| author | wenzelm | 
| Mon, 17 May 1999 21:36:34 +0200 | |
| changeset 6667 | 58b9785f8534 | 
| parent 4833 | 2e53109d4bc8 | 
| child 9245 | 428385c4bc50 | 
| permissions | -rw-r--r-- | 
| 1461 | 1  | 
(* Title: HOLCF/sprod0.thy  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
2  | 
ID: $Id$  | 
| 1461 | 3  | 
Author: Franz Regensburger  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
4  | 
Copyright 1993 Technische Universitaet Muenchen  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
5  | 
|
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
6  | 
Lemmas for theory sprod0.thy  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
7  | 
*)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
8  | 
|
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
9  | 
open Sprod0;  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
10  | 
|
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
11  | 
(* ------------------------------------------------------------------------ *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
12  | 
(* A non-emptyness result for Sprod *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
13  | 
(* ------------------------------------------------------------------------ *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
14  | 
|
| 892 | 15  | 
qed_goalw "SprodI" Sprod0.thy [Sprod_def]  | 
| 1461 | 16  | 
"(Spair_Rep a b):Sprod"  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
17  | 
(fn prems =>  | 
| 1461 | 18  | 
[  | 
19  | 
(EVERY1 [rtac CollectI, rtac exI,rtac exI, rtac refl])  | 
|
20  | 
]);  | 
|
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
21  | 
|
| 4833 | 22  | 
qed_goal "inj_on_Abs_Sprod" Sprod0.thy  | 
23  | 
"inj_on Abs_Sprod Sprod"  | 
|
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
24  | 
(fn prems =>  | 
| 1461 | 25  | 
[  | 
| 4833 | 26  | 
(rtac inj_on_inverseI 1),  | 
| 1461 | 27  | 
(etac Abs_Sprod_inverse 1)  | 
28  | 
]);  | 
|
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
29  | 
|
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
30  | 
(* ------------------------------------------------------------------------ *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
31  | 
(* Strictness and definedness of Spair_Rep *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
32  | 
(* ------------------------------------------------------------------------ *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
33  | 
|
| 892 | 34  | 
qed_goalw "strict_Spair_Rep" Sprod0.thy [Spair_Rep_def]  | 
| 
1168
 
74be52691d62
The curried version of HOLCF is now just called HOLCF. The old
 
regensbu 
parents: 
892 
diff
changeset
 | 
35  | 
"(a=UU | b=UU) ==> (Spair_Rep a b) = (Spair_Rep UU UU)"  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
36  | 
(fn prems =>  | 
| 1461 | 37  | 
[  | 
38  | 
(cut_facts_tac prems 1),  | 
|
39  | 
(rtac ext 1),  | 
|
40  | 
(rtac ext 1),  | 
|
41  | 
(rtac iffI 1),  | 
|
42  | 
(fast_tac HOL_cs 1),  | 
|
43  | 
(fast_tac HOL_cs 1)  | 
|
44  | 
]);  | 
|
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
45  | 
|
| 892 | 46  | 
qed_goalw "defined_Spair_Rep_rev" Sprod0.thy [Spair_Rep_def]  | 
| 
1168
 
74be52691d62
The curried version of HOLCF is now just called HOLCF. The old
 
regensbu 
parents: 
892 
diff
changeset
 | 
47  | 
"(Spair_Rep a b) = (Spair_Rep UU UU) ==> (a=UU | b=UU)"  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
48  | 
(fn prems =>  | 
| 1461 | 49  | 
[  | 
| 1675 | 50  | 
(case_tac "a=UU|b=UU" 1),  | 
| 1461 | 51  | 
(atac 1),  | 
52  | 
(rtac disjI1 1),  | 
|
53  | 
(rtac ((hd prems) RS fun_cong RS fun_cong RS iffD2 RS mp RS  | 
|
54  | 
conjunct1 RS sym) 1),  | 
|
55  | 
(fast_tac HOL_cs 1),  | 
|
56  | 
(fast_tac HOL_cs 1)  | 
|
57  | 
]);  | 
|
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
58  | 
|
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
59  | 
|
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
60  | 
(* ------------------------------------------------------------------------ *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
61  | 
(* injectivity of Spair_Rep and Ispair *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
62  | 
(* ------------------------------------------------------------------------ *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
63  | 
|
| 892 | 64  | 
qed_goalw "inject_Spair_Rep" Sprod0.thy [Spair_Rep_def]  | 
| 
1168
 
