| author | huffman | 
| Tue, 01 Jan 2008 20:35:16 +0100 | |
| changeset 25757 | 5957e3d72fec | 
| parent 25230 | 022029099a83 | 
| child 25919 | 8b1c0d434824 | 
| permissions | -rw-r--r-- | 
| 23465 | 1 | (* Title: HOL/Presburger.thy | 
| 2 | ID: $Id$ | |
| 3 | Author: Amine Chaieb, TU Muenchen | |
| 4 | *) | |
| 5 | ||
| 23472 | 6 | header {* Decision Procedure for Presburger Arithmetic *}
 | 
| 7 | ||
| 23465 | 8 | theory Presburger | 
| 9 | imports Arith_Tools SetInterval | |
| 10 | uses | |
| 11 | "Tools/Qelim/cooper_data.ML" | |
| 12 | "Tools/Qelim/generated_cooper.ML" | |
| 13 |   ("Tools/Qelim/cooper.ML")
 | |
| 14 |   ("Tools/Qelim/presburger.ML")
 | |
| 15 | begin | |
| 16 | ||
| 17 | setup CooperData.setup | |
| 18 | ||
| 19 | subsection{* The @{text "-\<infinity>"} and @{text "+\<infinity>"} Properties *}
 | |
| 20 | ||
| 24404 | 21 | |
| 23465 | 22 | lemma minf: | 
| 23 | "\<lbrakk>\<exists>(z ::'a::linorder).\<forall>x<z. P x = P' x; \<exists>z.\<forall>x<z. Q x = Q' x\<rbrakk> | |
| 24 | \<Longrightarrow> \<exists>z.\<forall>x<z. (P x \<and> Q x) = (P' x \<and> Q' x)" | |
| 25 | "\<lbrakk>\<exists>(z ::'a::linorder).\<forall>x<z. P x = P' x; \<exists>z.\<forall>x<z. Q x = Q' x\<rbrakk> | |
| 26 | \<Longrightarrow> \<exists>z.\<forall>x<z. (P x \<or> Q x) = (P' x \<or> Q' x)" | |
| 27 |   "\<exists>(z ::'a::{linorder}).\<forall>x<z.(x = t) = False"
 | |
| 28 |   "\<exists>(z ::'a::{linorder}).\<forall>x<z.(x \<noteq> t) = True"
 | |
| 29 |   "\<exists>(z ::'a::{linorder}).\<forall>x<z.(x < t) = True"
 | |
| 30 |   "\<exists>(z ::'a::{linorder}).\<forall>x<z.(x \<le> t) = True"
 | |
| 31 |   "\<exists>(z ::'a::{linorder}).\<forall>x<z.(x > t) = False"
 | |
| 32 |   "\<exists>(z ::'a::{linorder}).\<forall>x<z.(x \<ge> t) = False"
 | |
| 24993 | 33 |   "\<exists>z.\<forall>(x::'a::{linorder,plus,Divides.div})<z. (d dvd x + s) = (d dvd x + s)"
 | 
| 34 |   "\<exists>z.\<forall>(x::'a::{linorder,plus,Divides.div})<z. (\<not> d dvd x + s) = (\<not> d dvd x + s)"
 | |
| 23465 | 35 | "\<exists>z.\<forall>x<z. F = F" | 
| 36 | by ((erule exE, erule exE,rule_tac x="min z za" in exI,simp)+, (rule_tac x="t" in exI,fastsimp)+) simp_all | |
| 37 | ||
| 38 | lemma pinf: | |
| 39 | "\<lbrakk>\<exists>(z ::'a::linorder).\<forall>x>z. P x = P' x; \<exists>z.\<forall>x>z. Q x = Q' x\<rbrakk> | |
| 40 | \<Longrightarrow> \<exists>z.\<forall>x>z. (P x \<and> Q x) = (P' x \<and> Q' x)" | |
| 41 | "\<lbrakk>\<exists>(z ::'a::linorder).\<forall>x>z. P x = P' x; \<exists>z.\<forall>x>z. Q x = Q' x\<rbrakk> | |
| 42 | \<Longrightarrow> \<exists>z.\<forall>x>z. (P x \<or> Q x) = (P' x \<or> Q' x)" | |
| 43 |   "\<exists>(z ::'a::{linorder}).\<forall>x>z.(x = t) = False"
 | |
| 44 |   "\<exists>(z ::'a::{linorder}).\<forall>x>z.(x \<noteq> t) = True"
 | |
| 45 |   "\<exists>(z ::'a::{linorder}).\<forall>x>z.(x < t) = False"
 | |
| 46 |   "\<exists>(z ::'a::{linorder}).\<forall>x>z.(x \<le> t) = False"
 | |
| 47 |   "\<exists>(z ::'a::{linorder}).\<forall>x>z.(x > t) = True"
 | |
| 48 |   "\<exists>(z ::'a::{linorder}).\<forall>x>z.(x \<ge> t) = True"
 | |
| 24993 | 49 |   "\<exists>z.\<forall>(x::'a::{linorder,plus,Divides.div})>z. (d dvd x + s) = (d dvd x + s)"
