| author | paulson | 
| Fri, 14 Jul 2000 14:51:02 +0200 | |
| changeset 9337 | 58bd51302b21 | 
| parent 187 | 8729bfdcb638 | 
| permissions | -rw-r--r-- | 
| 0 | 1  | 
(* Title: ZF/univ  | 
2  | 
ID: $Id$  | 
|
3  | 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory  | 
|
4  | 
Copyright 1992 University of Cambridge  | 
|
5  | 
||
6  | 
The cumulative hierarchy and a small universe for recursive types  | 
|
7  | 
*)  | 
|
8  | 
||
9  | 
open Univ;  | 
|
10  | 
||
11  | 
(*NOT SUITABLE FOR REWRITING -- RECURSIVE!*)  | 
|
12  | 
goal Univ.thy "Vfrom(A,i) = A Un (UN j:i. Pow(Vfrom(A,j)))";  | 
|
13  | 
by (rtac (Vfrom_def RS def_transrec RS ssubst) 1);  | 
|
| 
6
 
8ce8c4d13d4d
Installation of new simplifier for ZF.  Deleted all congruence rules not
 
lcp 
parents: 
0 
diff
changeset
 | 
14  | 
by (simp_tac ZF_ss 1);  | 
| 0 | 15  | 
val Vfrom = result();  | 
16  | 
||
17  | 
(** Monotonicity **)  | 
|
18  | 
||
19  | 
goal Univ.thy "!!A B. A<=B ==> ALL j. i<=j --> Vfrom(A,i) <= Vfrom(B,j)";  | 
|
20  | 
by (eps_ind_tac "i" 1);  | 
|
21  | 
by (rtac (impI RS allI) 1);  | 
|
22  | 
by (rtac (Vfrom RS ssubst) 1);  | 
|
23  | 
by (rtac (Vfrom RS ssubst) 1);  | 
|
24  | 
by (etac Un_mono 1);  | 
|
25  | 
by (rtac UN_mono 1);  | 
|
26  | 
by (assume_tac 1);  | 
|
27  | 
by (rtac Pow_mono 1);  | 
|
28  | 
by (etac (bspec RS spec RS mp) 1);  | 
|
29  | 
by (assume_tac 1);  | 
|
30  | 
by (rtac subset_refl 1);  | 
|
31  | 
val Vfrom_mono_lemma = result();  | 
|
32  | 
||
33  | 
(* [| A<=B; i<=x |] ==> Vfrom(A,i) <= Vfrom(B,x) *)  | 
|
34  | 
val Vfrom_mono = standard (Vfrom_mono_lemma RS spec RS mp);  | 
|
35  | 
||
36  | 
||
37  | 
(** A fundamental equality: Vfrom does not require ordinals! **)  | 
|
38  | 
||
39  | 
goal Univ.thy "Vfrom(A,x) <= Vfrom(A,rank(x))";  | 
|
40  | 
by (eps_ind_tac "x" 1);  | 
|
41  | 
by (rtac (Vfrom RS ssubst) 1);  | 
|
42  | 
by (rtac (Vfrom RS ssubst) 1);  | 
|
| 27 | 43  | 
by (fast_tac (ZF_cs addSIs [rank_lt RS ltD]) 1);  | 
| 0 | 44  | 
val Vfrom_rank_subset1 = result();  | 
45  | 
||
46  | 
goal Univ.thy "Vfrom(A,rank(x)) <= Vfrom(A,x)";  | 
|
47  | 
by (eps_ind_tac "x" 1);  | 
|
48  | 
by (rtac (Vfrom RS ssubst) 1);  | 
|
49  | 
by (rtac (Vfrom RS ssubst) 1);  | 
|
| 
14
 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 
lcp 
parents: 
6 
diff
changeset
 | 
50  | 
by (rtac (subset_refl RS Un_mono) 1);  | 
| 
 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 
lcp 
parents: 
6 
diff
changeset
 | 
51  | 
by (rtac UN_least 1);  | 
| 27 | 52  | 
(*expand rank(x1) = (UN y:x1. succ(rank(y))) in assumptions*)  | 
53  | 
by (etac (rank RS equalityD1 RS subsetD RS UN_E) 1);  | 
|
| 
14
 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 
lcp 
parents: 
6 
diff
changeset
 | 
54  | 
by (rtac subset_trans 1);  | 
| 
 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 
lcp 
parents: 
6 
diff
changeset
 | 
55  | 
by (etac UN_upper 2);  | 
| 27 | 56  | 
by (rtac (subset_refl RS Vfrom_mono RS subset_trans RS Pow_mono) 1);  | 
57  | 
by (etac (ltI RS le_imp_subset) 1);  | 
|
58  | 
by (rtac (Ord_rank RS Ord_succ) 1);  | 
|
| 0 | 59  | 
by (etac bspec 1);  | 
60  | 
by (assume_tac 1);  | 
|
61  | 
val Vfrom_rank_subset2 = result();  | 
|
62  | 
||
63  | 
goal Univ.thy "Vfrom(A,rank(x)) = Vfrom(A,x)";  | 
|
64  | 
by (rtac equalityI 1);  | 
|
65  | 
by (rtac Vfrom_rank_subset2 1);  | 
|
66  | 
by (rtac Vfrom_rank_subset1 1);  | 
|
67  | 
val Vfrom_rank_eq = result();  | 
|
68  | 
||
69  | 
||
70  | 
(*** Basic closure properties ***)  | 
|
71  | 
||
72  | 
goal Univ.thy "!!x y. y:x ==> 0 : Vfrom(A,x)";  | 
|
73  | 
by (rtac (Vfrom RS ssubst) 1);  | 
|
74  | 
by (fast_tac ZF_cs 1);  | 
|
75  | 
val zero_in_Vfrom = result();  | 
|
76  | 
||
77  | 
goal Univ.thy "i <= Vfrom(A,i)";  | 
|
78  | 
by (eps_ind_tac "i" 1);  | 
|
79  | 
by (rtac (Vfrom RS ssubst) 1);  | 
|
80  | 
by (fast_tac ZF_cs 1);  | 
|
81  | 
val i_subset_Vfrom = result();  | 
|
82  | 
||
83  | 
