| author | wenzelm | 
| Sat, 17 May 2008 23:53:19 +0200 | |
| changeset 26937 | 57e7d045774a | 
| parent 20217 | 25b068a99d2b | 
| child 35416 | d8d7d1b785af | 
| permissions | -rw-r--r-- | 
| 13508 | 1 | (****************************************************************************** | 
| 2 | lemmas on guarded messages for public protocols | |
| 3 | ||
| 4 | date: march 2002 | |
| 5 | author: Frederic Blanqui | |
| 6 | email: blanqui@lri.fr | |
| 7 | webpage: http://www.lri.fr/~blanqui/ | |
| 8 | ||
| 9 | University of Cambridge, Computer Laboratory | |
| 10 | William Gates Building, JJ Thomson Avenue | |
| 11 | Cambridge CB3 0FD, United Kingdom | |
| 12 | ******************************************************************************) | |
| 13 | ||
| 16417 | 14 | theory Guard_Public imports Guard Public Extensions begin | 
| 13508 | 15 | |
| 16 | subsection{*Extensions to Theory @{text Public}*}
 | |
| 17 | ||
| 18 | declare initState.simps [simp del] | |
| 19 | ||
| 20 | subsubsection{*signature*}
 | |
| 21 | ||
| 22 | constdefs sign :: "agent => msg => msg" | |
| 23 | "sign A X == {|Agent A, X, Crypt (priK A) (Hash X)|}"
 | |
| 24 | ||
| 25 | lemma sign_inj [iff]: "(sign A X = sign A' X') = (A=A' & X=X')" | |
| 26 | by (auto simp: sign_def) | |
| 27 | ||
| 28 | subsubsection{*agent associated to a key*}
 | |
| 29 | ||
| 30 | constdefs agt :: "key => agent" | |
| 31 | "agt K == @A. K = priK A | K = pubK A" | |
| 32 | ||
| 33 | lemma agt_priK [simp]: "agt (priK A) = A" | |
| 34 | by (simp add: agt_def) | |
| 35 | ||
| 36 | lemma agt_pubK [simp]: "agt (pubK A) = A" | |
| 37 | by (simp add: agt_def) | |
| 38 | ||
| 39 | subsubsection{*basic facts about @{term initState}*}
 | |
| 40 | ||
| 41 | lemma no_Crypt_in_parts_init [simp]: "Crypt K X ~:parts (initState A)" | |
| 42 | by (cases A, auto simp: initState.simps) | |
| 43 | ||
| 44 | lemma no_Crypt_in_analz_init [simp]: "Crypt K X ~:analz (initState A)" | |
| 45 | by auto | |
| 46 | ||
| 47 | lemma no_priK_in_analz_init [simp]: "A ~:bad | |
| 48 | ==> Key (priK A) ~:analz (initState Spy)" | |
| 49 | by (auto simp: initState.simps) | |
| 50 | ||
| 51 | lemma priK_notin_initState_Friend [simp]: "A ~= Friend C | |
| 52 | ==> Key (priK A) ~: parts (initState (Friend C))" | |
| 53 | by (auto simp: initState.simps) | |
| 54 | ||
| 55 | lemma keyset_init [iff]: "keyset (initState A)" | |
| 56 | by (cases A, auto simp: keyset_def initState.simps) | |
| 57 | ||
| 58 | subsubsection{*sets of private keys*}
 | |
| 59 | ||
| 60 | constdefs priK_set :: "key set => bool" | |
| 61 | "priK_set Ks == ALL K. K:Ks --> (EX A. K = priK A)" | |
| 62 | ||
| 63 | lemma in_priK_set: "[| priK_set Ks; K:Ks |] ==> EX A. K = priK A" | |
| 64 | by (simp add: priK_set_def) | |
| 65 | ||
| 66 | lemma priK_set1 [iff]: "priK_set {priK A}"
 | |
| 67 | by (simp add: priK_set_def) | |
| 68 | ||
| 69 | lemma priK_set2 [iff]: "priK_set {priK A, priK B}"
 | |
| 70 | by (simp add: priK_set_def) | |
| 71 | ||
| 72 | subsubsection{*sets of good keys*}
 | |
| 73 | ||
| 74 | constdefs good :: "key set => bool" | |
| 75 | "good Ks == ALL K. K:Ks --> agt K ~:bad" | |
| 76 | ||
| 77 | lemma in_good: "[| good Ks; K:Ks |] ==> agt K ~:bad" | |
| 78 | by (simp add: good_def) | |
| 79 | ||
| 80 | lemma good1 [simp]: "A ~:bad ==> good {priK A}"
 | |
| 81 | by (simp add: good_def) | |
| 82 | ||
| 83 | lemma good2 [simp]: "[| A ~:bad; B ~:bad |] ==> good {priK A, priK B}"
 | |
| 84 | by (simp add: good_def) | |
| 85 | ||
| 86 | subsubsection{*greatest nonce used in a trace, 0 if there is no nonce*}
 | |
| 87 | ||
| 88 | consts greatest :: "event list => nat" | |
| 89 | ||
| 90 | recdef greatest "measure size" | |
| 91 | "greatest [] = 0" | |
| 92 | "greatest (ev # evs) = max (greatest_msg (msg ev)) (greatest evs)" | |
| 93 | ||
| 94 | lemma greatest_is_greatest: "Nonce n:used evs ==> n <= greatest evs" | |
