author | huffman |
Wed, 18 Feb 2009 19:32:26 -0800 | |
changeset 29985 | 57975b45ab70 |
parent 27487 | c8a6ce181805 |
child 30235 | 58d147683393 |
permissions | -rw-r--r-- |
22803 | 1 |
(* Title: HOL/Library/AssocList.thy |
19234 | 2 |
ID: $Id$ |
3 |
Author: Norbert Schirmer, Tobias Nipkow, Martin Wildmoser |
|
4 |
*) |
|
5 |
||
6 |
header {* Map operations implemented on association lists*} |
|
7 |
||
8 |
theory AssocList |
|
27487 | 9 |
imports Plain "~~/src/HOL/Map" |
19234 | 10 |
begin |
11 |
||
22740 | 12 |
text {* |
13 |
The operations preserve distinctness of keys and |
|
14 |
function @{term "clearjunk"} distributes over them. Since |
|
15 |
@{term clearjunk} enforces distinctness of keys it can be used |
|
16 |
to establish the invariant, e.g. for inductive proofs. |
|
17 |
*} |
|
19234 | 18 |
|
26152 | 19 |
primrec |
22740 | 20 |
delete :: "'key \<Rightarrow> ('key \<times> 'val) list \<Rightarrow> ('key \<times> 'val) list" |
21 |
where |
|
23373 | 22 |
"delete k [] = []" |
22740 | 23 |
| "delete k (p#ps) = (if fst p = k then delete k ps else p # delete k ps)" |
19323 | 24 |
|
26152 | 25 |
primrec |
22740 | 26 |
update :: "'key \<Rightarrow> 'val \<Rightarrow> ('key \<times> 'val) list \<Rightarrow> ('key \<times> 'val) list" |
27 |
where |
|
28 |
"update k v [] = [(k, v)]" |
|
29 |
| "update k v (p#ps) = (if fst p = k then (k, v) # ps else p # update k v ps)" |
|
19234 | 30 |
|
26152 | 31 |
primrec |
22740 | 32 |
updates :: "'key list \<Rightarrow> 'val list \<Rightarrow> ('key \<times> 'val) list \<Rightarrow> ('key \<times> 'val) list" |
33 |
where |
|
34 |
"updates [] vs ps = ps" |
|
35 |
| "updates (k#ks) vs ps = (case vs |
|
36 |
of [] \<Rightarrow> ps |
|
37 |
| (v#vs') \<Rightarrow> updates ks vs' (update k v ps))" |
|
19323 | 38 |
|
26152 | 39 |
primrec |
22740 | 40 |
merge :: "('key \<times> 'val) list \<Rightarrow> ('key \<times> 'val) list \<Rightarrow> ('key \<times> 'val) list" |
41 |
where |
|
42 |
"merge qs [] = qs" |
|
43 |
| "merge qs (p#ps) = update (fst p) (snd p) (merge qs ps)" |
|
19234 | 44 |
|
45 |
lemma length_delete_le: "length (delete k al) \<le> length al" |
|
46 |
proof (induct al) |
|
22740 | 47 |
case Nil thus ?case by simp |
19234 | 48 |
next |
49 |
case (Cons a al) |
|
50 |
note length_filter_le [of "\<lambda>p. fst p \<noteq> fst a" al] |
|
51 |
also have "\<And>n. n \<le> Suc n" |
|
52 |
by simp |
|
23281 | 53 |
finally have "length [p\<leftarrow>al . fst p \<noteq> fst a] \<le> Suc (length al)" . |
19234 | 54 |
with Cons show ?case |
22740 | 55 |
by auto |
19234 | 56 |
qed |
57 |
||
22740 | 58 |
lemma compose_hint [simp]: |
59 |
"length (delete k al) < Suc (length al)" |
|
19234 | 60 |
proof - |
61 |
note length_delete_le |
|
62 |
also have "\<And>n. n < Suc n" |
|
63 |
by simp |
|
64 |
finally show ?thesis . |
|
65 |
qed |
|
66 |
||
26152 | 67 |
fun |
22740 | 68 |
compose :: "('key \<times> 'a) list \<Rightarrow> ('a \<times> 'b) list \<Rightarrow> ('key \<times> 'b) list" |
69 |
where |
|
70 |
"compose [] ys = []" |
|
71 |
| "compose (x#xs) ys = (case map_of ys (snd x) |
|
72 |
of None \<Rightarrow> compose (delete (fst x) xs) ys |
|
73 |
| Some v \<Rightarrow> (fst x, v) # compose xs ys)" |
|
19234 | 74 |
|
26152 | 75 |
primrec |
22740 | 76 |
restrict :: "'key set \<Rightarrow> ('key \<times> 'val) list \<Rightarrow> ('key \<times> 'val) list" |
77 |
where |
|
23373 | 78 |
"restrict A [] = []" |
22740 | 79 |
| "restrict A (p#ps) = (if fst p \<in> A then p#restrict A ps else restrict A ps)" |
19234 | 80 |
|
26152 | 81 |
primrec |
22740 | 82 |
map_ran :: "('key \<Rightarrow> 'val \<Rightarrow> 'val) \<Rightarrow> ('key \<times> 'val) list \<Rightarrow> ('key \<times> 'val) list" |
83 |
where |
|
23373 | 84 |
"map_ran f [] = []" |
22740 | 85 |
| "map_ran f (p#ps) = (fst p, f (fst p) (snd p)) # map_ran f ps" |
86 |
||
87 |
fun |
|
88 |
clearjunk :: "('key \<times> 'val) list \<Rightarrow> ('key \<times> 'val) list" |
|
89 |
where |
|
23373 | 90 |
"clearjunk [] = []" |
22740 | 91 |
| "clearjunk (p#ps) = p # clearjunk (delete (fst p) ps)" |