goal Univ.thy "A <= Vfrom(A,i)";  | 
|
84  | 
by (rtac (Vfrom RS ssubst) 1);  | 
|
85  | 
by (rtac Un_upper1 1);  | 
|
86  | 
val A_subset_Vfrom = result();  | 
|
87  | 
||
88  | 
goal Univ.thy "!!A a i. a <= Vfrom(A,i) ==> a: Vfrom(A,succ(i))";  | 
|
89  | 
by (rtac (Vfrom RS ssubst) 1);  | 
|
90  | 
by (fast_tac ZF_cs 1);  | 
|
91  | 
val subset_mem_Vfrom = result();  | 
|
92  | 
||
93  | 
(** Finite sets and ordered pairs **)  | 
|
94  | 
||
95  | 
goal Univ.thy "!!a. a: Vfrom(A,i) ==> {a} : Vfrom(A,succ(i))";
 | 
|
96  | 
by (rtac subset_mem_Vfrom 1);  | 
|
97  | 
by (safe_tac ZF_cs);  | 
|
98  | 
val singleton_in_Vfrom = result();  | 
|
99  | 
||
100  | 
goal Univ.thy  | 
|
101  | 
    "!!A. [| a: Vfrom(A,i);  b: Vfrom(A,i) |] ==> {a,b} : Vfrom(A,succ(i))";
 | 
|
102  | 
by (rtac subset_mem_Vfrom 1);  | 
|
103  | 
by (safe_tac ZF_cs);  | 
|
104  | 
val doubleton_in_Vfrom = result();  | 
|
105  | 
||
106  | 
goalw Univ.thy [Pair_def]  | 
|
107  | 
"!!A. [| a: Vfrom(A,i); b: Vfrom(A,i) |] ==> \  | 
|
108  | 
\ <a,b> : Vfrom(A,succ(succ(i)))";  | 
|
109  | 
by (REPEAT (ares_tac [doubleton_in_Vfrom] 1));  | 
|
110  | 
val Pair_in_Vfrom = result();  | 
|
111  | 
||
112  | 
val [prem] = goal Univ.thy  | 
|
113  | 
"a<=Vfrom(A,i) ==> succ(a) : Vfrom(A,succ(succ(i)))";  | 
|
114  | 
by (REPEAT (resolve_tac [subset_mem_Vfrom, succ_subsetI] 1));  | 
|
115  | 
by (rtac (Vfrom_mono RSN (2,subset_trans)) 2);  | 
|
116  | 
by (REPEAT (resolve_tac [prem, subset_refl, subset_succI] 1));  | 
|
117  | 
val succ_in_Vfrom = result();  | 
|
118  | 
||
119  | 
(*** 0, successor and limit equations fof Vfrom ***)  | 
|
120  | 
||
121  | 
goal Univ.thy "Vfrom(A,0) = A";  | 
|
122  | 
by (rtac (Vfrom RS ssubst) 1);  | 
|
123  | 
by (fast_tac eq_cs 1);  | 
|
124  | 
val Vfrom_0 = result();  | 
|
125  | 
||
126  | 
goal Univ.thy "!!i. Ord(i) ==> Vfrom(A,succ(i)) = A Un Pow(Vfrom(A,i))";  | 
|
127  | 
by (rtac (Vfrom RS trans) 1);  | 
|
| 
6
 
8ce8c4d13d4d
Installation of new simplifier for ZF.  Deleted all congruence rules not
 
lcp 
parents: 
0 
diff
changeset
 | 
128  | 
by (rtac (succI1 RS RepFunI RS Union_upper RSN  | 
| 
 
8ce8c4d13d4d
Installation of new simplifier for ZF.  Deleted all congruence rules not
 
lcp 
parents: 
0 
diff
changeset
 | 
129  | 
(2, equalityI RS subst_context)) 1);  | 
| 0 | 130  | 
by (rtac UN_least 1);  | 
131  | 
by (rtac (subset_refl RS Vfrom_mono RS Pow_mono) 1);  | 
|
| 27 | 132  | 
by (etac (ltI RS le_imp_subset) 1);  | 
133  | 
by (etac Ord_succ 1);  | 
|
| 0 | 134  | 
val Vfrom_succ_lemma = result();  | 
135  | 
||
136  | 
goal Univ.thy "Vfrom(A,succ(i)) = A Un Pow(Vfrom(A,i))";  | 
|
137  | 
by (res_inst_tac [("x1", "succ(i)")] (Vfrom_rank_eq RS subst) 1);
 | 
|
138  | 
by (res_inst_tac [("x1", "i")] (Vfrom_rank_eq RS subst) 1);
 | 
|
139  | 
by (rtac (rank_succ RS ssubst) 1);  | 
|
140  | 
by (rtac (Ord_rank RS Vfrom_succ_lemma) 1);  | 
|
141  | 
val Vfrom_succ = result();  | 
|
142  | 
||
143  | 
(*The premise distinguishes this from Vfrom(A,0); allowing X=0 forces  | 
|
144  | 
the conclusion to be Vfrom(A,Union(X)) = A Un (UN y:X. Vfrom(A,y)) *)  | 
|
145  | 
val [prem] = goal Univ.thy "y:X ==> Vfrom(A,Union(X)) = (UN y:X. Vfrom(A,y))";  | 
|
146  | 
by (rtac (Vfrom RS ssubst) 1);  | 
|
147  | 
by (rtac equalityI 1);  | 
|
148  | 
(*first inclusion*)  | 
|
149  | 
by (rtac Un_least 1);  | 
|
| 
14
 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 
lcp 
parents: 
6 
diff
changeset
 | 
150  | 
by (rtac (A_subset_Vfrom RS subset_trans) 1);  | 
| 
 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 
lcp 
parents: 
6 
diff
changeset
 | 
151  | 
by (rtac (prem RS UN_upper) 1);  | 
| 
 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 
lcp 
parents: 
6 
diff
changeset
 | 
152  | 
by (rtac UN_least 1);  | 
| 
 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 
lcp 
parents: 
6 
diff
changeset
 | 
153  | 
by (etac UnionE 1);  | 
| 
 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 
lcp 
