)*)
|
|
36 |
by (res_inst_tac [("a1", "succ(succ(K Un j))")] (UN_I RS UnI2) 1);
|
|
37 |
by (eresolve_tac [subset_trans RS PowI] 2);
|
|
38 |
by (safe_tac (ZF_cs addSIs [Pair_in_Vfrom]));
|
|
39 |
by (fast_tac (ZF_cs addIs [i_subset_Vfrom RS subsetD]) 2);
|
|
40 |
by (eresolve_tac [[subset_refl, Un_upper2] MRS Vfrom_mono RS subsetD] 2);
|
|
41 |
by (REPEAT (ares_tac [ltD, InfCard_csucc, InfCard_is_Limit,
|
|
42 |
Limit_has_succ, Un_least_lt] 1));
|
|
43 |
by (eresolve_tac [InfCard_is_Card RS Card_is_Ord RS lt_csucc] 1);
|
|
44 |
by (assume_tac 1);
|
|
45 |
val fun_Vfrom_csucc = result();
|
|
46 |
|
|
47 |
goal InfDatatype.thy
|
|
48 |
"!!K. [| f: K -> Vfrom(A, csucc(K)); InfCard(K) \
|
|
49 |
\ |] ==> f: Vfrom(A,csucc(K))";
|
|
50 |
by (REPEAT (ares_tac [fun_Vfrom_csucc RS subsetD] 1));
|
|
51 |
val fun_in_Vfrom_csucc = result();
|
|
52 |
|
|
53 |
val fun_subset_Vfrom_csucc =
|
|
54 |
[Pi_mono, fun_Vfrom_csucc] MRS subset_trans |> standard;
|
|
55 |
|
|
56 |
goal InfDatatype.thy
|
|
57 |
"!!f. [| f: K -> B; B <= Vfrom(A,csucc(K)); InfCard(K) \
|
|
58 |
\ |] ==> f: Vfrom(A,csucc(K))";
|
|
59 |
by (REPEAT (ares_tac [fun_subset_Vfrom_csucc RS subsetD] 1));
|
|
60 |
val fun_into_Vfrom_csucc = result();
|
|
61 |
|
|
62 |
val Limit_csucc = InfCard_csucc RS InfCard_is_Limit |> standard;
|
|
63 |
|
|
64 |
val Pair_in_Vfrom_csucc = Limit_csucc RSN (3, Pair_in_Vfrom_Limit) |> standard;
|
|
65 |
val Inl_in_Vfrom_csucc = Limit_csucc RSN (2, Inl_in_Vfrom_Limit) |> standard;
|
|
66 |
val Inr_in_Vfrom_csucc = Limit_csucc RSN (2, Inr_in_Vfrom_Limit) |> standard;
|
|
67 |
val zero_in_Vfrom_csucc = Limit_csucc RS zero_in_Vfrom_Limit |> standard;
|
|
68 |
val nat_into_Vfrom_csucc = Limit_csucc RSN (2, nat_into_Vfrom_Limit)
|
|
69 |
|> standard;
|
|
70 |
|
|
71 |
(*For most K-branching datatypes with domain Vfrom(A, csucc(K)) *)
|
|
72 |
val inf_datatype_intrs =
|
|
73 |
[fun_in_Vfrom_csucc, InfCard_nat, Pair_in_Vfrom_csucc,
|
|
74 |
Inl_in_Vfrom_csucc, Inr_in_Vfrom_csucc,
|
|
75 |
zero_in_Vfrom_csucc, A_into_Vfrom, nat_into_Vfrom_csucc] @ datatype_intrs;
|
|
76 |
|