 | 
| 50 |   "\<exists>z.\<forall>(x::'a::{linorder,plus,Divides.div})>z. (\<not> d dvd x + s) = (\<not> d dvd x + s)"
 | |
| 23465 | 51 | "\<exists>z.\<forall>x>z. F = F" | 
| 52 | by ((erule exE, erule exE,rule_tac x="max z za" in exI,simp)+,(rule_tac x="t" in exI,fastsimp)+) simp_all | |
| 53 | ||
| 54 | lemma inf_period: | |
| 55 | "\<lbrakk>\<forall>x k. P x = P (x - k*D); \<forall>x k. Q x = Q (x - k*D)\<rbrakk> | |
| 56 | \<Longrightarrow> \<forall>x k. (P x \<and> Q x) = (P (x - k*D) \<and> Q (x - k*D))" | |
| 57 | "\<lbrakk>\<forall>x k. P x = P (x - k*D); \<forall>x k. Q x = Q (x - k*D)\<rbrakk> | |
| 58 | \<Longrightarrow> \<forall>x k. (P x \<or> Q x) = (P (x - k*D) \<or> Q (x - k*D))" | |
| 24993 | 59 |   "(d::'a::{comm_ring,Divides.div}) dvd D \<Longrightarrow> \<forall>x k. (d dvd x + t) = (d dvd (x - k*D) + t)"
 | 
| 60 |   "(d::'a::{comm_ring,Divides.div}) dvd D \<Longrightarrow> \<forall>x k. (\<not>d dvd x + t) = (\<not>d dvd (x - k*D) + t)"
 | |
| 23465 | 61 | "\<forall>x k. F = F" | 
| 62 | by simp_all | |
| 63 | (clarsimp simp add: dvd_def, rule iffI, clarsimp,rule_tac x = "kb - ka*k" in exI, | |
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23472diff
changeset | 64 | simp add: ring_simps, clarsimp,rule_tac x = "kb + ka*k" in exI,simp add: ring_simps)+ | 
| 23465 | 65 | |
| 23472 | 66 | subsection{* The A and B sets *}
 | 
| 23465 | 67 | lemma bset: | 
| 68 |   "\<lbrakk>\<forall>x.(\<forall>j \<in> {1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> P x \<longrightarrow> P(x - D) ;
 | |
| 69 |      \<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> Q x \<longrightarrow> Q(x - D)\<rbrakk> \<Longrightarrow> 
 | |
| 70 |   \<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j) \<longrightarrow> (P x \<and> Q x) \<longrightarrow> (P(x - D) \<and> Q (x - D))"
 | |
| 71 |   "\<lbrakk>\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> P x \<longrightarrow> P(x - D) ;
 | |
| 72 |      \<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> Q x \<longrightarrow> Q(x - D)\<rbrakk> \<Longrightarrow> 
 | |
| 73 |   \<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (P x \<or> Q x) \<longrightarrow> (P(x - D) \<or> Q (x - D))"
 | |
| 74 |   "\<lbrakk>D>0; t - 1\<in> B\<rbrakk> \<Longrightarrow> (\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x = t) \<longrightarrow> (x - D = t))"
 | |
| 75 |   "\<lbrakk>D>0 ; t \<in> B\<rbrakk> \<Longrightarrow>(\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x \<noteq> t) \<longrightarrow> (x - D \<noteq> t))"
 | |
| 76 |   "D>0 \<Longrightarrow> (\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x < t) \<longrightarrow> (x - D < t))"
 | |
| 77 |   "D>0 \<Longrightarrow> (\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x \<le> t) \<longrightarrow> (x - D \<le> t))"
 | |
| 78 |   "\<lbrakk>D>0 ; t \<in> B\<rbrakk> \<Longrightarrow>(\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x > t) \<longrightarrow> (x - D > t))"
 | |
| 79 |   "\<lbrakk>D>0 ; t - 1 \<in> B\<rbrakk> \<Longrightarrow>(\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x \<ge> t) \<longrightarrow> (x - D \<ge> t))"
 | |