parents: 
6 
diff
changeset
 | 
154  | 
by (rtac subset_trans 1);  | 
| 
 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 
lcp 
parents: 
6 
diff
changeset
 | 
155  | 
by (etac UN_upper 2);  | 
| 0 | 156  | 
by (rtac (Vfrom RS ssubst) 1);  | 
| 
14
 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 
lcp 
parents: 
6 
diff
changeset
 | 
157  | 
by (etac ([UN_upper, Un_upper2] MRS subset_trans) 1);  | 
| 0 | 158  | 
(*opposite inclusion*)  | 
| 
14
 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 
lcp 
parents: 
6 
diff
changeset
 | 
159  | 
by (rtac UN_least 1);  | 
| 0 | 160  | 
by (rtac (Vfrom RS ssubst) 1);  | 
161  | 
by (fast_tac ZF_cs 1);  | 
|
162  | 
val Vfrom_Union = result();  | 
|
163  | 
||
164  | 
(*** Limit ordinals -- general properties ***)  | 
|
165  | 
||
166  | 
goalw Univ.thy [Limit_def] "!!i. Limit(i) ==> Union(i) = i";  | 
|
| 27 | 167  | 
by (fast_tac (eq_cs addSIs [ltI] addSEs [ltE] addEs [Ord_trans]) 1);  | 
| 0 | 168  | 
val Limit_Union_eq = result();  | 
169  | 
||
170  | 
goalw Univ.thy [Limit_def] "!!i. Limit(i) ==> Ord(i)";  | 
|
171  | 
by (etac conjunct1 1);  | 
|
172  | 
val Limit_is_Ord = result();  | 
|
173  | 
||
| 27 | 174  | 
goalw Univ.thy [Limit_def] "!!i. Limit(i) ==> 0 < i";  | 
175  | 
by (etac (conjunct2 RS conjunct1) 1);  | 
|
| 0 | 176  | 
val Limit_has_0 = result();  | 
177  | 
||
| 27 | 178  | 
goalw Univ.thy [Limit_def] "!!i. [| Limit(i); j<i |] ==> succ(j) < i";  | 
| 0 | 179  | 
by (fast_tac ZF_cs 1);  | 
180  | 
val Limit_has_succ = result();  | 
|
181  | 
||
182  | 
goalw Univ.thy [Limit_def] "Limit(nat)";  | 
|
| 27 | 183  | 
by (safe_tac (ZF_cs addSIs (ltI::nat_typechecks)));  | 
184  | 
by (etac ltD 1);  | 
|
| 0 | 185  | 
val Limit_nat = result();  | 
186  | 
||
187  | 
goalw Univ.thy [Limit_def]  | 
|
| 37 | 188  | 
"!!i. [| 0<i; ALL y. succ(y) ~= i |] ==> Limit(i)";  | 
| 0 | 189  | 
by (safe_tac subset_cs);  | 
| 27 | 190  | 
by (rtac (not_le_iff_lt RS iffD1) 2);  | 
191  | 
by (fast_tac (lt_cs addEs [lt_anti_sym]) 4);  | 
|
192  | 
by (REPEAT (eresolve_tac [asm_rl, ltE, Ord_succ] 1));  | 
|
| 0 | 193  | 
val non_succ_LimitI = result();  | 
194  | 
||
195  | 
goal Univ.thy "!!i. Ord(i) ==> i=0 | (EX j. i=succ(j)) | Limit(i)";  | 
|
| 27 | 196  | 
by (fast_tac (ZF_cs addSIs [non_succ_LimitI, Ord_0_lt]) 1);  | 
| 0 | 197  | 
val Ord_cases_lemma = result();  | 
198  | 
||
199  | 
val major::prems = goal Univ.thy  | 
|
200  | 
"[| Ord(i); \  | 
|
201  | 
\ i=0 ==> P; \  | 
|
202  | 
\ !!j. i=succ(j) ==> P; \  | 
|
203  | 
\ Limit(i) ==> P \  | 
|
204  | 
\ |] ==> P";  | 
|
205  | 
by (cut_facts_tac [major RS Ord_cases_lemma] 1);  | 
|
206  | 
by (REPEAT (eresolve_tac (prems@[disjE, exE]) 1));  | 
|
207  | 
val Ord_cases = result();  | 
|
208  | 
||
209  | 
||
210  | 
(*** Vfrom applied to Limit ordinals ***)  | 
|
211  | 
||
212  | 
(*NB. limit ordinals are non-empty;  | 
|
213  | 
Vfrom(A,0) = A = A Un (UN y:0. Vfrom(A,y)) *)  | 
|
214  | 
val [limiti] = goal Univ.thy  | 
|
215  | 
"Limit(i) ==> Vfrom(A,i) = (UN y:i. Vfrom(A,y))";  | 
|
| 27 | 216  | 
by (rtac (limiti RS (Limit_has_0 RS ltD) RS Vfrom_Union RS subst) 1);  | 
| 0 | 217  | 
by (rtac (limiti RS Limit_Union_eq RS ssubst) 1);  | 
218  | 
by (rtac refl 1);  | 
|
219  | 
val Limit_Vfrom_eq = result();  | 
|
220  | 
||
| 27 | 221  | 
goal Univ.thy "!!a. [| a: Vfrom(A,j); Limit(i); j<i |] ==> a : Vfrom(A,i)";  | 
222  | 
by (rtac (Limit_Vfrom_eq RS equalityD2 RS subsetD) 1);  | 
|
223  | 
by (REPEAT (ares_tac [ltD RS UN_I] 1));  | 
|
224  | 
val Limit_VfromI = result();  | 
|
225  | 
||
226  | 
val prems = goal Univ.thy  | 
|
227  | 
"[| a: Vfrom(A,i); Limit(i); \  | 
|
228  | 
\ !!x. [| x<i; a: Vfrom(A,x) |] ==> R \  | 
|
229  | 
\ |] ==> R";  | 
|
230  | 
by (rtac (Limit_Vfrom_eq RS equalityD1 RS subsetD RS UN_E) 1);  | 
|
231  | 
by (REPEAT (ares_tac (prems @ [ltI, Limit_is_Ord]) 1));  | 
|
232  | 
val Limit_VfromE = result();  | 
|
| 0 | 233  | 
|
234  | 
val [major,limiti] = goal Univ.thy  | 
