| 7998 |      1 | (*
 | 
|  |      2 |     Instantiate polynomials to form a ring and prove further properties
 | 
|  |      3 |     $Id$
 | 
|  |      4 |     Author: Clemens Ballarin, started 22 January 1997
 | 
|  |      5 | *)
 | 
|  |      6 | 
 | 
|  |      7 | (* Properties of *s:
 | 
|  |      8 |    Polynomials form a module *)
 | 
|  |      9 | 
 | 
|  |     10 | goal UnivPoly.thy "!!a::'a::ring. (a + b) *s p = a *s p + b *s p";
 | 
|  |     11 | by (rtac up_eqI 1);
 | 
|  |     12 | by (simp_tac (simpset() addsimps [l_distr]) 1);
 | 
|  |     13 | qed "smult_l_distr";
 | 
|  |     14 | 
 | 
|  |     15 | goal UnivPoly.thy "!!a::'a::ring. a *s (p + q) = a *s p + a *s q";
 | 
|  |     16 | by (rtac up_eqI 1);
 | 
|  |     17 | by (simp_tac (simpset() addsimps [r_distr]) 1);
 | 
|  |     18 | qed "smult_r_distr";
 | 
|  |     19 | 
 | 
|  |     20 | goal UnivPoly.thy "!!a::'a::ring. (a * b) *s p = a *s (b *s p)";
 | 
|  |     21 | by (rtac up_eqI 1);
 | 
|  |     22 | by (simp_tac (simpset() addsimps [m_assoc]) 1);
 | 
|  |     23 | qed "smult_assoc1";
 | 
|  |     24 | 
 | 
|  |     25 | goal UnivPoly.thy "(<1>::'a::ring) *s p = p";
 | 
|  |     26 | by (rtac up_eqI 1);
 | 
|  |     27 | by (Simp_tac 1);
 | 
|  |     28 | qed "smult_one";
 | 
|  |     29 | 
 | 
|  |     30 | (* Polynomials form an algebra *)
 | 
|  |     31 | 
 | 
|  |     32 | goal UnivPoly.thy "!!a::'a::ring. (a *s p) * q = a *s (p * q)";
 | 
|  |     33 | by (rtac up_eqI 1);
 | 
|  |     34 | by (simp_tac (simpset() addsimps [SUM_rdistr, m_assoc]) 1);
 | 
|  |     35 | qed "smult_assoc2";
 | 
|  |     36 | 
 | 
|  |     37 | (* the following can be derived from the above ones,
 | 
|  |     38 |    for generality reasons, it is therefore done *)
 | 
|  |     39 | 
 | 
|  |     40 | Goal "(<0>::'a::ring) *s p = <0>";
 | 
|  |     41 | by (rtac a_lcancel 1);
 | 
|  |     42 | by (rtac (smult_l_distr RS sym RS trans) 1);
 | 
|  |     43 | by (Simp_tac 1);
 | 
|  |     44 | qed "smult_l_null";
 | 
|  |     45 | 
 | 
|  |     46 | Goal "!!a::'a::ring. a *s <0> = <0>";
 | 
|  |     47 | by (rtac a_lcancel 1);
 | 
|  |     48 | by (rtac (smult_r_distr RS sym RS trans) 1);
 | 
|  |     49 | by (Simp_tac 1);
 | 
|  |     50 | qed "smult_r_null";
 | 
|  |     51 | 
 | 
|  |     52 | Goal "!!a::'a::ring. (-a) *s p = - (a *s p)";
 | 
|  |     53 | by (rtac a_lcancel 1);
 | 
|  |     54 | by (rtac (r_neg RS sym RSN (2, trans)) 1);
 | 
|  |     55 | by (rtac (smult_l_distr RS sym RS trans) 1);
 | 
|  |     56 | by (simp_tac (simpset() addsimps [smult_l_null, r_neg]) 1);
 | 
|  |     57 | qed "smult_l_minus";
 | 
|  |     58 | 
 | 
|  |     59 | Goal "!!a::'a::ring. a *s (-p) = - (a *s p)";
 | 
|  |     60 | by (rtac a_lcancel 1);
 | 
|  |     61 | by (rtac (r_neg RS sym RSN (2, trans)) 1);
 | 
|  |     62 | by (rtac (smult_r_distr RS sym RS trans) 1);
 | 
|  |     63 | by (simp_tac (simpset() addsimps [smult_r_null, r_neg]) 1);
 | 
|  |     64 | qed "smult_r_minus";
 | 
|  |     65 | 
 | 
|  |     66 | val smult_minus = [smult_l_minus, smult_r_minus];
 | 
|  |     67 | 
 | 
|  |     68 | Addsimps [smult_one, smult_l_null, smult_r_null];
 |