| 80 |   "d dvd D \<Longrightarrow>(\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (d dvd x+t) \<longrightarrow> (d dvd (x - D) + t))"
 | |
| 81 |   "d dvd D \<Longrightarrow>(\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (\<not>d dvd x+t) \<longrightarrow> (\<not> d dvd (x - D) + t))"
 | |
| 82 |   "\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j) \<longrightarrow> F \<longrightarrow> F"
 | |
| 83 | proof (blast, blast) | |
| 84 | assume dp: "D > 0" and tB: "t - 1\<in> B" | |
| 85 |   show "(\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x = t) \<longrightarrow> (x - D = t))" 
 | |
| 86 | apply (rule allI, rule impI,erule ballE[where x="1"],erule ballE[where x="t - 1"]) | |
| 87 | using dp tB by simp_all | |
| 88 | next | |
| 89 | assume dp: "D > 0" and tB: "t \<in> B" | |
| 90 |   show "(\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x \<noteq> t) \<longrightarrow> (x - D \<noteq> t))" 
 | |
| 91 | apply (rule allI, rule impI,erule ballE[where x="D"],erule ballE[where x="t"]) | |
| 92 | using dp tB by simp_all | |
| 93 | next | |
| 94 |   assume dp: "D > 0" thus "(\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x < t) \<longrightarrow> (x - D < t))" by arith
 | |
| 95 | next | |
| 96 |   assume dp: "D > 0" thus "\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x \<le> t) \<longrightarrow> (x - D \<le> t)" by arith
 | |
| 97 | next | |
| 98 | assume dp: "D > 0" and tB:"t \<in> B" | |
| 99 |   {fix x assume nob: "\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j" and g: "x > t" and ng: "\<not> (x - D) > t"
 | |
| 100 | hence "x -t \<le> D" and "1 \<le> x - t" by simp+ | |
| 101 |       hence "\<exists>j \<in> {1 .. D}. x - t = j" by auto
 | |
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23472diff
changeset | 102 |       hence "\<exists>j \<in> {1 .. D}. x = t + j" by (simp add: ring_simps)
 | 
| 23465 | 103 | with nob tB have "False" by simp} | 
| 104 |   thus "\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x > t) \<longrightarrow> (x - D > t)" by blast
 | |
| 105 | next | |
| 106 | assume dp: "D > 0" and tB:"t - 1\<in> B" | |
| 107 |   {fix x assume nob: "\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j" and g: "x \<ge> t" and ng: "\<not> (x - D) \<ge> t"
 | |
| 108 | hence "x - (t - 1) \<le> D" and "1 \<le> x - (t - 1)" by simp+ | |
| 109 |       hence "\<exists>j \<in> {1 .. D}. x - (t - 1) = j" by auto
 | |
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23472diff
changeset | 110 |       hence "\<exists>j \<in> {1 .. D}. x = (t - 1) + j" by (simp add: ring_simps)
 | 
| 23465 | 111 | with nob tB have "False" by simp} | 
| 112 |   thus "\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x \<ge> t) \<longrightarrow> (x - D \<ge> t)" by blast
 | |
| 113 | next | |
| 114 | assume d: "d dvd D" | |
| 115 |   {fix x assume H: "d dvd x + t" with d have "d dvd (x - D) + t"
 | |
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23472diff
changeset | 116 | by (clarsimp simp add: dvd_def,rule_tac x= "ka - k" in exI,simp add: ring_simps)} | 
| 23465 | 117 |   thus "\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (d dvd x+t) \<longrightarrow> (d dvd (x - D) + t)" by simp