|
235  | 
    "[| a: Vfrom(A,i);  Limit(i) |] ==> {a} : Vfrom(A,i)";
 | 
|
| 27 | 236  | 
by (rtac ([major,limiti] MRS Limit_VfromE) 1);  | 
237  | 
by (etac ([singleton_in_Vfrom, limiti] MRS Limit_VfromI) 1);  | 
|
| 0 | 238  | 
by (etac (limiti RS Limit_has_succ) 1);  | 
239  | 
val singleton_in_Vfrom_limit = result();  | 
|
240  | 
||
241  | 
val Vfrom_UnI1 = Un_upper1 RS (subset_refl RS Vfrom_mono RS subsetD)  | 
|
242  | 
and Vfrom_UnI2 = Un_upper2 RS (subset_refl RS Vfrom_mono RS subsetD);  | 
|
243  | 
||
244  | 
(*Hard work is finding a single j:i such that {a,b}<=Vfrom(A,j)*)
 | 
|
245  | 
val [aprem,bprem,limiti] = goal Univ.thy  | 
|
246  | 
"[| a: Vfrom(A,i); b: Vfrom(A,i); Limit(i) |] ==> \  | 
|
247  | 
\    {a,b} : Vfrom(A,i)";
 | 
|
| 27 | 248  | 
by (rtac ([aprem,limiti] MRS Limit_VfromE) 1);  | 
249  | 
by (rtac ([bprem,limiti] MRS Limit_VfromE) 1);  | 
|
250  | 
by (rtac ([doubleton_in_Vfrom, limiti] MRS Limit_VfromI) 1);  | 
|
251  | 
by (etac Vfrom_UnI1 1);  | 
|
252  | 
by (etac Vfrom_UnI2 1);  | 
|
253  | 
by (REPEAT (ares_tac [limiti, Limit_has_succ, Un_least_lt] 1));  | 
|
| 0 | 254  | 
val doubleton_in_Vfrom_limit = result();  | 
255  | 
||
256  | 
val [aprem,bprem,limiti] = goal Univ.thy  | 
|
257  | 
"[| a: Vfrom(A,i); b: Vfrom(A,i); Limit(i) |] ==> \  | 
|
258  | 
\ <a,b> : Vfrom(A,i)";  | 
|
259  | 
(*Infer that a, b occur at ordinals x,xa < i.*)  | 
|
| 27 | 260  | 
by (rtac ([aprem,limiti] MRS Limit_VfromE) 1);  | 
261  | 
by (rtac ([bprem,limiti] MRS Limit_VfromE) 1);  | 
|
262  | 
by (rtac ([Pair_in_Vfrom, limiti] MRS Limit_VfromI) 1);  | 
|
| 0 | 263  | 
(*Infer that succ(succ(x Un xa)) < i *)  | 
| 27 | 264  | 
by (etac Vfrom_UnI1 1);  | 
265  | 
by (etac Vfrom_UnI2 1);  | 
|
266  | 
by (REPEAT (ares_tac [limiti, Limit_has_succ, Un_least_lt] 1));  | 
|
| 0 | 267  | 
val Pair_in_Vfrom_limit = result();  | 
268  | 
||
269  | 
||
270  | 
(*** Properties assuming Transset(A) ***)  | 
|
271  | 
||
272  | 
goal Univ.thy "!!i A. Transset(A) ==> Transset(Vfrom(A,i))";  | 
|
273  | 
by (eps_ind_tac "i" 1);  | 
|
274  | 
by (rtac (Vfrom RS ssubst) 1);  | 
|
275  | 
by (fast_tac (ZF_cs addSIs [Transset_Union_family, Transset_Un,  | 
|
276  | 
Transset_Pow]) 1);  | 
|
277  | 
val Transset_Vfrom = result();  | 
|
278  | 
||
279  | 
goal Univ.thy "!!A i. Transset(A) ==> Vfrom(A, succ(i)) = Pow(Vfrom(A,i))";  | 
|
280  | 
by (rtac (Vfrom_succ RS trans) 1);  | 
|
| 
14
 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 
lcp 
parents: 
6 
diff
changeset
 | 
281  | 
by (rtac (Un_upper2 RSN (2,equalityI)) 1);  | 
| 
 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 
lcp 
parents: 
6 
diff
changeset
 | 
282  | 
by (rtac (subset_refl RSN (2,Un_least)) 1);  | 
| 
 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 
lcp 
parents: 
6 
diff
changeset
 | 
283  | 
by (rtac (A_subset_Vfrom RS subset_trans) 1);  | 
| 
 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 
lcp 
parents: 
6 
diff
changeset
 | 
284  | 
by (etac (Transset_Vfrom RS (Transset_iff_Pow RS iffD1)) 1);  | 
| 0 | 285  | 
val Transset_Vfrom_succ = result();  | 
286  | 
||
287  | 
goalw Ord.thy [Pair_def,Transset_def]  | 
|
288  | 
"!!C. [| <a,b> <= C; Transset(C) |] ==> a: C & b: C";  | 
|
289  | 
by (fast_tac ZF_cs 1);  | 
|
290  | 
val Transset_Pair_subset = result();  | 
|
291  | 
||
292  | 
goal Univ.thy  | 
|
293  | 
"!!a b.[| <a,b> <= Vfrom(A,i); Transset(A); Limit(i) |] ==> \  | 
|
294  | 
\ <a,b> : Vfrom(A,i)";  | 
|
| 
14
 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 
lcp 
parents: 
6 
diff
changeset
 | 
295  | 
by (etac (Transset_Pair_subset RS conjE) 1);  | 
| 
 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 
lcp 
parents: 
6 
diff
changeset
 | 
296  | 
by (etac Transset_Vfrom 1);  | 
| 0 | 297  | 
by (REPEAT (ares_tac [Pair_in_Vfrom_limit] 1));  | 
298  | 
val Transset_Pair_subset_Vfrom_limit = result();  | 
|
299  | 
||
300  | 
||
301  | 