92 |
||
93 |
lemmas [simp del] = compose_hint |
|
19234 | 94 |
|
95 |
||
96 |
subsection {* @{const delete} *} |
|
97 |
||
26304 | 98 |
lemma delete_eq: |
22740 | 99 |
"delete k xs = filter (\<lambda>p. fst p \<noteq> k) xs" |
100 |
by (induct xs) auto |
|
19234 | 101 |
|
22740 | 102 |
lemma delete_id [simp]: "k \<notin> fst ` set al \<Longrightarrow> delete k al = al" |
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
20503
diff
changeset
|
103 |
by (induct al) auto |
19234 | 104 |
|
105 |
lemma delete_conv: "map_of (delete k al) k' = ((map_of al)(k := None)) k'" |
|
106 |
by (induct al) auto |
|
107 |
||
108 |
lemma delete_conv': "map_of (delete k al) = ((map_of al)(k := None))" |
|
109 |
by (rule ext) (rule delete_conv) |
|
110 |
||
111 |
lemma delete_idem: "delete k (delete k al) = delete k al" |
|
112 |
by (induct al) auto |
|
113 |
||
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
20503
diff
changeset
|
114 |
lemma map_of_delete [simp]: |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
20503
diff
changeset
|
115 |
"k' \<noteq> k \<Longrightarrow> map_of (delete k al) k' = map_of al k'" |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
20503
diff
changeset
|
116 |
by (induct al) auto |
19234 | 117 |
|
118 |
lemma delete_notin_dom: "k \<notin> fst ` set (delete k al)" |
|
119 |
by (induct al) auto |
|
120 |
||
121 |
lemma dom_delete_subset: "fst ` set (delete k al) \<subseteq> fst ` set al" |
|
122 |
by (induct al) auto |
|
123 |
||
124 |
lemma distinct_delete: |
|
125 |
assumes "distinct (map fst al)" |
|
126 |
shows "distinct (map fst (delete k al))" |
|
23373 | 127 |
using assms |
19234 | 128 |
proof (induct al) |
129 |
case Nil thus ?case by simp |
|
130 |
next |
|
131 |
case (Cons a al) |
|
132 |
from Cons.prems obtain |
|
133 |
a_notin_al: "fst a \<notin> fst ` set al" and |
|
134 |
dist_al: "distinct (map fst al)" |
|
135 |
by auto |
|
136 |
show ?case |
|
137 |
proof (cases "fst a = k") |
|
138 |
case True |
|
23373 | 139 |
with Cons dist_al show ?thesis by simp |
19234 | 140 |
next |
141 |
case False |
|
142 |
from dist_al |
|
143 |
have "distinct (map fst (delete k al))" |
|
144 |
by (rule Cons.hyps) |
|
145 |
moreover from a_notin_al dom_delete_subset [of k al] |
|
146 |
have "fst a \<notin> fst ` set (delete k al)" |
|
147 |
by blast |
|
148 |
ultimately show ?thesis using False by simp |
|
149 |
qed |
|
150 |
qed |
|
151 |
||
152 |
lemma delete_twist: "delete x (delete y al) = delete y (delete x al)" |
|
153 |
by (induct al) auto |
|
154 |
||
155 |
lemma clearjunk_delete: "clearjunk (delete x al) = delete x (clearjunk al)" |
|
156 |
by (induct al rule: clearjunk.induct) (auto simp add: delete_idem delete_twist) |
|
157 |
||
23373 | 158 |
|
19234 | 159 |
subsection {* @{const clearjunk} *} |
160 |
||
161 |
lemma insert_fst_filter: |
|
162 |
"insert a(fst ` {x \<in> set ps. fst x \<noteq> a}) = insert a (fst ` set ps)" |
|
163 |
by (induct ps) auto |
|
164 |
||
165 |
lemma dom_clearjunk: "fst ` set (clearjunk al) = fst ` set al" |
|
26304 | 166 |
by (induct al rule: clearjunk.induct) (simp_all add: insert_fst_filter delete_eq) |
19234 | 167 |
|
168 |
lemma notin_filter_fst: "a \<notin> fst ` {x \<in> set ps. fst x \<noteq> a}" |
|
169 |
by (induct ps) auto |
|
170 |
||
171 |
lemma distinct_clearjunk [simp]: "distinct (map fst (clearjunk al))" |
|
172 |
by (induct al rule: clearjunk.induct) |
|
26304 | 173 |
(simp_all add: dom_clearjunk notin_filter_fst delete_eq) |
19234 | 174 |
|
23281 | 175 |
lemma map_of_filter: "k \<noteq> a \<Longrightarrow> map_of [q\<leftarrow>ps . fst q \<noteq> a] k = map_of ps k" |
19234 | 176 |
by (induct ps) auto |
177 |
||
178 |
lemma map_of_clearjunk: "map_of (clearjunk al) = map_of al" |
|
179 |
apply (rule ext) |
|
180 |
apply (induct al rule: clearjunk.induct) |
|
181 |
apply simp |
|
182 |
apply (simp add: map_of_filter) |
|
183 |
done |
|
184 |
||
185 |
lemma length_clearjunk: "length (clearjunk al) \<le> length al" |
|
186 |
proof (induct al rule: clearjunk.induct [case_names Nil Cons]) |