 | 
| 118 | next | |
| 119 | assume d: "d dvd D" | |
| 120 |   {fix x assume H: "\<not>(d dvd x + t)" with d have "\<not>d dvd (x - D) + t"
 | |
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23472diff
changeset | 121 | by (clarsimp simp add: dvd_def,erule_tac x= "ka + k" in allE,simp add: ring_simps)} | 
| 23465 | 122 |   thus "\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (\<not>d dvd x+t) \<longrightarrow> (\<not>d dvd (x - D) + t)" by auto
 | 
| 123 | qed blast | |
| 124 | ||
| 125 | lemma aset: | |
| 126 |   "\<lbrakk>\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> P x \<longrightarrow> P(x + D) ;
 | |
| 127 |      \<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> Q x \<longrightarrow> Q(x + D)\<rbrakk> \<Longrightarrow> 
 | |
| 128 |   \<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j) \<longrightarrow> (P x \<and> Q x) \<longrightarrow> (P(x + D) \<and> Q (x + D))"
 | |
| 129 |   "\<lbrakk>\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> P x \<longrightarrow> P(x + D) ;
 | |
| 130 |      \<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> Q x \<longrightarrow> Q(x + D)\<rbrakk> \<Longrightarrow> 
 | |
| 131 |   \<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (P x \<or> Q x) \<longrightarrow> (P(x + D) \<or> Q (x + D))"
 | |
| 132 |   "\<lbrakk>D>0; t + 1\<in> A\<rbrakk> \<Longrightarrow> (\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x = t) \<longrightarrow> (x + D = t))"
 | |
| 133 |   "\<lbrakk>D>0 ; t \<in> A\<rbrakk> \<Longrightarrow>(\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x \<noteq> t) \<longrightarrow> (x + D \<noteq> t))"
 | |
| 134 |   "\<lbrakk>D>0; t\<in> A\<rbrakk> \<Longrightarrow>(\<forall>(x::int). (\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x < t) \<longrightarrow> (x + D < t))"
 | |
| 135 |   "\<lbrakk>D>0; t + 1 \<in> A\<rbrakk> \<Longrightarrow> (\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x \<le> t) \<longrightarrow> (x + D \<le> t))"
 | |
| 136 |   "D>0 \<Longrightarrow>(\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x > t) \<longrightarrow> (x + D > t))"
 | |
| 137 |   "D>0 \<Longrightarrow>(\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x \<ge> t) \<longrightarrow> (x + D \<ge> t))"
 | |
| 138 |   "d dvd D \<Longrightarrow>(\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (d dvd x+t) \<longrightarrow> (d dvd (x + D) + t))"
 | |
| 139 |   "d dvd D \<Longrightarrow>(\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (\<not>d dvd x+t) \<longrightarrow> (\<not> d dvd (x + D) + t))"
 | |
| 140 |   "\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j) \<longrightarrow> F \<longrightarrow> F"
 | |
| 141 | proof (blast, blast) | |
| 142 | assume dp: "D > 0" and tA: "t + 1 \<in> A" | |
| 143 |   show "(\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x = t) \<longrightarrow> (x + D = t))" 
 | |
| 144 | apply (rule allI, rule impI,erule ballE[where x="1"],erule ballE[where x="t + 1"]) | |
| 145 | using dp tA by simp_all | |
| 146 | next | |
| 147 | assume dp: "D > 0" and tA: "t \<in> A" | |
| 148 |   show "(\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x \<noteq> t) \<longrightarrow> (x + D \<noteq> t))" 