(*** Closure under product/sum applied to elements -- thus Vfrom(A,i)  | 
|
302  | 
is a model of simple type theory provided A is a transitive set  | 
|
303  | 
and i is a limit ordinal  | 
|
304  | 
***)  | 
|
305  | 
||
| 187 | 306  | 
(*General theorem for membership in Vfrom(A,i) when i is a limit ordinal*)  | 
307  | 
val [aprem,bprem,limiti,step] = goal Univ.thy  | 
|
308  | 
"[| a: Vfrom(A,i); b: Vfrom(A,i); Limit(i); \  | 
|
309  | 
\ !!x y j. [| j<i; 1:j; x: Vfrom(A,j); y: Vfrom(A,j) \  | 
|
310  | 
\ |] ==> EX k. h(x,y): Vfrom(A,k) & k<i |] ==> \  | 
|
311  | 
\ h(a,b) : Vfrom(A,i)";  | 
|
312  | 
(*Infer that a, b occur at ordinals x,xa < i.*)  | 
|
313  | 
by (rtac ([aprem,limiti] MRS Limit_VfromE) 1);  | 
|
314  | 
by (rtac ([bprem,limiti] MRS Limit_VfromE) 1);  | 
|
315  | 
by (res_inst_tac [("j1", "x Un xa Un succ(1)")] (step RS exE) 1);
 | 
|
316  | 
by (DO_GOAL [etac conjE, etac Limit_VfromI, rtac limiti, atac] 5);  | 
|
317  | 
by (etac (Vfrom_UnI2 RS Vfrom_UnI1) 4);  | 
|
318  | 
by (etac (Vfrom_UnI1 RS Vfrom_UnI1) 3);  | 
|
319  | 
by (rtac (succI1 RS UnI2) 2);  | 
|
320  | 
by (REPEAT (ares_tac [limiti, Limit_has_0, Limit_has_succ, Un_least_lt] 1));  | 
|
321  | 
val in_Vfrom_limit = result();  | 
|
| 0 | 322  | 
|
323  | 
(** products **)  | 
|
324  | 
||
325  | 
goal Univ.thy  | 
|
| 187 | 326  | 
"!!A. [| a: Vfrom(A,j); b: Vfrom(A,j); Transset(A) |] ==> \  | 
327  | 
\ a*b : Vfrom(A, succ(succ(succ(j))))";  | 
|
| 0 | 328  | 
by (dtac Transset_Vfrom 1);  | 
329  | 
by (rtac subset_mem_Vfrom 1);  | 
|
330  | 
by (rewtac Transset_def);  | 
|
331  | 
by (fast_tac (ZF_cs addIs [Pair_in_Vfrom]) 1);  | 
|
332  | 
val prod_in_Vfrom = result();  | 
|
333  | 
||
334  | 
val [aprem,bprem,limiti,transset] = goal Univ.thy  | 
|
335  | 
"[| a: Vfrom(A,i); b: Vfrom(A,i); Limit(i); Transset(A) |] ==> \  | 
|
336  | 
\ a*b : Vfrom(A,i)";  | 
|
| 187 | 337  | 
by (rtac ([aprem,bprem,limiti] MRS in_Vfrom_limit) 1);  | 
338  | 
by (REPEAT (ares_tac [exI, conjI, prod_in_Vfrom, transset,  | 
|
339  | 
limiti RS Limit_has_succ] 1));  | 
|
| 0 | 340  | 
val prod_in_Vfrom_limit = result();  | 
341  | 
||
342  | 
(** Disjoint sums, aka Quine ordered pairs **)  | 
|
343  | 
||
344  | 
goalw Univ.thy [sum_def]  | 
|
| 187 | 345  | 
"!!A. [| a: Vfrom(A,j); b: Vfrom(A,j); Transset(A); 1:j |] ==> \  | 
346  | 
\ a+b : Vfrom(A, succ(succ(succ(j))))";  | 
|
| 0 | 347  | 
by (dtac Transset_Vfrom 1);  | 
348  | 
by (rtac subset_mem_Vfrom 1);  | 
|
349  | 
by (rewtac Transset_def);  | 
|
350  | 
by (fast_tac (ZF_cs addIs [zero_in_Vfrom, Pair_in_Vfrom,  | 
|
351  | 
i_subset_Vfrom RS subsetD]) 1);  | 
|
352  | 
val sum_in_Vfrom = result();  | 
|
353  | 
||
354  | 
val [aprem,bprem,limiti,transset] = goal Univ.thy  | 
|
355  | 
"[| a: Vfrom(A,i); b: Vfrom(A,i); Limit(i); Transset(A) |] ==> \  | 
|
356  | 
\ a+b : Vfrom(A,i)";  | 
|
| 187 | 357  | 
by (rtac ([aprem,bprem,limiti] MRS in_Vfrom_limit) 1);  | 
358  | 
by (REPEAT (ares_tac [exI, conjI, sum_in_Vfrom, transset,  | 
|
359  | 
limiti RS Limit_has_succ] 1));  | 
|
| 0 | 360  | 
val sum_in_Vfrom_limit = result();  | 
361  | 
||
362  | 
(** function space! **)  | 
|
363  | 
||
364  | 
goalw Univ.thy [Pi_def]  | 
|
| 187 | 365  | 
"!!A. [| a: Vfrom(A,j); b: Vfrom(A,j); Transset(A) |] ==> \  | 
366  | 
\ a->b : Vfrom(A, succ(succ(succ(succ(j)))))";  | 
|
| 0 | 367  | 
by (dtac Transset_Vfrom 1);  | 
368  | 
by (rtac subset_mem_Vfrom 1);  | 
|
369  | 
by (rtac (Collect_subset RS subset_trans) 1);  | 
|
370  | 
by (rtac (Vfrom RS ssubst) 1);  | 
|
371  | 
by (rtac (subset_trans RS subset_trans) 1);  | 
|
372  | 
by (rtac Un_upper2 3);  | 
|
373  | 
by (rtac (succI1 RS UN_upper) 2);  | 
|
374  | 
by (rtac Pow_mono 1);  | 
|
375  | 
by (rewtac Transset_def);  | 
|
376  | 
by (fast_tac (ZF_cs addIs [Pair_in_Vfrom]) 1);  | 
|
377  | 
val fun_in_Vfrom = result();  | 
|
378  | 
||
379  | 
val [aprem,bprem,limiti,transset] = goal Univ.thy  | 
|
380  | 
"[| a: Vfrom(A,i); b: Vfrom(A,i); Limit(i); Transset(A) |] ==> \  | 