74be52691d62
The curried version of HOLCF is now just called HOLCF. The old
 
regensbu 
parents: 
892 
diff
changeset
 | 
65  | 
"[|~aa=UU ; ~ba=UU ; Spair_Rep a b = Spair_Rep aa ba |] ==> a=aa & b=ba"  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
66  | 
(fn prems =>  | 
| 1461 | 67  | 
[  | 
68  | 
(cut_facts_tac prems 1),  | 
|
69  | 
(rtac ((nth_elem (2,prems)) RS fun_cong RS fun_cong  | 
|
70  | 
RS iffD1 RS mp) 1),  | 
|
71  | 
(fast_tac HOL_cs 1),  | 
|
72  | 
(fast_tac HOL_cs 1)  | 
|
73  | 
]);  | 
|
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
74  | 
|
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
75  | 
|
| 892 | 76  | 
qed_goalw "inject_Ispair" Sprod0.thy [Ispair_def]  | 
| 1461 | 77  | 
"[|~aa=UU ; ~ba=UU ; Ispair a b = Ispair aa ba |] ==> a=aa & b=ba"  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
78  | 
(fn prems =>  | 
| 1461 | 79  | 
[  | 
80  | 
(cut_facts_tac prems 1),  | 
|
81  | 
(etac inject_Spair_Rep 1),  | 
|
82  | 
(atac 1),  | 
|
| 4833 | 83  | 
(etac (inj_on_Abs_Sprod RS inj_onD) 1),  | 
| 1461 | 84  | 
(rtac SprodI 1),  | 
85  | 
(rtac SprodI 1)  | 
|
86  | 
]);  | 
|
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
87  | 
|
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
88  | 
|
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
89  | 
(* ------------------------------------------------------------------------ *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
90  | 
(* strictness and definedness of Ispair *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
91  | 
(* ------------------------------------------------------------------------ *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
92  | 
|
| 892 | 93  | 
qed_goalw "strict_Ispair" Sprod0.thy [Ispair_def]  | 
| 
1168
 
74be52691d62
The curried version of HOLCF is now just called HOLCF. The old
 
regensbu 
parents: 
892 
diff
changeset
 | 
94  | 
"(a=UU | b=UU) ==> Ispair a b = Ispair UU UU"  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
95  | 
(fn prems =>  | 
| 1461 | 96  | 
[  | 
97  | 
(cut_facts_tac prems 1),  | 
|
98  | 
(etac (strict_Spair_Rep RS arg_cong) 1)  | 
|
99  | 
]);  | 
|
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
100  | 
|
| 892 | 101  | 
qed_goalw "strict_Ispair1" Sprod0.thy [Ispair_def]  | 
| 1461 | 102  | 
"Ispair UU b = Ispair UU UU"  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
103  | 
(fn prems =>  | 
| 1461 | 104  | 
[  | 
105  | 
(rtac (strict_Spair_Rep RS arg_cong) 1),  | 
|
106  | 
(rtac disjI1 1),  | 
|
107  | 
(rtac refl 1)  | 
|
108  | 
]);  | 
|
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
109  | 
|
| 892 | 110  | 
qed_goalw "strict_Ispair2" Sprod0.thy [Ispair_def]  | 
| 1461 | 111  | 
"Ispair a UU = Ispair UU UU"  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
112  | 
(fn prems =>  | 
| 1461 | 113  | 
[  | 
114  | 
(rtac (strict_Spair_Rep RS arg_cong) 1),  | 
|
115  | 
(rtac disjI2 1),  | 
|
116  | 
(rtac refl 1)  | 
|
117  | 
]);  | 
|
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
118  | 
|
| 892 | 119  | 
qed_goal "strict_Ispair_rev" Sprod0.thy  | 
| 1461 | 120  | 
"~Ispair x y = Ispair UU UU ==> ~x=UU & ~y=UU"  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
121  | 
(fn prems =>  | 
| 1461 | 122  | 
[  | 
123  | 
(cut_facts_tac prems 1),  | 
|
| 1675 | 124  | 
(rtac (de_Morgan_disj RS subst) 1),  | 
| 1461 | 125  | 
(etac contrapos 1),  | 
126  | 
(etac strict_Ispair 1)  | 
|
127  | 
]);  | 
|
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
128  | 
|
| 892 | 129  | 
qed_goalw "defined_Ispair_rev" Sprod0.thy [Ispair_def]  | 
| 1461 | 130  | 
"Ispair a b = Ispair UU UU ==> (a = UU | b = UU)"  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
131  | 
(fn prems =>  | 
| 1461 | 132  | 
[  | 
133  | 
(cut_facts_tac prems 1),  | 
|
134  | 
(rtac defined_Spair_Rep_rev 1),  | 
|
| 4833 | 135  | 
(rtac (inj_on_Abs_Sprod RS inj_onD) 1),  | 
| 1461 | 136  | 
(atac 1),  | 
137  | 
(rtac SprodI 1),  | 
|
138  | 
(rtac SprodI 1)  | 
|
139  | 
]);  | 
|
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
140  | 
|
| 892 | 141  | 
qed_goal "defined_Ispair" Sprod0.thy  | 
| 
1168
 
