| author | blanchet | 
| Tue, 27 Apr 2010 18:58:05 +0200 | |
| changeset 36485 | 56ce8fc56be3 | 
| parent 31795 | be3e1cc5005c | 
| child 36862 | 952b2b102a0a | 
| permissions | -rw-r--r-- | 
| 15283 | 1  | 
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">  | 
2  | 
||
| 15582 | 3  | 
<!-- $Id$ -->  | 
4  | 
||
5  | 
<HTML>  | 
|
6  | 
||
7  | 
<HEAD>  | 
|
8  | 
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">  | 
|
| 
31795
 
be3e1cc5005c
standard naming conventions for session and theories;
 
wenzelm 
parents: 
29197 
diff
changeset
 | 
9  | 
<TITLE>HOL/Hahn_Banach/README</TITLE>  | 
| 15582 | 10  | 
</HEAD>  | 
11  | 
||
12  | 
<BODY>  | 
|
| 7655 | 13  | 
|
| 15283 | 14  | 
<H3>The Hahn-Banach Theorem for Real Vector Spaces (Isabelle/Isar)</H3>  | 
| 7655 | 15  | 
|
| 15283 | 16  | 
Author: Gertrud Bauer, Technische Universität München<P>  | 
| 7655 | 17  | 
|
18  | 
This directory contains the proof of the Hahn-Banach theorem for real vectorspaces,  | 
|
19  | 
following H. Heuser, Funktionalanalysis, p. 228 -232.  | 
|
20  | 
The Hahn-Banach theorem is one of the fundamental theorems of functioal analysis.  | 
|
21  | 
It is a conclusion of Zorn's lemma.<P>  | 
|
22  | 
||
23  | 
Two different formaulations of the theorem are presented, one for general real vectorspaces  | 
|
24  | 
and its application to normed vectorspaces. <P>  | 
|
25  | 
||
26  | 
The theorem says, that every continous linearform, defined on arbitrary subspaces  | 
|
27  | 
(not only one-dimensional subspaces), can be extended to a continous linearform on  | 
|
28  | 
the whole vectorspace.  | 
|
29  | 
||
30  | 
||
31  | 
<HR>  | 
|
32  | 
||
33  | 
<ADDRESS>  | 
|
34  | 
<A NAME="bauerg@in.tum.de" HREF="mailto:bauerg@in.tum.de">bauerg@in.tum.de</A>  | 
|
35  | 
</ADDRESS>  | 
|
36  | 
||
| 15582 | 37  | 
</BODY>  | 
38  | 
</HTML>  |