| 95 | apply (induct evs, auto simp: initState.simps) | |
| 96 | apply (drule used_sub_parts_used, safe) | |
| 97 | apply (drule greatest_msg_is_greatest, arith) | |
| 20217 
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
 webertj parents: 
16417diff
changeset | 98 | by simp | 
| 13508 | 99 | |
| 100 | subsubsection{*function giving a new nonce*}
 | |
| 101 | ||
| 102 | constdefs new :: "event list => nat" | |
| 103 | "new evs == Suc (greatest evs)" | |
| 104 | ||
| 105 | lemma new_isnt_used [iff]: "Nonce (new evs) ~:used evs" | |
| 106 | by (clarify, drule greatest_is_greatest, auto simp: new_def) | |
| 107 | ||
| 108 | subsection{*Proofs About Guarded Messages*}
 | |
| 109 | ||
| 110 | subsubsection{*small hack necessary because priK is defined as the inverse of pubK*}
 | |
| 111 | ||
| 112 | lemma pubK_is_invKey_priK: "pubK A = invKey (priK A)" | |
| 113 | by simp | |
| 114 | ||
| 115 | lemmas pubK_is_invKey_priK_substI = pubK_is_invKey_priK [THEN ssubst] | |
| 116 | ||
| 117 | lemmas invKey_invKey_substI = invKey [THEN ssubst] | |
| 118 | ||
| 119 | lemma "Nonce n:parts {X} ==> Crypt (pubK A) X:guard n {priK A}"
 | |
| 120 | apply (rule pubK_is_invKey_priK_substI, rule invKey_invKey_substI) | |
| 121 | by (rule Guard_Nonce, simp+) | |
| 122 | ||
| 123 | subsubsection{*guardedness results*}
 | |
| 124 | ||
| 125 | lemma sign_guard [intro]: "X:guard n Ks ==> sign A X:guard n Ks" | |
| 126 | by (auto simp: sign_def) | |
| 127 | ||
| 128 | lemma Guard_init [iff]: "Guard n Ks (initState B)" | |
| 129 | by (induct B, auto simp: Guard_def initState.simps) | |
| 130 | ||
| 131 | lemma Guard_knows_max': "Guard n Ks (knows_max' C evs) | |
| 132 | ==> Guard n Ks (knows_max C evs)" | |
| 133 | by (simp add: knows_max_def) | |
| 134 | ||
| 135 | lemma Nonce_not_used_Guard_spies [dest]: "Nonce n ~:used evs | |
| 136 | ==> Guard n Ks (spies evs)" | |
| 137 | by (auto simp: Guard_def dest: not_used_not_known parts_sub) | |
| 138 | ||
| 139 | lemma Nonce_not_used_Guard [dest]: "[| evs:p; Nonce n ~:used evs; | |
| 140 | Gets_correct p; one_step p |] ==> Guard n Ks (knows (Friend C) evs)" | |
| 141 | by (auto simp: Guard_def dest: known_used parts_trans) | |
| 142 | ||
| 143 | lemma Nonce_not_used_Guard_max [dest]: "[| evs:p; Nonce n ~:used evs; | |
| 144 | Gets_correct p; one_step p |] ==> Guard n Ks (knows_max (Friend C) evs)" | |
| 145 | by (auto simp: Guard_def dest: known_max_used parts_trans) | |
| 146 | ||
| 147 | lemma Nonce_not_used_Guard_max' [dest]: "[| evs:p; Nonce n ~:used evs; | |
| 148 | Gets_correct p; one_step p |] ==> Guard n Ks (knows_max' (Friend C) evs)" | |
| 149 | apply (rule_tac H="knows_max (Friend C) evs" in Guard_mono) | |
| 150 | by (auto simp: knows_max_def) | |
| 151 | ||
| 152 | subsubsection{*regular protocols*}
 | |
| 153 | ||
| 154 | constdefs regular :: "event list set => bool" | |
| 155 | "regular p == ALL evs A. evs:p --> (Key (priK A):parts (spies evs)) = (A:bad)" | |
| 156 | ||
| 157 | lemma priK_parts_iff_bad [simp]: "[| evs:p; regular p |] ==> | |
| 158 | (Key (priK A):parts (spies evs)) = (A:bad)" | |
| 159 | by (auto simp: regular_def) | |
| 160 | ||
| 161 | lemma priK_analz_iff_bad [simp]: "[| evs:p; regular p |] ==> | |
| 162 | (Key (priK A):analz (spies evs)) = (A:bad)" | |
| 163 | by auto | |
| 164 | ||
| 165 | lemma Guard_Nonce_analz: "[| Guard n Ks (spies evs); evs:p; | |
| 166 | priK_set Ks; good Ks; regular p |] ==> Nonce n ~:analz (spies evs)" | |
| 167 | apply (clarify, simp only: knows_decomp) | |
| 168 | apply (drule Guard_invKey_keyset, simp+, safe) | |
| 169 | apply (drule in_good, simp) | |
| 170 | apply (drule in_priK_set, simp+, clarify) | |
| 171 | apply (frule_tac A=A in priK_analz_iff_bad) | |
| 172 | by (simp add: knows_decomp)+ | |
| 173 | ||
| 20217 
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
 webertj parents: 
16417diff
changeset | 174 | end |