74be52691d62
The curried version of HOLCF is now just called HOLCF. The old
 
regensbu 
parents: 
892 
diff
changeset
 | 
142  | 
"[|a~=UU; b~=UU|] ==> (Ispair a b) ~= (Ispair UU UU)"  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
143  | 
(fn prems =>  | 
| 1461 | 144  | 
[  | 
145  | 
(cut_facts_tac prems 1),  | 
|
146  | 
(rtac contrapos 1),  | 
|
147  | 
(etac defined_Ispair_rev 2),  | 
|
| 1675 | 148  | 
(rtac (de_Morgan_disj RS iffD2) 1),  | 
| 1461 | 149  | 
(etac conjI 1),  | 
150  | 
(atac 1)  | 
|
151  | 
]);  | 
|
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
152  | 
|
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
153  | 
|
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
154  | 
(* ------------------------------------------------------------------------ *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
155  | 
(* Exhaustion of the strict product ** *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
156  | 
(* ------------------------------------------------------------------------ *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
157  | 
|
| 892 | 158  | 
qed_goalw "Exh_Sprod" Sprod0.thy [Ispair_def]  | 
| 1461 | 159  | 
"z=Ispair UU UU | (? a b. z=Ispair a b & a~=UU & b~=UU)"  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
160  | 
(fn prems =>  | 
| 1461 | 161  | 
[  | 
162  | 
(rtac (rewrite_rule [Sprod_def] Rep_Sprod RS CollectE) 1),  | 
|
163  | 
(etac exE 1),  | 
|
164  | 
(etac exE 1),  | 
|
165  | 
(rtac (excluded_middle RS disjE) 1),  | 
|
166  | 
(rtac disjI2 1),  | 
|
167  | 
(rtac exI 1),  | 
|
168  | 
(rtac exI 1),  | 
|
169  | 
(rtac conjI 1),  | 
|
170  | 
(rtac (Rep_Sprod_inverse RS sym RS trans) 1),  | 
|
171  | 
(etac arg_cong 1),  | 
|
| 1675 | 172  | 
(rtac (de_Morgan_disj RS subst) 1),  | 
| 1461 | 173  | 
(atac 1),  | 
174  | 
(rtac disjI1 1),  | 
|
175  | 
(rtac (Rep_Sprod_inverse RS sym RS trans) 1),  | 
|
176  | 
        (res_inst_tac [("f","Abs_Sprod")] arg_cong 1),
 | 
|
177  | 
(etac trans 1),  | 
|
178  | 
(etac strict_Spair_Rep 1)  | 
|
179  | 
]);  | 
|
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
180  | 
|
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
181  | 
(* ------------------------------------------------------------------------ *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
182  | 
(* general elimination rule for strict product *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
183  | 
(* ------------------------------------------------------------------------ *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
184  | 
|
| 892 | 185  | 
qed_goal "IsprodE" Sprod0.thy  | 
| 
1168
 