|
187 |
case Nil thus ?case by simp |
|
188 |
next |
|
22740 | 189 |
case (Cons p ps) |
23281 | 190 |
from Cons have "length (clearjunk [q\<leftarrow>ps . fst q \<noteq> fst p]) \<le> length [q\<leftarrow>ps . fst q \<noteq> fst p]" |
26304 | 191 |
by (simp add: delete_eq) |
19234 | 192 |
also have "\<dots> \<le> length ps" |
193 |
by simp |
|
194 |
finally show ?case |
|
26304 | 195 |
by (simp add: delete_eq) |
19234 | 196 |
qed |
197 |
||
23281 | 198 |
lemma notin_fst_filter: "a \<notin> fst ` set ps \<Longrightarrow> [q\<leftarrow>ps . fst q \<noteq> a] = ps" |
19234 | 199 |
by (induct ps) auto |
200 |
||
201 |
lemma distinct_clearjunk_id [simp]: "distinct (map fst al) \<Longrightarrow> clearjunk al = al" |
|
202 |
by (induct al rule: clearjunk.induct) (auto simp add: notin_fst_filter) |
|
203 |
||
204 |
lemma clearjunk_idem: "clearjunk (clearjunk al) = clearjunk al" |
|
205 |
by simp |
|
206 |
||
23373 | 207 |
|
19234 | 208 |
subsection {* @{const dom} and @{term "ran"} *} |
209 |
||
210 |
lemma dom_map_of': "fst ` set al = dom (map_of al)" |
|
211 |
by (induct al) auto |
|
212 |
||
213 |
lemmas dom_map_of = dom_map_of' [symmetric] |
|
214 |
||
215 |
lemma ran_clearjunk: "ran (map_of (clearjunk al)) = ran (map_of al)" |
|
216 |
by (simp add: map_of_clearjunk) |
|
217 |
||
218 |
lemma ran_distinct: |
|
219 |
assumes dist: "distinct (map fst al)" |
|
220 |
shows "ran (map_of al) = snd ` set al" |
|
221 |
using dist |
|
222 |
proof (induct al) |
|
223 |
case Nil |
|
224 |
thus ?case by simp |
|
225 |
next |
|
226 |
case (Cons a al) |
|
227 |
hence hyp: "snd ` set al = ran (map_of al)" |
|
228 |
by simp |
|
229 |
||
230 |
have "ran (map_of (a # al)) = {snd a} \<union> ran (map_of al)" |
|
231 |
proof |
|
232 |
show "ran (map_of (a # al)) \<subseteq> {snd a} \<union> ran (map_of al)" |
|
233 |
proof |
|
234 |
fix v |
|
235 |
assume "v \<in> ran (map_of (a#al))" |
|
236 |
then obtain x where "map_of (a#al) x = Some v" |
|
237 |
by (auto simp add: ran_def) |
|
238 |
then show "v \<in> {snd a} \<union> ran (map_of al)" |
|
239 |
by (auto split: split_if_asm simp add: ran_def) |
|
240 |
qed |
|
241 |
next |
|
242 |
show "{snd a} \<union> ran (map_of al) \<subseteq> ran (map_of (a # al))" |
|
243 |
proof |
|
244 |
fix v |
|
245 |
assume v_in: "v \<in> {snd a} \<union> ran (map_of al)" |
|
246 |
show "v \<in> ran (map_of (a#al))" |
|
247 |
proof (cases "v=snd a") |
|
248 |
case True |
|
249 |
with v_in show ?thesis |
|
250 |
by (auto simp add: ran_def) |
|
251 |
next |
|
252 |
case False |
|
253 |
with v_in have "v \<in> ran (map_of al)" by auto |
|
254 |
then obtain x where al_x: "map_of al x = Some v" |
|
255 |
by (auto simp add: ran_def) |
|
256 |
from map_of_SomeD [OF this] |
|
257 |
have "x \<in> fst ` set al" |
|
258 |
by (force simp add: image_def) |
|
259 |
with Cons.prems have "x\<noteq>fst a" |
|
260 |
by - (rule ccontr,simp) |
|
261 |
with al_x |
|
262 |
show ?thesis |
|
263 |
by (auto simp add: ran_def) |
|
264 |
qed |
|
265 |
qed |
|
266 |
qed |
|
267 |
with hyp show ?case |
|
268 |
by (simp only:) auto |
|
269 |
qed |
|
270 |
||
271 |
lemma ran_map_of: "ran (map_of al) = snd ` set (clearjunk al)" |
|
272 |
proof - |
|
273 |
have "ran (map_of al) = ran (map_of (clearjunk al))" |
|
274 |
by (simp add: ran_clearjunk) |
|
275 |
also have "\<dots> = snd ` set (clearjunk al)" |
|
276 |
by (simp add: ran_distinct) |
|
277 |
finally show ?thesis . |
|
278 |
qed |
|
279 |
||
23373 | 280 |
|
19234 | 281 |
subsection {* @{const update} *} |
282 |
||
283 |
lemma update_conv: "map_of (update k v al) k' = ((map_of al)(k\<mapsto>v)) k'" |
|
284 |
by (induct al) auto |
|
285 |
||
286 |
lemma update_conv': "map_of (update k v al) = ((map_of al)(k\<mapsto>v))" |
|
287 |
by (rule ext) (rule update_conv) |
|
288 |
||
289 |
lemma dom_update: "fst ` set (update k v al) = {k} \<union> fst ` set al" |
|
290 |
by (induct al) auto |
|
291 |
||
292 |
lemma distinct_update: |
|
293 |
assumes "distinct (map fst al)" |
|
294 |
shows "distinct (map fst (update k v al))" |