 | |
| 149 | apply (rule allI, rule impI,erule ballE[where x="D"],erule ballE[where x="t"]) | |
| 150 | using dp tA by simp_all | |
| 151 | next | |
| 152 |   assume dp: "D > 0" thus "(\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x > t) \<longrightarrow> (x + D > t))" by arith
 | |
| 153 | next | |
| 154 |   assume dp: "D > 0" thus "\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x \<ge> t) \<longrightarrow> (x + D \<ge> t)" by arith
 | |
| 155 | next | |
| 156 | assume dp: "D > 0" and tA:"t \<in> A" | |
| 157 |   {fix x assume nob: "\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j" and g: "x < t" and ng: "\<not> (x + D) < t"
 | |
| 158 | hence "t - x \<le> D" and "1 \<le> t - x" by simp+ | |
| 159 |       hence "\<exists>j \<in> {1 .. D}. t - x = j" by auto
 | |
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23472diff
changeset | 160 |       hence "\<exists>j \<in> {1 .. D}. x = t - j" by (auto simp add: ring_simps) 
 | 
| 23465 | 161 | with nob tA have "False" by simp} | 
| 162 |   thus "\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x < t) \<longrightarrow> (x + D < t)" by blast
 | |
| 163 | next | |
| 164 | assume dp: "D > 0" and tA:"t + 1\<in> A" | |
| 165 |   {fix x assume nob: "\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j" and g: "x \<le> t" and ng: "\<not> (x + D) \<le> t"
 | |
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23472diff
changeset | 166 | hence "(t + 1) - x \<le> D" and "1 \<le> (t + 1) - x" by (simp_all add: ring_simps) | 
| 23465 | 167 |       hence "\<exists>j \<in> {1 .. D}. (t + 1) - x = j" by auto
 | 
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23472diff
changeset | 168 |       hence "\<exists>j \<in> {1 .. D}. x = (t + 1) - j" by (auto simp add: ring_simps)
 | 
| 23465 | 169 | with nob tA have "False" by simp} | 
| 170 |   thus "\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x \<le> t) \<longrightarrow> (x + D \<le> t)" by blast
 | |
| 171 | next | |
| 172 | assume d: "d dvd D" | |
| 173 |   {fix x assume H: "d dvd x + t" with d have "d dvd (x + D) + t"
 | |
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23472diff
changeset | 174 | by (clarsimp simp add: dvd_def,rule_tac x= "ka + k" in exI,simp add: ring_simps)} | 
| 23465 | 175 |   thus "\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (d dvd x+t) \<longrightarrow> (d dvd (x + D) + t)" by simp
 | 
| 176 | next | |
| 177 | assume d: "d dvd D" | |
| 178 |   {fix x assume H: "\<not>(d dvd x + t)" with d have "\<not>d dvd (x + D) + t"
 | |
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23472diff
changeset | 179 | by (clarsimp simp add: dvd_def,erule_tac x= "ka - k" in allE,simp add: ring_simps)} | 
| 23465 | 180 |   thus "\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (\<not>d dvd x+t) \<longrightarrow> (\<not>d dvd (x + D) + t)" by auto
 | 
| 181 | qed blast | |
| 182 | ||
| 183 | subsection{* Cooper's Theorem @{text "-\<infinity>"} and @{text "+\<infinity>"} Version *}
 | |
| 184 | ||
| 185 | subsubsection{* First some trivial facts about periodic sets or predicates *}
 | |
| 186 | lemma periodic_finite_ex: | |