74be52691d62
The curried version of HOLCF is now just called HOLCF. The old
 
regensbu 
parents: 
892 
diff
changeset
 | 
186  | 
"[|p=Ispair UU UU ==> Q ;!!x y. [|p=Ispair x y; x~=UU ; y~=UU|] ==> Q|] ==> Q"  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
187  | 
(fn prems =>  | 
| 1461 | 188  | 
[  | 
189  | 
(rtac (Exh_Sprod RS disjE) 1),  | 
|
190  | 
(etac (hd prems) 1),  | 
|
191  | 
(etac exE 1),  | 
|
192  | 
(etac exE 1),  | 
|
193  | 
(etac conjE 1),  | 
|
194  | 
(etac conjE 1),  | 
|
195  | 
(etac (hd (tl prems)) 1),  | 
|
196  | 
(atac 1),  | 
|
197  | 
(atac 1)  | 
|
198  | 
]);  | 
|
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
199  | 
|
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
200  | 
|
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
201  | 
(* ------------------------------------------------------------------------ *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
202  | 
(* some results about the selectors Isfst, Issnd *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
203  | 
(* ------------------------------------------------------------------------ *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
204  | 
|
| 892 | 205  | 
qed_goalw "strict_Isfst" Sprod0.thy [Isfst_def]  | 
| 1461 | 206  | 
"p=Ispair UU UU ==> Isfst p = UU"  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
207  | 
(fn prems =>  | 
| 1461 | 208  | 
[  | 
209  | 
(cut_facts_tac prems 1),  | 
|
| 4535 | 210  | 
(rtac select_equality 1),  | 
| 1461 | 211  | 
(rtac conjI 1),  | 
212  | 
(fast_tac HOL_cs 1),  | 
|
213  | 
(strip_tac 1),  | 
|
214  | 
        (res_inst_tac [("P","Ispair UU UU = Ispair a b")] notE 1),
 | 
|
215  | 
(rtac not_sym 1),  | 
|
216  | 
(rtac defined_Ispair 1),  | 
|
217  | 
(REPEAT (fast_tac HOL_cs 1))  | 
|
218  | 
]);  | 
|
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
219  | 
|
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
220  | 
|
| 892 | 221  | 
qed_goal "strict_Isfst1" Sprod0.thy  | 
| 1461 | 222  | 
"Isfst(Ispair UU y) = UU"  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
223  | 
(fn prems =>  | 
| 1461 | 224  | 
[  | 
| 2033 | 225  | 
(stac strict_Ispair1 1),  | 
| 1461 | 226  | 
(rtac strict_Isfst 1),  | 
227  | 
(rtac refl 1)  | 
|
228  | 
]);  | 
|
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
229  | 
|
| 892 | 230  | 
qed_goal "strict_Isfst2" Sprod0.thy  | 
| 1461 | 231  | 
"Isfst(Ispair x UU) = UU"  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
232  | 
(fn prems =>  | 
| 1461 | 233  | 
[  | 
| 2033 | 234  | 
(stac strict_Ispair2 1),  | 
| 1461 | 235  | 
(rtac strict_Isfst 1),  | 
236  | 
(rtac refl 1)  | 
|
237  | 
]);  | 
|
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
238  | 
|
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
239  | 
|
| 892 | 240  | 
qed_goalw "strict_Issnd" Sprod0.thy [Issnd_def]  | 
| 1461 | 241  | 
"p=Ispair UU UU ==>Issnd p=UU"  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
242  | 
(fn prems =>  | 
| 1461 | 243  | 
[  | 
244  | 
(cut_facts_tac prems 1),  | 
|
| 4535 | 245  | 
(rtac select_equality 1),  | 
| 1461 | 246  | 
(rtac conjI 1),  | 
247  | 
(fast_tac HOL_cs 1),  | 
|
248  | 
(strip_tac 1),  | 
|
249  | 
        (res_inst_tac [("P","Ispair UU UU = Ispair a b")] notE 1),
 | 
|
250  | 
(rtac not_sym 1),  | 
|
251  | 
(rtac defined_Ispair 1),  | 
|
252  | 
(REPEAT (fast_tac HOL_cs 1))  | 
|
253  | 
]);  | 
|
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
254  | 
|
| 892 | 255  | 
qed_goal "strict_Issnd1" Sprod0.thy  | 
| 1461 | 256  | 
"Issnd(Ispair UU y) = UU"  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
257  | 
(fn prems =>  | 
| 1461 | 258  | 
[  | 
| 2033 | 259  | 
(stac strict_Ispair1 1),  | 
| 1461 | 260  | 
(rtac strict_Issnd 1),  | 
261  | 
(rtac refl 1)  | 
|
262  | 
]);  | 
|
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
263  | 
|
| 892 | 264  | 
qed_goal "strict_Issnd2" Sprod0.thy  | 
| 1461 | 265  | 
"Issnd(Ispair x UU) = UU"  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
266  | 
(fn prems =>  | 
| 1461 | 267  | 
[  | 
| 2033 | 268  | 
(stac strict_Ispair2 1),  | 
| 1461 | 269  | 
(rtac strict_Issnd 1),  | 
270  | 
(rtac refl 1)  | 
|
271  | 
]);  | 
|
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
272  | 
|
| 892 | 273  | 
qed_goalw "Isfst" Sprod0.thy [Isfst_def]  | 
| 1461 | 274  | 
"[|x~=UU ;y~=UU |] ==> Isfst(Ispair x y) = x"  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
275  | 
(fn prems =>  | 
| 1461 | 276  | 
[  | 
277  | 
(cut_facts_tac prems 1),  | 
|
| 4535 | 278  | 
(rtac select_equality 1),  | 
| 1461 | 279  | 
(rtac conjI 1),  | 
280  | 
(strip_tac 1),  | 
|
281  | 
        (res_inst_tac [("P","Ispair x y = Ispair UU UU")] notE 1),
 | 
|
282  | 
(etac defined_Ispair 1),  | 
|
283  | 
(atac 1),  | 
|
284  | 
(atac 1),  | 
|
285  | 
(strip_tac 1),  | 
|
286  | 
(rtac (inject_Ispair RS conjunct1) 1),  | 
|
287  | 
(fast_tac HOL_cs 3),  | 
|
288  | 
(fast_tac HOL_cs 1),  | 
|
289  | 
(fast_tac HOL_cs 1),  | 
|
290  | 
(fast_tac HOL_cs 1)  | 
|
291  | 
]);  | 
|
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
292  | 
|
| 892 | 293  | 
qed_goalw "Issnd" Sprod0.thy [Issnd_def]  | 
| 1461 | 294  | 
"[|x~=UU ;y~=UU |] ==> Issnd(Ispair x y) = y"  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
295  | 
(fn prems =>  | 
| 1461 | 296  | 
[  | 
297  | 
(cut_facts_tac prems 1),  | 
|
| 4535 | 298  | 
(rtac select_equality 1),  | 
| 1461 | 299  | 
(rtac conjI 1),  | 
300  | 
(strip_tac 1),  | 
|
301  | 
        (res_inst_tac [("P","Ispair x y = Ispair UU UU")] notE 1),
 | 
|
302  | 
(etac defined_Ispair 1),  | 
|
303  | 
(atac 1),  | 
|
304  | 
(atac 1),  | 
|
305  | 
(strip_tac 1),  | 
|
306  | 
(rtac (inject_Ispair RS conjunct2) 1),  | 
|
307  | 
(fast_tac HOL_cs 3),  | 
|
308  | 
(fast_tac HOL_cs 1),  | 
|
309  | 
(fast_tac HOL_cs 1),  | 
|
310  | 
(fast_tac HOL_cs 1)  | 
|
311  | 
]);  | 
|
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
312  | 
|
| 
1168
 