|
381  | 
\ a->b : Vfrom(A,i)";  | 
|
| 187 | 382  | 
by (rtac ([aprem,bprem,limiti] MRS in_Vfrom_limit) 1);  | 
383  | 
by (REPEAT (ares_tac [exI, conjI, fun_in_Vfrom, transset,  | 
|
384  | 
limiti RS Limit_has_succ] 1));  | 
|
| 0 | 385  | 
val fun_in_Vfrom_limit = result();  | 
386  | 
||
387  | 
||
388  | 
(*** The set Vset(i) ***)  | 
|
389  | 
||
390  | 
goal Univ.thy "Vset(i) = (UN j:i. Pow(Vset(j)))";  | 
|
391  | 
by (rtac (Vfrom RS ssubst) 1);  | 
|
392  | 
by (fast_tac eq_cs 1);  | 
|
393  | 
val Vset = result();  | 
|
394  | 
||
395  | 
val Vset_succ = Transset_0 RS Transset_Vfrom_succ;  | 
|
396  | 
||
397  | 
val Transset_Vset = Transset_0 RS Transset_Vfrom;  | 
|
398  | 
||
399  | 
(** Characterisation of the elements of Vset(i) **)  | 
|
400  | 
||
| 27 | 401  | 
val [ordi] = goal Univ.thy "Ord(i) ==> ALL b. b : Vset(i) --> rank(b) < i";  | 
| 0 | 402  | 
by (rtac (ordi RS trans_induct) 1);  | 
403  | 
by (rtac (Vset RS ssubst) 1);  | 
|
404  | 
by (safe_tac ZF_cs);  | 
|
405  | 
by (rtac (rank RS ssubst) 1);  | 
|
| 27 | 406  | 
by (rtac UN_succ_least_lt 1);  | 
407  | 
by (fast_tac ZF_cs 2);  | 
|
408  | 
by (REPEAT (ares_tac [ltI] 1));  | 
|
| 0 | 409  | 
val Vset_rank_imp1 = result();  | 
410  | 
||
| 27 | 411  | 
(* [| Ord(i); x : Vset(i) |] ==> rank(x) < i *)  | 
412  | 
val VsetD = standard (Vset_rank_imp1 RS spec RS mp);  | 
|
| 0 | 413  | 
|
414  | 
val [ordi] = goal Univ.thy "Ord(i) ==> ALL b. rank(b) : i --> b : Vset(i)";  | 
|
415  | 
by (rtac (ordi RS trans_induct) 1);  | 
|
416  | 
by (rtac allI 1);  | 
|
417  | 
by (rtac (Vset RS ssubst) 1);  | 
|
| 27 | 418  | 
by (fast_tac (ZF_cs addSIs [rank_lt RS ltD]) 1);  | 
| 0 | 419  | 
val Vset_rank_imp2 = result();  | 
420  | 
||
| 27 | 421  | 
goal Univ.thy "!!x i. rank(x)<i ==> x : Vset(i)";  | 
422  | 
by (etac ltE 1);  | 
|
423  | 
by (etac (Vset_rank_imp2 RS spec RS mp) 1);  | 
|
424  | 
by (assume_tac 1);  | 
|
425  | 
val VsetI = result();  | 
|
| 0 | 426  | 
|
| 27 | 427  | 
goal Univ.thy "!!i. Ord(i) ==> b : Vset(i) <-> rank(b) < i";  | 
| 0 | 428  | 
by (rtac iffI 1);  | 
| 27 | 429  | 
by (REPEAT (eresolve_tac [asm_rl, VsetD, VsetI] 1));  | 
| 0 | 430  | 
val Vset_Ord_rank_iff = result();  | 
431  | 
||
| 27 | 432  | 
goal Univ.thy "b : Vset(a) <-> rank(b) < rank(a)";  | 
| 0 | 433  | 
by (rtac (Vfrom_rank_eq RS subst) 1);  | 
434  | 
by (rtac (Ord_rank RS Vset_Ord_rank_iff) 1);  | 
|
435  | 
val Vset_rank_iff = result();  | 
|
436  | 
||
437  | 
goal Univ.thy "!!i. Ord(i) ==> rank(Vset(i)) = i";  | 
|
438  | 
by (rtac (rank RS ssubst) 1);  | 
|
439  | 
by (rtac equalityI 1);  | 
|
440  | 
by (safe_tac ZF_cs);  | 
|
441  | 
by (EVERY' [rtac UN_I,  | 
|
442  | 
etac (i_subset_Vfrom RS subsetD),  | 
|
443  | 
etac (Ord_in_Ord RS rank_of_Ord RS ssubst),  | 
|
444  | 
assume_tac,  | 
|
445  | 
rtac succI1] 3);  | 
|
| 27 | 446  | 
by (REPEAT (eresolve_tac [asm_rl, VsetD RS ltD, Ord_trans] 1));  | 
| 0 | 447  | 
val rank_Vset = result();  | 
448  | 
||
449  | 
(** Lemmas for reasoning about sets in terms of their elements' ranks **)  | 
|
450  | 
||
451  | 
goal Univ.thy "a <= Vset(rank(a))";  | 
|
| 
14
 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 
lcp 
parents: 
6 
diff
changeset
 | 
452  | 
by (rtac subsetI 1);  | 
| 27 | 453  | 
by (etac (rank_lt RS VsetI) 1);  | 
| 0 | 454  | 
val arg_subset_Vset_rank = result();  | 
455  | 
||
456  | 
val [iprem] = goal Univ.thy  | 
|
457  | 
"[| !!i. Ord(i) ==> a Int Vset(i) <= b |] ==> a <= b";  | 
|
| 27 | 458  | 
by (rtac ([subset_refl, arg_subset_Vset_rank] MRS  | 
459  | 
Int_greatest RS subset_trans) 1);  | 
|
| 
14
 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 
lcp 
parents: 
6 
diff
changeset
 | 
460  | 
by (rtac (Ord_rank RS iprem) 1);  | 
| 0 | 461  | 
val Int_Vset_subset = result();  | 
462  | 
||
463  | 
(** Set up an environment for simplification **)  | 
|
464  | 
||
465  | 
val rank_rls = [rank_Inl, rank_Inr, rank_pair1, rank_pair2];  | 