|
23373 | 295 |
using assms |
19234 | 296 |
proof (induct al) |
297 |
case Nil thus ?case by simp |
|
298 |
next |
|
299 |
case (Cons a al) |
|
300 |
from Cons.prems obtain |
|
301 |
a_notin_al: "fst a \<notin> fst ` set al" and |
|
302 |
dist_al: "distinct (map fst al)" |
|
303 |
by auto |
|
304 |
show ?case |
|
305 |
proof (cases "fst a = k") |
|
306 |
case True |
|
307 |
from True dist_al a_notin_al show ?thesis by simp |
|
308 |
next |
|
309 |
case False |
|
310 |
from dist_al |
|
311 |
have "distinct (map fst (update k v al))" |
|
312 |
by (rule Cons.hyps) |
|
313 |
with False a_notin_al show ?thesis by (simp add: dom_update) |
|
314 |
qed |
|
315 |
qed |
|
316 |
||
317 |
lemma update_filter: |
|
23281 | 318 |
"a\<noteq>k \<Longrightarrow> update k v [q\<leftarrow>ps . fst q \<noteq> a] = [q\<leftarrow>update k v ps . fst q \<noteq> a]" |
19234 | 319 |
by (induct ps) auto |
320 |
||
321 |
lemma clearjunk_update: "clearjunk (update k v al) = update k v (clearjunk al)" |
|
26304 | 322 |
by (induct al rule: clearjunk.induct) (auto simp add: update_filter delete_eq) |
19234 | 323 |
|
324 |
lemma update_triv: "map_of al k = Some v \<Longrightarrow> update k v al = al" |
|
325 |
by (induct al) auto |
|
326 |
||
327 |
lemma update_nonempty [simp]: "update k v al \<noteq> []" |
|
328 |
by (induct al) auto |
|
329 |
||
330 |
lemma update_eqD: "update k v al = update k v' al' \<Longrightarrow> v=v'" |
|
20503 | 331 |
proof (induct al arbitrary: al') |
19234 | 332 |
case Nil thus ?case |
333 |
by (cases al') (auto split: split_if_asm) |
|
334 |
next |
|
335 |
case Cons thus ?case |
|
336 |
by (cases al') (auto split: split_if_asm) |
|
337 |
qed |
|
338 |
||
339 |
lemma update_last [simp]: "update k v (update k v' al) = update k v al" |
|
340 |
by (induct al) auto |
|
341 |
||
342 |
text {* Note that the lists are not necessarily the same: |
|
343 |
@{term "update k v (update k' v' []) = [(k',v'),(k,v)]"} and |
|
344 |
@{term "update k' v' (update k v []) = [(k,v),(k',v')]"}.*} |
|
345 |
lemma update_swap: "k\<noteq>k' |
|
346 |
\<Longrightarrow> map_of (update k v (update k' v' al)) = map_of (update k' v' (update k v al))" |
|
347 |
by (auto simp add: update_conv' intro: ext) |
|
348 |
||
349 |
lemma update_Some_unfold: |
|
350 |
"(map_of (update k v al) x = Some y) = |
|
351 |
(x = k \<and> v = y \<or> x \<noteq> k \<and> map_of al x = Some y)" |
|
352 |
by (simp add: update_conv' map_upd_Some_unfold) |
|
353 |
||
354 |
lemma image_update[simp]: "x \<notin> A \<Longrightarrow> map_of (update x y al) ` A = map_of al ` A" |
|
355 |
by (simp add: update_conv' image_map_upd) |
|
356 |
||
357 |
||
358 |
subsection {* @{const updates} *} |
|
359 |
||
360 |
lemma updates_conv: "map_of (updates ks vs al) k = ((map_of al)(ks[\<mapsto>]vs)) k" |
|
20503 | 361 |
proof (induct ks arbitrary: vs al) |
19234 | 362 |
case Nil |
363 |
thus ?case by simp |
|
364 |
next |
|
365 |
case (Cons k ks) |
|
366 |
show ?case |
|
367 |
proof (cases vs) |
|
368 |
case Nil |
|
369 |
with Cons show ?thesis by simp |
|
370 |
next |
|
371 |
case (Cons k ks') |
|
372 |
with Cons.hyps show ?thesis |
|
373 |
by (simp add: update_conv fun_upd_def) |
|
374 |
qed |
|
375 |
qed |
|
376 |
||
377 |
lemma updates_conv': "map_of (updates ks vs al) = ((map_of al)(ks[\<mapsto>]vs))" |
|
378 |
by (rule ext) (rule updates_conv) |
|
379 |
||
380 |
lemma distinct_updates: |
|
381 |
assumes "distinct (map fst al)" |
|
382 |
shows "distinct (map fst (updates ks vs al))" |
|
23373 | 383 |
using assms |
22740 | 384 |
by (induct ks arbitrary: vs al) |
385 |
(auto simp add: distinct_update split: list.splits) |
|
19234 | 386 |
|
387 |
lemma clearjunk_updates: |
|
388 |
"clearjunk (updates ks vs al) = updates ks vs (clearjunk al)" |
|
20503 | 389 |
by (induct ks arbitrary: vs al) (auto simp add: clearjunk_update split: list.splits) |
19234 | 390 |
|
391 |
lemma updates_empty[simp]: "updates vs [] al = al" |
|
392 |
by (induct vs) auto |
|
393 |
||
394 |
lemma updates_Cons: "updates (k#ks) (v#vs) al = updates ks vs (update k v al)" |