74be52691d62
The curried version of HOLCF is now just called HOLCF. The old
 
regensbu 
parents: 
892 
diff
changeset
 | 
313  | 
qed_goal "Isfst2" Sprod0.thy "y~=UU ==>Isfst(Ispair x y)=x"  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
314  | 
(fn prems =>  | 
| 1461 | 315  | 
[  | 
316  | 
(cut_facts_tac prems 1),  | 
|
317  | 
        (res_inst_tac [("Q","x=UU")] (excluded_middle RS disjE) 1),
 | 
|
318  | 
(etac Isfst 1),  | 
|
319  | 
(atac 1),  | 
|
320  | 
(hyp_subst_tac 1),  | 
|
321  | 
(rtac strict_Isfst1 1)  | 
|
322  | 
]);  | 
|
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
323  | 
|
| 
1168
 
74be52691d62
The curried version of HOLCF is now just called HOLCF. The old
 
regensbu 
parents: 
892 
diff
changeset
 | 
324  | 
qed_goal "Issnd2" Sprod0.thy "~x=UU ==>Issnd(Ispair x y)=y"  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
325  | 
(fn prems =>  | 
| 1461 | 326  | 
[  | 
327  | 
(cut_facts_tac prems 1),  | 
|
328  | 
        (res_inst_tac [("Q","y=UU")] (excluded_middle RS disjE) 1),
 | 
|
329  | 
(etac Issnd 1),  | 
|
330  | 
(atac 1),  | 
|
331  | 
(hyp_subst_tac 1),  | 
|
332  | 
(rtac strict_Issnd2 1)  | 
|
333  | 
]);  | 
|
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
334  | 
|
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
335  | 
|
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
336  | 
(* ------------------------------------------------------------------------ *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
337  | 
(* instantiate the simplifier *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
338  | 
(* ------------------------------------------------------------------------ *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
339  | 
|
| 
1277
 