|
| 27 | 466  | 
val rank_trans_rls = rank_rls @ (rank_rls RLN (2, [lt_trans]));  | 
| 0 | 467  | 
|
468  | 
val rank_ss = ZF_ss  | 
|
| 27 | 469  | 
addsimps [case_Inl, case_Inr, VsetI]  | 
| 
6
 
8ce8c4d13d4d
Installation of new simplifier for ZF.  Deleted all congruence rules not
 
lcp 
parents: 
0 
diff
changeset
 | 
470  | 
addsimps rank_trans_rls;  | 
| 0 | 471  | 
|
472  | 
(** Recursion over Vset levels! **)  | 
|
473  | 
||
474  | 
(*NOT SUITABLE FOR REWRITING: recursive!*)  | 
|
475  | 
goalw Univ.thy [Vrec_def] "Vrec(a,H) = H(a, lam x:Vset(rank(a)). Vrec(x,H))";  | 
|
476  | 
by (rtac (transrec RS ssubst) 1);  | 
|
| 27 | 477  | 
by (simp_tac (ZF_ss addsimps [Ord_rank, Ord_succ, VsetD RS ltD RS beta,  | 
478  | 
VsetI RS beta, le_refl]) 1);  | 
|
| 0 | 479  | 
val Vrec = result();  | 
480  | 
||
481  | 
(*This form avoids giant explosions in proofs. NOTE USE OF == *)  | 
|
482  | 
val rew::prems = goal Univ.thy  | 
|
483  | 
"[| !!x. h(x)==Vrec(x,H) |] ==> \  | 
|
484  | 
\ h(a) = H(a, lam x: Vset(rank(a)). h(x))";  | 
|
485  | 
by (rewtac rew);  | 
|
486  | 
by (rtac Vrec 1);  | 
|
487  | 
val def_Vrec = result();  | 
|
488  | 
||
489  | 
||
490  | 
(*** univ(A) ***)  | 
|
491  | 
||
492  | 
goalw Univ.thy [univ_def] "!!A B. A<=B ==> univ(A) <= univ(B)";  | 
|
493  | 
by (etac Vfrom_mono 1);  | 
|
494  | 
by (rtac subset_refl 1);  | 
|
495  | 
val univ_mono = result();  | 
|
496  | 
||
497  | 
goalw Univ.thy [univ_def] "!!A. Transset(A) ==> Transset(univ(A))";  | 
|
498  | 
by (etac Transset_Vfrom 1);  | 
|
499  | 
val Transset_univ = result();  | 
|
500  | 
||
501  | 
(** univ(A) as a limit **)  | 
|
502  | 
||
503  | 
goalw Univ.thy [univ_def] "univ(A) = (UN i:nat. Vfrom(A,i))";  | 
|
| 
14
 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 
lcp 
parents: 
6 
diff
changeset
 | 
504  | 
by (rtac (Limit_nat RS Limit_Vfrom_eq) 1);  | 
| 0 | 505  | 
val univ_eq_UN = result();  | 
506  | 
||
507  | 
goal Univ.thy "!!c. c <= univ(A) ==> c = (UN i:nat. c Int Vfrom(A,i))";  | 
|
| 
14
 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 
lcp 
parents: 
6 
diff
changeset
 | 
508  | 
by (rtac (subset_UN_iff_eq RS iffD1) 1);  | 
| 
 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 
lcp 
parents: 
6 
diff
changeset
 | 
509  | 
by (etac (univ_eq_UN RS subst) 1);  | 
| 0 | 510  | 
val subset_univ_eq_Int = result();  | 
511  | 
||
512  | 
val [aprem, iprem] = goal Univ.thy  | 
|
513  | 
"[| a <= univ(X); \  | 
|
514  | 
\ !!i. i:nat ==> a Int Vfrom(X,i) <= b \  | 
|
515  | 
\ |] ==> a <= b";  | 
|
| 
14
 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 
lcp 
parents: 
6 
diff
changeset
 | 
516  | 
by (rtac (aprem RS subset_univ_eq_Int RS ssubst) 1);  | 
| 
 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 
lcp 
parents: 
6 
diff
changeset
 | 
517  | 
by (rtac UN_least 1);  | 
| 
 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 
lcp 
parents: 
6 
diff
changeset
 | 
518  | 
by (etac iprem 1);  | 
| 0 | 519  | 
val univ_Int_Vfrom_subset = result();  | 
520  | 
||
521  | 
val prems = goal Univ.thy  | 
|
522  | 
"[| a <= univ(X); b <= univ(X); \  | 
|
523  | 
\ !!i. i:nat ==> a Int Vfrom(X,i) = b Int Vfrom(X,i) \  | 
|
524  | 
\ |] ==> a = b";  | 
|
| 
14
 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 
lcp 
parents: 
6 
diff
changeset
 | 
525  | 
by (rtac equalityI 1);  | 
| 0 | 526  | 
by (ALLGOALS  | 
527  | 
(resolve_tac (prems RL [univ_Int_Vfrom_subset]) THEN'  | 
|
528  | 
eresolve_tac (prems RL [equalityD1,equalityD2] RL [subset_trans]) THEN'  | 
|
529  | 
rtac Int_lower1));  | 
|
530  | 
val univ_Int_Vfrom_eq = result();  | 
|
531  | 
||
532  | 
(** Closure properties **)  | 
|
533  | 
||
534  | 
goalw Univ.thy [univ_def] "0 : univ(A)";  | 
|
535  | 
by (rtac (nat_0I RS zero_in_Vfrom) 1);  | 
|
536  | 
val zero_in_univ = result();  | 
|
537  | 
||
538  | 
goalw Univ.thy [univ_def] "A <= univ(A)";  | 
|
539  | 
by (rtac A_subset_Vfrom 1);  | 
|
540  | 
