src/HOL/Wellfounded_Relations.thy
author wenzelm
Tue, 06 Aug 2002 11:22:05 +0200
changeset 13462 56610e2ba220
parent 12398 9c27f28c8f5a
child 15346 ac272926fb77
permissions -rw-r--r--
sane interface for simprocs;
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
10213
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
     1
(*  Title:      HOL/Wellfounded_Relations
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
     2
    ID:         $Id$
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
     3
    Author:     Konrad Slind
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
     4
    Copyright   1995 TU Munich
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
     5
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
     6
Derived WF relations: inverse image, lexicographic product, measure, ...
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
     7
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
     8
The simple relational product, in which (x',y')<(x,y) iff x'<x and y'<y, is a
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
     9
subset of the lexicographic product, and therefore does not need to be defined
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    10
separately.
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    11
*)
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    12
12398
9c27f28c8f5a renamed Finite to Finite_Set;
wenzelm
parents: 11454
diff changeset
    13
Wellfounded_Relations = Finite_Set + 
10213
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    14
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    15
constdefs
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    16
 less_than :: "(nat*nat)set"
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    17
"less_than == trancl pred_nat"
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    18
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    19
 measure   :: "('a => nat) => ('a * 'a)set"
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    20
"measure == inv_image less_than"
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    21
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    22
 lex_prod  :: "[('a*'a)set, ('b*'b)set] => (('a*'b)*('a*'b))set"
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    23
               (infixr "<*lex*>" 80)
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    24
"ra <*lex*> rb == {((a,b),(a',b')). (a,a') : ra | a=a' & (b,b') : rb}"
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    25
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    26
 (* finite proper subset*)
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    27
 finite_psubset  :: "('a set * 'a set) set"
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    28
"finite_psubset == {(A,B). A < B & finite B}"
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    29
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    30
(* For rec_defs where the first n parameters stay unchanged in the recursive
11008
f7333f055ef6 improved theory reference in comment
oheimb
parents: 10213
diff changeset
    31
   call. See Library/While_Combinator.thy for an application.
10213
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    32
*)
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    33
 same_fst :: "('a => bool) => ('a => ('b * 'b)set) => (('a*'b)*('a*'b))set"
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    34
"same_fst P R == {((x',y'),(x,y)) . x'=x & P x & (y',y) : R x}"
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    35
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    36
end