caef3601c0b2
corrected some errors that occurred after introduction of local simpsets
 
regensbu 
parents: 
1274 
diff
changeset
 | 
340  | 
val Sprod0_ss =  | 
| 
 
caef3601c0b2
corrected some errors that occurred after introduction of local simpsets
 
regensbu 
parents: 
1274 
diff
changeset
 | 
341  | 
HOL_ss  | 
| 
 
caef3601c0b2
corrected some errors that occurred after introduction of local simpsets
 
regensbu 
parents: 
1274 
diff
changeset
 | 
342  | 
addsimps [strict_Isfst1,strict_Isfst2,strict_Issnd1,strict_Issnd2,  | 
| 
 
caef3601c0b2
corrected some errors that occurred after introduction of local simpsets
 
regensbu 
parents: 
1274 
diff
changeset
 | 
343  | 
Isfst2,Issnd2];  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
344  | 
|
| 892 | 345  | 
qed_goal "defined_IsfstIssnd" Sprod0.thy  | 
| 1461 | 346  | 
"p~=Ispair UU UU ==> Isfst p ~= UU & Issnd p ~= UU"  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
347  | 
(fn prems =>  | 
| 1461 | 348  | 
[  | 
349  | 
(cut_facts_tac prems 1),  | 
|
350  | 
        (res_inst_tac [("p","p")] IsprodE 1),
 | 
|
351  | 
(contr_tac 1),  | 
|
352  | 
(hyp_subst_tac 1),  | 
|
353  | 
(rtac conjI 1),  | 
|
| 
1277
 
caef3601c0b2
corrected some errors that occurred after introduction of local simpsets
 
regensbu 
parents: 
1274 
diff
changeset
 | 
354  | 
(asm_simp_tac Sprod0_ss 1),  | 
| 
 
caef3601c0b2
corrected some errors that occurred after introduction of local simpsets
 
regensbu 
parents: 
1274 
diff
changeset
 | 
355  | 
(asm_simp_tac Sprod0_ss 1)  | 
| 1461 | 356  | 
]);  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
357  | 
|
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
358  | 
|
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
359  | 
(* ------------------------------------------------------------------------ *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
360  | 
(* Surjective pairing: equivalent to Exh_Sprod *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
361  | 
(* ------------------------------------------------------------------------ *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
362  | 
|
| 892 | 363  | 
qed_goal "surjective_pairing_Sprod" Sprod0.thy  | 
| 1461 | 364  | 
"z = Ispair(Isfst z)(Issnd z)"  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
365  | 
(fn prems =>  | 
| 1461 | 366  | 
[  | 
367  | 
        (res_inst_tac [("z1","z")] (Exh_Sprod RS disjE) 1),
 | 
|
| 
1277
 
caef3601c0b2
corrected some errors that occurred after introduction of local simpsets
 
regensbu 
parents: 
1274 
diff
changeset
 | 
368  | 
(asm_simp_tac Sprod0_ss 1),  | 
| 1461 | 369  | 
(etac exE 1),  | 
370  | 
(etac exE 1),  | 
|
| 
1277
 
caef3601c0b2
corrected some errors that occurred after introduction of local simpsets
 
regensbu 
parents: 
1274 
diff
changeset
 | 
371  | 
(asm_simp_tac Sprod0_ss 1)  | 
| 1461 | 372  | 
]);  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
373  | 
|
| 2640 | 374  | 
qed_goal "Sel_injective_Sprod" thy  | 
375  | 
"[|Isfst x = Isfst y; Issnd x = Issnd y|] ==> x = y"  | 
|
376  | 
(fn prems =>  | 
|
377  | 
[  | 
|
378  | 
(cut_facts_tac prems 1),  | 
|
379  | 
(subgoal_tac "Ispair(Isfst x)(Issnd x)=Ispair(Isfst y)(Issnd y)" 1),  | 
|
380  | 
(rotate_tac ~1 1),  | 
|
381  | 
(asm_full_simp_tac(HOL_ss addsimps[surjective_pairing_Sprod RS sym])1),  | 
|
382  | 
(Asm_simp_tac 1)  | 
|
383  | 
]);  |