val A_subset_univ = result();  | 
|
541  | 
||
542  | 
val A_into_univ = A_subset_univ RS subsetD;  | 
|
543  | 
||
544  | 
(** Closure under unordered and ordered pairs **)  | 
|
545  | 
||
546  | 
goalw Univ.thy [univ_def] "!!A a. a: univ(A) ==> {a} : univ(A)";
 | 
|
547  | 
by (rtac singleton_in_Vfrom_limit 1);  | 
|
548  | 
by (REPEAT (ares_tac [Ord_nat,Limit_nat] 1));  | 
|
549  | 
val singleton_in_univ = result();  | 
|
550  | 
||
551  | 
goalw Univ.thy [univ_def]  | 
|
552  | 
    "!!A a. [| a: univ(A);  b: univ(A) |] ==> {a,b} : univ(A)";
 | 
|
553  | 
by (rtac doubleton_in_Vfrom_limit 1);  | 
|
554  | 
by (REPEAT (ares_tac [Ord_nat,Limit_nat] 1));  | 
|
555  | 
val doubleton_in_univ = result();  | 
|
556  | 
||
557  | 
goalw Univ.thy [univ_def]  | 
|
558  | 
"!!A a. [| a: univ(A); b: univ(A) |] ==> <a,b> : univ(A)";  | 
|
559  | 
by (rtac Pair_in_Vfrom_limit 1);  | 
|
560  | 
by (REPEAT (ares_tac [Ord_nat,Limit_nat] 1));  | 
|
561  | 
val Pair_in_univ = result();  | 
|
562  | 
||
563  | 
goal Univ.thy "univ(A)*univ(A) <= univ(A)";  | 
|
564  | 
by (REPEAT (ares_tac [subsetI,Pair_in_univ] 1  | 
|
565  | 
ORELSE eresolve_tac [SigmaE, ssubst] 1));  | 
|
566  | 
val product_univ = result();  | 
|
567  | 
||
568  | 
val Sigma_subset_univ = standard  | 
|
569  | 
(Sigma_mono RS (product_univ RSN (2,subset_trans)));  | 
|
570  | 
||
571  | 
goalw Univ.thy [univ_def]  | 
|
572  | 
"!!a b.[| <a,b> <= univ(A); Transset(A) |] ==> <a,b> : univ(A)";  | 
|
| 
14
 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 
lcp 
parents: 
6 
diff
changeset
 | 
573  | 
by (etac Transset_Pair_subset_Vfrom_limit 1);  | 
| 0 | 574  | 
by (REPEAT (ares_tac [Ord_nat,Limit_nat] 1));  | 
575  | 
val Transset_Pair_subset_univ = result();  | 
|
576  | 
||
577  | 
||
578  | 
(** The natural numbers **)  | 
|
579  | 
||
580  | 
goalw Univ.thy [univ_def] "nat <= univ(A)";  | 
|
581  | 
by (rtac i_subset_Vfrom 1);  | 
|
582  | 
val nat_subset_univ = result();  | 
|
583  | 
||
584  | 
(* n:nat ==> n:univ(A) *)  | 
|
585  | 
val nat_into_univ = standard (nat_subset_univ RS subsetD);  | 
|
586  | 
||
587  | 
(** instances for 1 and 2 **)  | 
|
588  | 
||
| 
14
 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 
lcp 
parents: 
6 
diff
changeset
 | 
589  | 
goal Univ.thy "1 : univ(A)";  | 
| 0 | 590  | 
by (REPEAT (ares_tac [nat_into_univ, nat_0I, nat_succI] 1));  | 
591  | 
val one_in_univ = result();  | 
|
592  | 
||
593  | 
(*unused!*)  | 
|
| 27 | 594  | 
goal Univ.thy "succ(1) : univ(A)";  | 
| 0 | 595  | 
by (REPEAT (ares_tac [nat_into_univ, nat_0I, nat_succI] 1));  | 
596  | 
val two_in_univ = result();  | 
|
597  | 
||
598  | 
goalw Univ.thy [bool_def] "bool <= univ(A)";  | 
|
599  | 
by (fast_tac (ZF_cs addSIs [zero_in_univ,one_in_univ]) 1);  | 
|
600  | 
val bool_subset_univ = result();  | 
|
601  | 
||
602  | 
val bool_into_univ = standard (bool_subset_univ RS subsetD);  | 
|
603  | 
||
604  | 
||
605  | 
(** Closure under disjoint union **)  | 
|
606  | 
||
607  | 
goalw Univ.thy [Inl_def] "!!A a. a: univ(A) ==> Inl(a) : univ(A)";  | 
|
608  | 
by (REPEAT (ares_tac [zero_in_univ,Pair_in_univ] 1));  | 
|
609  | 
val Inl_in_univ = result();  | 
|
610  | 
||
611  | 
goalw Univ.thy [Inr_def] "!!A b. b: univ(A) ==> Inr(b) : univ(A)";  | 
|
612  | 
by (REPEAT (ares_tac [one_in_univ, Pair_in_univ] 1));  | 
|
613  | 
val Inr_in_univ = result();  | 
|
614  | 
||
615  | 
goal Univ.thy "univ(C)+univ(C) <= univ(C)";  | 
|
616  | 
by (REPEAT (ares_tac [subsetI,Inl_in_univ,Inr_in_univ] 1  | 
|
617  | 
ORELSE eresolve_tac [sumE, ssubst] 1));  | 
|
618  | 
val sum_univ = result();  | 
|
619  | 
||
620  | 
val sum_subset_univ = standard  | 
|
621  | 
(sum_mono RS (sum_univ RSN (2,subset_trans)));  | 
|
622  | 
||
623  | 
||
624  | 
(** Closure under binary union -- use Un_least **)  | 
|
625  | 
(** Closure under Collect -- use (Collect_subset RS subset_trans) **)  | 
|
626  | 
(** Closure under RepFun -- use RepFun_subset **)  | 
|
627  | 
||
628  |