|
395 |
by simp |
|
396 |
||
397 |
lemma updates_append1[simp]: "size ks < size vs \<Longrightarrow> |
|
398 |
updates (ks@[k]) vs al = update k (vs!size ks) (updates ks vs al)" |
|
20503 | 399 |
by (induct ks arbitrary: vs al) (auto split: list.splits) |
19234 | 400 |
|
401 |
lemma updates_list_update_drop[simp]: |
|
402 |
"\<lbrakk>size ks \<le> i; i < size vs\<rbrakk> |
|
403 |
\<Longrightarrow> updates ks (vs[i:=v]) al = updates ks vs al" |
|
20503 | 404 |
by (induct ks arbitrary: al vs i) (auto split:list.splits nat.splits) |
19234 | 405 |
|
406 |
lemma update_updates_conv_if: " |
|
407 |
map_of (updates xs ys (update x y al)) = |
|
408 |
map_of (if x \<in> set(take (length ys) xs) then updates xs ys al |
|
409 |
else (update x y (updates xs ys al)))" |
|
410 |
by (simp add: updates_conv' update_conv' map_upd_upds_conv_if) |
|
411 |
||
412 |
lemma updates_twist [simp]: |
|
413 |
"k \<notin> set ks \<Longrightarrow> |
|
414 |
map_of (updates ks vs (update k v al)) = map_of (update k v (updates ks vs al))" |
|
415 |
by (simp add: updates_conv' update_conv' map_upds_twist) |
|
416 |
||
417 |
lemma updates_apply_notin[simp]: |
|
418 |
"k \<notin> set ks ==> map_of (updates ks vs al) k = map_of al k" |
|
419 |
by (simp add: updates_conv) |
|
420 |
||
421 |
lemma updates_append_drop[simp]: |
|
422 |
"size xs = size ys \<Longrightarrow> updates (xs@zs) ys al = updates xs ys al" |
|
20503 | 423 |
by (induct xs arbitrary: ys al) (auto split: list.splits) |
19234 | 424 |
|
425 |
lemma updates_append2_drop[simp]: |
|
426 |
"size xs = size ys \<Longrightarrow> updates xs (ys@zs) al = updates xs ys al" |
|
20503 | 427 |
by (induct xs arbitrary: ys al) (auto split: list.splits) |
19234 | 428 |
|
23373 | 429 |
|
19333 | 430 |
subsection {* @{const map_ran} *} |
19234 | 431 |
|
19333 | 432 |
lemma map_ran_conv: "map_of (map_ran f al) k = option_map (f k) (map_of al k)" |
19234 | 433 |
by (induct al) auto |
434 |
||
19333 | 435 |
lemma dom_map_ran: "fst ` set (map_ran f al) = fst ` set al" |
19234 | 436 |
by (induct al) auto |
437 |
||
19333 | 438 |
lemma distinct_map_ran: "distinct (map fst al) \<Longrightarrow> distinct (map fst (map_ran f al))" |
439 |
by (induct al) (auto simp add: dom_map_ran) |
|
19234 | 440 |
|
23281 | 441 |
lemma map_ran_filter: "map_ran f [p\<leftarrow>ps. fst p \<noteq> a] = [p\<leftarrow>map_ran f ps. fst p \<noteq> a]" |
19234 | 442 |
by (induct ps) auto |
443 |
||
19333 | 444 |
lemma clearjunk_map_ran: "clearjunk (map_ran f al) = map_ran f (clearjunk al)" |
26304 | 445 |
by (induct al rule: clearjunk.induct) (auto simp add: delete_eq map_ran_filter) |
19234 | 446 |
|
23373 | 447 |
|
19234 | 448 |
subsection {* @{const merge} *} |
449 |
||
450 |
lemma dom_merge: "fst ` set (merge xs ys) = fst ` set xs \<union> fst ` set ys" |
|
20503 | 451 |
by (induct ys arbitrary: xs) (auto simp add: dom_update) |
19234 | 452 |
|
453 |
lemma distinct_merge: |
|
454 |
assumes "distinct (map fst xs)" |
|
455 |
shows "distinct (map fst (merge xs ys))" |
|
23373 | 456 |
using assms |
20503 | 457 |
by (induct ys arbitrary: xs) (auto simp add: dom_merge distinct_update) |
19234 | 458 |
|
459 |
lemma clearjunk_merge: |
|
460 |
"clearjunk (merge xs ys) = merge (clearjunk xs) ys" |
|
461 |
by (induct ys) (auto simp add: clearjunk_update) |
|
462 |
||
463 |
lemma merge_conv: "map_of (merge xs ys) k = (map_of xs ++ map_of ys) k" |
|
464 |
proof (induct ys) |
|
465 |
case Nil thus ?case by simp |
|
466 |
next |
|
467 |
case (Cons y ys) |
|
468 |
show ?case |
|
469 |
proof (cases "k = fst y") |
|
470 |
case True |
|
471 |
from True show ?thesis |
|
472 |
by (simp add: update_conv) |
|
473 |
next |
|
474 |
case False |
|
475 |
from False show ?thesis |
|
476 |
by (auto simp add: update_conv Cons.hyps map_add_def) |
|
477 |
qed |
|
478 |
qed |
|
479 |
||
480 |
lemma merge_conv': "map_of (merge xs ys) = (map_of xs ++ map_of ys)" |
|
481 |
by (rule ext) (rule merge_conv) |
|
482 |
||
483 |
lemma merge_emty: "map_of (merge [] ys) = map_of ys" |
|
