1478
|
1 |
(* Title: ZF/IMP/Denotation.thy
|
482
|
2 |
ID: $Id$
|
12610
|
3 |
Author: Heiko Loetzbeyer and Robert Sandner, TU München
|
|
4 |
*)
|
511
|
5 |
|
12610
|
6 |
header {* Denotational semantics of expressions and commands *}
|
482
|
7 |
|
12606
|
8 |
theory Denotation = Com:
|
|
9 |
|
12610
|
10 |
subsection {* Definitions *}
|
482
|
11 |
|
|
12 |
consts
|
12606
|
13 |
A :: "i => i => i"
|
|
14 |
B :: "i => i => i"
|
|
15 |
C :: "i => i"
|
|
16 |
|
|
17 |
constdefs
|
12610
|
18 |
Gamma :: "[i,i,i] => i" ("\<Gamma>")
|
|
19 |
"\<Gamma>(b,cden) ==
|
|
20 |
(\<lambda>phi. {io \<in> (phi O cden). B(b,fst(io))=1} \<union>
|
|
21 |
{io \<in> id(loc->nat). B(b,fst(io))=0})"
|
482
|
22 |
|
12606
|
23 |
primrec
|
12610
|
24 |
"A(N(n), sigma) = n"
|
|
25 |
"A(X(x), sigma) = sigma`x"
|
|
26 |
"A(Op1(f,a), sigma) = f`A(a,sigma)"
|
|
27 |
"A(Op2(f,a0,a1), sigma) = f`<A(a0,sigma),A(a1,sigma)>"
|
482
|
28 |
|
12606
|
29 |
primrec
|
12610
|
30 |
"B(true, sigma) = 1"
|
|
31 |
"B(false, sigma) = 0"
|
|
32 |
"B(ROp(f,a0,a1), sigma) = f`<A(a0,sigma),A(a1,sigma)>"
|
|
33 |
"B(noti(b), sigma) = not(B(b,sigma))"
|
|
34 |
"B(b0 andi b1, sigma) = B(b0,sigma) and B(b1,sigma)"
|
|
35 |
"B(b0 ori b1, sigma) = B(b0,sigma) or B(b1,sigma)"
|
12606
|
36 |
|
12610
|
37 |
primrec
|
|
38 |
"C(\<SKIP>) = id(loc->nat)"
|
|
39 |
"C(x \<ASSN> a) =
|
|
40 |
{io \<in> (loc->nat) \<times> (loc->nat). snd(io) = fst(io)(x := A(a,fst(io)))}"
|
|
41 |
"C(c0\<SEQ> c1) = C(c1) O C(c0)"
|
|
42 |
"C(\<IF> b \<THEN> c0 \<ELSE> c1) =
|
|
43 |
{io \<in> C(c0). B(b,fst(io)) = 1} \<union> {io \<in> C(c1). B(b,fst(io)) = 0}"
|
|
44 |
"C(\<WHILE> b \<DO> c) = lfp((loc->nat) \<times> (loc->nat), \<Gamma>(b,C(c)))"
|
12606
|
45 |
|
|
46 |
|
12610
|
47 |
subsection {* Misc lemmas *}
|
12606
|
48 |
|
|
49 |
lemma A_type [TC]: "[|a \<in> aexp; sigma \<in> loc->nat|] ==> A(a,sigma) \<in> nat"
|
12610
|
50 |
by (erule aexp.induct) simp_all
|
12606
|
51 |
|
|
52 |
lemma B_type [TC]: "[|b \<in> bexp; sigma \<in> loc->nat|] ==> B(b,sigma) \<in> bool"
|
|
53 |
by (erule bexp.induct, simp_all)
|
511
|
54 |
|
12610
|
55 |
lemma C_subset: "c \<in> com ==> C(c) \<subseteq> (loc->nat) \<times> (loc->nat)"
|
|
56 |
apply (erule com.induct)
|
|
57 |
apply simp_all
|
|
58 |
apply (blast dest: lfp_subset [THEN subsetD])+
|
|
59 |
done
|
12606
|
60 |
|
|
61 |
lemma C_type_D [dest]:
|
12610
|
62 |
"[| <x,y> \<in> C(c); c \<in> com |] ==> x \<in> loc->nat & y \<in> loc->nat"
|
|
63 |
by (blast dest: C_subset [THEN subsetD])
|
482
|
64 |
|
12606
|
65 |
lemma C_type_fst [dest]: "[| x \<in> C(c); c \<in> com |] ==> fst(x) \<in> loc->nat"
|
12610
|
66 |
by (auto dest!: C_subset [THEN subsetD])
|
482
|
67 |
|
12610
|
68 |
lemma Gamma_bnd_mono:
|
|
69 |
"cden \<subseteq> (loc->nat) \<times> (loc->nat)
|
|
70 |
==> bnd_mono ((loc->nat) \<times> (loc->nat), \<Gamma>(b,cden))"
|
|
71 |
by (unfold bnd_mono_def Gamma_def) blast
|
482
|
72 |
|
|
73 |
end
|