| author | nipkow | 
| Fri, 08 Aug 2014 08:26:32 +0200 | |
| changeset 57817 | dfebc374bd89 | 
| parent 46953 | 2b6e55924af3 | 
| child 58871 | c399ae4b836f | 
| permissions | -rw-r--r-- | 
| 1478 | 1  | 
(* Title: ZF/AC.thy  | 
2  | 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory  | 
|
| 484 | 3  | 
Copyright 1994 University of Cambridge  | 
| 13328 | 4  | 
*)  | 
| 484 | 5  | 
|
| 13328 | 6  | 
header{*The Axiom of Choice*}
 | 
| 484 | 7  | 
|
| 
26056
 
6a0801279f4c
Made theory names in ZF disjoint from HOL theory names to allow loading both developments
 
krauss 
parents: 
24893 
diff
changeset
 | 
8  | 
theory AC imports Main_ZF begin  | 
| 13134 | 9  | 
|
| 13328 | 10  | 
text{*This definition comes from Halmos (1960), page 59.*}
 | 
| 24893 | 11  | 
axiomatization where  | 
| 46953 | 12  | 
AC: "[| a \<in> A; !!x. x \<in> A ==> (\<exists>y. y \<in> B(x)) |] ==> \<exists>z. z \<in> Pi(A,B)"  | 
| 13134 | 13  | 
|
| 46820 | 14  | 
(*The same as AC, but no premise @{term"a \<in> A"}*)
 | 
| 13134 | 15  | 
lemma AC_Pi: "[| !!x. x \<in> A ==> (\<exists>y. y \<in> B(x)) |] ==> \<exists>z. z \<in> Pi(A,B)"  | 
16  | 
apply (case_tac "A=0")  | 
|
| 
13149
 
773657d466cb
better simplification of trivial existential equalities
 
paulson 
parents: 
13134 
diff
changeset
 | 
17  | 
apply (simp add: Pi_empty1)  | 
| 13134 | 18  | 
(*The non-trivial case*)  | 
19  | 
apply (blast intro: AC)  | 
|
20  | 
done  | 
|
21  | 
||
22  | 
(*Using dtac, this has the advantage of DELETING the universal quantifier*)  | 
|
23  | 
lemma AC_ball_Pi: "\<forall>x \<in> A. \<exists>y. y \<in> B(x) ==> \<exists>y. y \<in> Pi(A,B)"  | 
|
24  | 
apply (rule AC_Pi)  | 
|
| 13269 | 25  | 
apply (erule bspec, assumption)  | 
| 13134 | 26  | 
done  | 
27  | 
||
| 
14171
 
0cab06e3bbd0
Extended the notion of letter and digit, such that now one may use greek,
 
skalberg 
parents: 
13328 
diff
changeset
 | 
28  | 
lemma AC_Pi_Pow: "\<exists>f. f \<in> (\<Pi> X \<in> Pow(C)-{0}. X)"
 | 
| 13134 | 29  | 
apply (rule_tac B1 = "%x. x" in AC_Pi [THEN exE])  | 
| 13269 | 30  | 
apply (erule_tac [2] exI, blast)  | 
| 13134 | 31  | 
done  | 
| 
6053
 
8a1059aa01f0
new inductive, datatype and primrec packages, etc.
 
paulson 
parents: 
2469 
diff
changeset
 | 
32  | 
|
| 13134 | 33  | 
lemma AC_func:  | 
| 46820 | 34  | 
"[| !!x. x \<in> A ==> (\<exists>y. y \<in> x) |] ==> \<exists>f \<in> A->\<Union>(A). \<forall>x \<in> A. f`x \<in> x"  | 
| 13134 | 35  | 
apply (rule_tac B1 = "%x. x" in AC_Pi [THEN exE])  | 
| 46820 | 36  | 
prefer 2 apply (blast dest: apply_type intro: Pi_type, blast)  | 
| 13134 | 37  | 
done  | 
38  | 
||
39  | 
lemma non_empty_family: "[| 0 \<notin> A; x \<in> A |] ==> \<exists>y. y \<in> x"  | 
|
| 13269 | 40  | 
by (subgoal_tac "x \<noteq> 0", blast+)  | 
| 
6053
 
8a1059aa01f0
new inductive, datatype and primrec packages, etc.
 
paulson 
parents: 
2469 
diff
changeset
 | 
41  | 
|
| 46820 | 42  | 
lemma AC_func0: "0 \<notin> A ==> \<exists>f \<in> A->\<Union>(A). \<forall>x \<in> A. f`x \<in> x"  | 
| 13134 | 43  | 
apply (rule AC_func)  | 
| 46820 | 44  | 
apply (simp_all add: non_empty_family)  | 
| 13134 | 45  | 
done  | 
46  | 
||
47  | 
lemma AC_func_Pow: "\<exists>f \<in> (Pow(C)-{0}) -> C. \<forall>x \<in> Pow(C)-{0}. f`x \<in> x"
 | 
|
48  | 
apply (rule AC_func0 [THEN bexE])  | 
|
49  | 
apply (rule_tac [2] bexI)  | 
|
| 13269 | 50  | 
prefer 2 apply assumption  | 
51  | 
apply (erule_tac [2] fun_weaken_type, blast+)  | 
|
| 13134 | 52  | 
done  | 
53  | 
||
| 
14171
 
0cab06e3bbd0
Extended the notion of letter and digit, such that now one may use greek,
 
skalberg 
parents: 
13328 
diff
changeset
 | 
54  | 
lemma AC_Pi0: "0 \<notin> A ==> \<exists>f. f \<in> (\<Pi> x \<in> A. x)"  | 
| 13134 | 55  | 
apply (rule AC_Pi)  | 
| 46820 | 56  | 
apply (simp_all add: non_empty_family)  | 
| 13134 | 57  | 
done  | 
58  | 
||
| 484 | 59  | 
end  |