484 |
by (simp add: merge_conv') |
|
485 |
||
486 |
lemma merge_assoc[simp]: "map_of (merge m1 (merge m2 m3)) = |
|
487 |
map_of (merge (merge m1 m2) m3)" |
|
488 |
by (simp add: merge_conv') |
|
489 |
||
490 |
lemma merge_Some_iff: |
|
491 |
"(map_of (merge m n) k = Some x) = |
|
492 |
(map_of n k = Some x \<or> map_of n k = None \<and> map_of m k = Some x)" |
|
493 |
by (simp add: merge_conv' map_add_Some_iff) |
|
494 |
||
495 |
lemmas merge_SomeD = merge_Some_iff [THEN iffD1, standard] |
|
496 |
declare merge_SomeD [dest!] |
|
497 |
||
498 |
lemma merge_find_right[simp]: "map_of n k = Some v \<Longrightarrow> map_of (merge m n) k = Some v" |
|
499 |
by (simp add: merge_conv') |
|
500 |
||
501 |
lemma merge_None [iff]: |
|
502 |
"(map_of (merge m n) k = None) = (map_of n k = None \<and> map_of m k = None)" |
|
503 |
by (simp add: merge_conv') |
|
504 |
||
505 |
lemma merge_upd[simp]: |
|
506 |
"map_of (merge m (update k v n)) = map_of (update k v (merge m n))" |
|
507 |
by (simp add: update_conv' merge_conv') |
|
508 |
||
509 |
lemma merge_updatess[simp]: |
|
510 |
"map_of (merge m (updates xs ys n)) = map_of (updates xs ys (merge m n))" |
|
511 |
by (simp add: updates_conv' merge_conv') |
|
512 |
||
513 |
lemma merge_append: "map_of (xs@ys) = map_of (merge ys xs)" |
|
514 |
by (simp add: merge_conv') |
|
515 |
||
23373 | 516 |
|
19234 | 517 |
subsection {* @{const compose} *} |
518 |
||
519 |
lemma compose_first_None [simp]: |
|
520 |
assumes "map_of xs k = None" |
|
521 |
shows "map_of (compose xs ys) k = None" |
|
23373 | 522 |
using assms by (induct xs ys rule: compose.induct) |
22916 | 523 |
(auto split: option.splits split_if_asm) |
19234 | 524 |
|
525 |
lemma compose_conv: |
|
526 |
shows "map_of (compose xs ys) k = (map_of ys \<circ>\<^sub>m map_of xs) k" |
|
22916 | 527 |
proof (induct xs ys rule: compose.induct) |
528 |
case 1 then show ?case by simp |
|
19234 | 529 |
next |
22916 | 530 |
case (2 x xs ys) show ?case |
19234 | 531 |
proof (cases "map_of ys (snd x)") |
22916 | 532 |
case None with 2 |
19234 | 533 |
have hyp: "map_of (compose (delete (fst x) xs) ys) k = |
534 |
(map_of ys \<circ>\<^sub>m map_of (delete (fst x) xs)) k" |
|
535 |
by simp |
|
536 |
show ?thesis |
|
537 |
proof (cases "fst x = k") |
|
538 |
case True |
|
539 |
from True delete_notin_dom [of k xs] |
|
540 |
have "map_of (delete (fst x) xs) k = None" |
|
541 |
by (simp add: map_of_eq_None_iff) |
|
542 |
with hyp show ?thesis |
|
543 |
using True None |
|
544 |
by simp |
|
545 |
next |
|
546 |
case False |
|
547 |
from False have "map_of (delete (fst x) xs) k = map_of xs k" |
|
548 |
by simp |
|
549 |
with hyp show ?thesis |
|
550 |
using False None |
|
551 |
by (simp add: map_comp_def) |
|
552 |
qed |
|
553 |
next |
|
554 |
case (Some v) |
|
22916 | 555 |
with 2 |
19234 | 556 |
have "map_of (compose xs ys) k = (map_of ys \<circ>\<^sub>m map_of xs) k" |
557 |
by simp |
|
558 |
with Some show ?thesis |
|
559 |
by (auto simp add: map_comp_def) |
|
560 |
qed |
|
561 |
qed |
|
562 |
||
563 |
lemma compose_conv': |
|
564 |
shows "map_of (compose xs ys) = (map_of ys \<circ>\<^sub>m map_of xs)" |
|
565 |
by (rule ext) (rule compose_conv) |
|
566 |
||
567 |
lemma compose_first_Some [simp]: |
|
568 |
assumes "map_of xs k = Some v" |
|
569 |
shows "map_of (compose xs ys) k = map_of ys v" |
|
23373 | 570 |
using assms by (simp add: compose_conv) |
19234 | 571 |
|
572 |
lemma dom_compose: "fst ` set (compose xs ys) \<subseteq> fst ` set xs" |
|
22916 | 573 |
proof (induct xs ys rule: compose.induct) |
574 |
case 1 thus ?case by simp |
|
19234 | 575 |
next |
22916 | 576 |
case (2 x xs ys) |
19234 | 577 |
show ?case |
578 |
proof (cases "map_of ys (snd x)") |
|
579 |
case None |
|
22916 | 580 |
with "2.hyps" |
19234 | 581 |
have "fst ` set (compose (delete (fst x) xs) ys) \<subseteq> fst ` set (delete (fst x) xs)" |
582 |
by simp |
|
583 |
also |
|
584 |
have "\<dots> \<subseteq> fst ` set xs" |
|
585 |
by (rule dom_delete_subset) |
|
586 |
finally show ?thesis |
|
587 |
using None |
|
588 |
by auto |
|
589 |
next |
|
590 |
case (Some v) |
|
22916 | 591 |
with "2.hyps" |
19234 | 592 |
have "fst ` set (compose xs ys) \<subseteq> fst ` set xs" |
593 |
by simp |
|
594 |
with Some show ?thesis |
|
595 |
by auto |
|
596 |
qed |
|
597 |
qed |
|
598 |
||
599 |
lemma distinct_compose: |
|
600 |
assumes "distinct (map fst xs)" |
|
601 |
shows "distinct (map fst (compose xs ys))" |
|
23373 | 602 |
using assms |
22916 | 603 |
proof (induct xs ys rule: compose.induct) |
604 |
case 1 thus ?case by simp |
|
19234 | 605 |
next |
22916 | 606 |
case (2 x xs ys) |
19234 | 607 |
show ?case |
608 |
proof (cases "map_of ys (snd x)") |
|
609 |
case None |
|
22916 | 610 |
with 2 show ?thesis by simp |
19234 | 611 |
next |
612 |
case (Some v) |
|
22916 | 613 |
with 2 dom_compose [of xs ys] show ?thesis |
19234 | 614 |
by (auto) |
615 |
qed |
|
616 |
qed |
|
617 |
||
618 |
lemma compose_delete_twist: "(compose (delete k xs) ys) = delete k (compose xs ys)" |
|
22916 | 619 |
proof (induct xs ys rule: compose.induct) |
620 |
case 1 thus ?case by simp |
|
19234 | 621 |
next |
22916 | 622 |
case (2 x xs ys) |
19234 | 623 |
show ?case |
624 |
proof (cases "map_of ys (snd x)") |
|
625 |
case None |
|
22916 | 626 |
with 2 have |
19234 | 627 |
hyp: "compose (delete k (delete (fst x) xs)) ys = |
628 |
delete k (compose (delete (fst x) xs) ys)" |
|
629 |
by simp |
|
630 |
show ?thesis |
|
631 |
proof (cases "fst x = k") |
|
632 |
case True |
|
633 |
with None hyp |
|
634 |
show ?thesis |
|
635 |
by (simp add: delete_idem) |
|
636 |
next |
|
637 |
case False |
|
638 |
from None False hyp |
|
639 |
show ?thesis |
|
640 |
by (simp add: delete_twist) |
|
641 |
qed |
|
642 |
next |
|
643 |
case (Some v) |
|
22916 | 644 |
with 2 have hyp: "compose (delete k xs) ys = delete k (compose xs ys)" by simp |
19234 | 645 |
with Some show ?thesis |
646 |
by simp |
|
647 |
qed |
|
648 |
qed |
|
649 |
||
650 |
lemma compose_clearjunk: "compose xs (clearjunk ys) = compose xs ys" |
|
22916 | 651 |
by (induct xs ys rule: compose.induct) |
19234 | 652 |
(auto simp add: map_of_clearjunk split: option.splits) |
653 |
||
654 |
lemma clearjunk_compose: "clearjunk (compose xs ys) = compose (clearjunk xs) ys" |
|
655 |
by (induct xs rule: clearjunk.induct) |
|
656 |
(auto split: option.splits simp add: clearjunk_delete delete_idem |
|
657 |
compose_delete_twist) |
|
658 |
||
659 |
lemma compose_empty [simp]: |
|
660 |
"compose xs [] = []" |
|
22916 | 661 |
by (induct xs) (auto simp add: compose_delete_twist) |
19234 | 662 |
|
663 |
lemma compose_Some_iff: |
|
664 |
"(map_of (compose xs ys) k = Some v) = |
|
665 |
(\<exists>k'. map_of xs k = Some k' \<and> map_of ys k' = Some v)" |
|
666 |
by (simp add: compose_conv map_comp_Some_iff) |
|
667 |
||
668 |
lemma map_comp_None_iff: |
|
669 |
"(map_of (compose xs ys) k = None) = |
|
670 |
(map_of xs k = None \<or> (\<exists>k'. map_of xs k = Some k' \<and> map_of ys k' = None)) " |
|
671 |
by (simp add: compose_conv map_comp_None_iff) |
|
672 |
||
673 |
||
674 |
subsection {* @{const restrict} *} |
|
675 |
||
26304 | 676 |
lemma restrict_eq: |
22740 | 677 |
"restrict A = filter (\<lambda>p. fst p \<in> A)" |
678 |
proof |
|
679 |
fix xs |
|
680 |
show "restrict A xs = filter (\<lambda>p. fst p \<in> A) xs" |
|
681 |
by (induct xs) auto |
|
682 |
qed |
|
19234 | 683 |
|
684 |
lemma distinct_restr: "distinct (map fst al) \<Longrightarrow> distinct (map fst (restrict A al))" |
|
26304 | 685 |
by (induct al) (auto simp add: restrict_eq) |
19234 | 686 |
|
687 |
lemma restr_conv: "map_of (restrict A al) k = ((map_of al)|` A) k" |
|
688 |
apply (induct al) |
|
26304 | 689 |
apply (simp add: restrict_eq) |
19234 | 690 |
apply (cases "k\<in>A") |
26304 | 691 |
apply (auto simp add: restrict_eq) |
19234 | 692 |
done |
693 |
||
694 |
lemma restr_conv': "map_of (restrict A al) = ((map_of al)|` A)" |
|
695 |
by (rule ext) (rule restr_conv) |
|
696 |
||
697 |
lemma restr_empty [simp]: |
|
698 |
"restrict {} al = []" |
|
699 |
"restrict A [] = []" |
|
26304 | 700 |
by (induct al) (auto simp add: restrict_eq) |
19234 | 701 |
|
702 |
lemma restr_in [simp]: "x \<in> A \<Longrightarrow> map_of (restrict A al) x = map_of al x" |
|
703 |
by (simp add: restr_conv') |
|
704 |
||
705 |
lemma restr_out [simp]: "x \<notin> A \<Longrightarrow> map_of (restrict A al) x = None" |
|
706 |
by (simp add: restr_conv') |
|
707 |
||
708 |
lemma dom_restr [simp]: "fst ` set (restrict A al) = fst ` set al \<inter> A" |
|
26304 | 709 |
by (induct al) (auto simp add: restrict_eq) |
19234 | 710 |
|
711 |
lemma restr_upd_same [simp]: "restrict (-{x}) (update x y al) = restrict (-{x}) al" |
|
26304 | 712 |
by (induct al) (auto simp add: restrict_eq) |
19234 | 713 |
|
714 |
lemma restr_restr [simp]: "restrict A (restrict B al) = restrict (A\<inter>B) al" |
|
26304 | 715 |
by (induct al) (auto simp add: restrict_eq) |
19234 | 716 |
|
717 |
lemma restr_update[simp]: |
|
718 |
"map_of (restrict D (update x y al)) = |
|
719 |
map_of ((if x \<in> D then (update x y (restrict (D-{x}) al)) else restrict D al))" |
|
720 |
by (simp add: restr_conv' update_conv') |
|
721 |
||
722 |
lemma restr_delete [simp]: |
|
723 |
"(delete x (restrict D al)) = |
|
724 |
(if x\<in> D then restrict (D - {x}) al else restrict D al)" |
|
725 |
proof (induct al) |
|
726 |
case Nil thus ?case by simp |
|
727 |
next |
|
728 |
case (Cons a al) |
|
729 |
show ?case |
|
730 |
proof (cases "x \<in> D") |
|
731 |
case True |
|
732 |
note x_D = this |
|
733 |
with Cons have hyp: "delete x (restrict D al) = restrict (D - {x}) al" |
|
734 |
by simp |
|
735 |
show ?thesis |
|
736 |
proof (cases "fst a = x") |
|
737 |
case True |
|
738 |
from Cons.hyps |
|
739 |
show ?thesis |
|
740 |
using x_D True |
|
741 |
by simp |
|
742 |
next |
|
743 |
case False |
|
744 |
note not_fst_a_x = this |
|
745 |
show ?thesis |
|
746 |
proof (cases "fst a \<in> D") |
|
747 |
case True |
|
748 |
with not_fst_a_x |
|
749 |
have "delete x (restrict D (a#al)) = a#(delete x (restrict D al))" |
|
26304 | 750 |
by (cases a) (simp add: restrict_eq) |
19234 | 751 |
also from not_fst_a_x True hyp have "\<dots> = restrict (D - {x}) (a # al)" |
26304 | 752 |
by (cases a) (simp add: restrict_eq) |
19234 | 753 |
finally show ?thesis |
754 |
using x_D by simp |
|
755 |
next |
|
756 |
case False |
|
757 |
hence "delete x (restrict D (a#al)) = delete x (restrict D al)" |
|
26304 | 758 |
by (cases a) (simp add: restrict_eq) |
19234 | 759 |
moreover from False not_fst_a_x |
760 |
have "restrict (D - {x}) (a # al) = restrict (D - {x}) al" |
|
26304 | 761 |
by (cases a) (simp add: restrict_eq) |
19234 | 762 |
ultimately |
763 |
show ?thesis using x_D hyp by simp |
|
764 |
qed |
|
765 |
qed |
|
766 |
next |
|
767 |
case False |
|
768 |
from False Cons show ?thesis |
|
769 |
by simp |
|
770 |
qed |
|
771 |
qed |
|
772 |
||
773 |
lemma update_restr: |
|
774 |
"map_of (update x y (restrict D al)) = map_of (update x y (restrict (D-{x}) al))" |
|
775 |
by (simp add: update_conv' restr_conv') (rule fun_upd_restrict) |
|
776 |
||
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
20503
diff
changeset
|
777 |
lemma upate_restr_conv [simp]: |
19234 | 778 |
"x \<in> D \<Longrightarrow> |
779 |
map_of (update x y (restrict D al)) = map_of (update x y (restrict (D-{x}) al))" |
|
780 |
by (simp add: update_conv' restr_conv') |
|
781 |
||
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
20503
diff
changeset
|
782 |
lemma restr_updates [simp]: " |
19234 | 783 |
\<lbrakk> length xs = length ys; set xs \<subseteq> D \<rbrakk> |
784 |
\<Longrightarrow> map_of (restrict D (updates xs ys al)) = |
|
785 |
map_of (updates xs ys (restrict (D - set xs) al))" |
|
786 |
by (simp add: updates_conv' restr_conv') |
|
787 |
||
788 |
lemma restr_delete_twist: "(restrict A (delete a ps)) = delete a (restrict A ps)" |
|
789 |
by (induct ps) auto |
|
790 |
||
791 |
lemma clearjunk_restrict: |
|
792 |
"clearjunk (restrict A al) = restrict A (clearjunk al)" |
|
793 |
by (induct al rule: clearjunk.induct) (auto simp add: restr_delete_twist) |
|
794 |
||
795 |
end |