| 187 | assumes dpos: "(0::int) < d" and modd: "ALL x k. P x = P(x - k*d)" | |
| 188 |   shows "(EX x. P x) = (EX j : {1..d}. P j)"
 | |
| 189 | (is "?LHS = ?RHS") | |
| 190 | proof | |
| 191 | assume ?LHS | |
| 192 | then obtain x where P: "P x" .. | |
| 193 | have "x mod d = x - (x div d)*d" by(simp add:zmod_zdiv_equality mult_ac eq_diff_eq) | |
| 194 | hence Pmod: "P x = P(x mod d)" using modd by simp | |
| 195 | show ?RHS | |
| 196 | proof (cases) | |
| 197 | assume "x mod d = 0" | |
| 198 | hence "P 0" using P Pmod by simp | |
| 199 | moreover have "P 0 = P(0 - (-1)*d)" using modd by blast | |
| 200 | ultimately have "P d" by simp | |
| 201 |     moreover have "d : {1..d}" using dpos by(simp add:atLeastAtMost_iff)
 | |
| 202 | ultimately show ?RHS .. | |
| 203 | next | |
| 204 | assume not0: "x mod d \<noteq> 0" | |
| 205 | have "P(x mod d)" using dpos P Pmod by(simp add:pos_mod_sign pos_mod_bound) | |
| 206 |     moreover have "x mod d : {1..d}"
 | |
| 207 | proof - | |
| 208 | from dpos have "0 \<le> x mod d" by(rule pos_mod_sign) | |
| 209 | moreover from dpos have "x mod d < d" by(rule pos_mod_bound) | |
| 210 | ultimately show ?thesis using not0 by(simp add:atLeastAtMost_iff) | |
| 211 | qed | |
| 212 | ultimately show ?RHS .. | |
| 213 | qed | |
| 214 | qed auto | |
| 215 | ||
| 216 | subsubsection{* The @{text "-\<infinity>"} Version*}
 | |
| 217 | ||
| 218 | lemma decr_lemma: "0 < (d::int) \<Longrightarrow> x - (abs(x-z)+1) * d < z" | |
| 219 | by(induct rule: int_gr_induct,simp_all add:int_distrib) | |
| 220 | ||
| 221 | lemma incr_lemma: "0 < (d::int) \<Longrightarrow> z < x + (abs(x-z)+1) * d" | |
| 222 | by(induct rule: int_gr_induct, simp_all add:int_distrib) | |
| 223 | ||
| 224 | theorem int_induct[case_names base step1 step2]: | |
| 225 | assumes | |
| 226 | base: "P(k::int)" and step1: "\<And>i. \<lbrakk>k \<le> i; P i\<rbrakk> \<Longrightarrow> P(i+1)" and | |
| 227 | step2: "\<And>i. \<lbrakk>k \<ge> i; P i\<rbrakk> \<Longrightarrow> P(i - 1)" | |
| 228 | shows "P i" | |
| 229 | proof - | |
| 230 | have "i \<le> k \<or> i\<ge> k" by arith | |
| 231 | thus ?thesis using prems int_ge_induct[where P="P" and k="k" and i="i"] int_le_induct[where P="P" and k="k" and i="i"] by blast | |
| 232 | qed | |
| 233 | ||
| 234 | lemma decr_mult_lemma: | |
| 235 | assumes dpos: "(0::int) < d" and minus: "\<forall>x. P x \<longrightarrow> P(x - d)" and knneg: "0 <= k" | |
| 236 | shows "ALL x. P x \<longrightarrow> P(x - k*d)" | |
| 237 | using knneg | |
| 238 | proof (induct rule:int_ge_induct) | |
| 239 | case base thus ?case by simp | |
| 240 | next | |
| 241 | case (step i) | |
| 242 |   {fix x
 | |
| 243 | have "P x \<longrightarrow> P (x - i * d)" using step.hyps by blast | |
| 244 | also have "\<dots> \<longrightarrow> P(x - (i + 1) * d)" using minus[THEN spec, of "x - i * d"] | |
| 245 | by (simp add:int_distrib OrderedGroup.diff_diff_eq[symmetric]) | |
| 246 | ultimately have "P x \<longrightarrow> P(x - (i + 1) * d)" by blast} | |
| 247 | thus ?case .. | |
| 248 | qed | |
| 249 | ||
| 250 | lemma minusinfinity: | |
| 251 | assumes dpos: "0 < d" and | |
| 252 | P1eqP1: "ALL x k. P1 x = P1(x - k*d)" and ePeqP1: "EX z::int. ALL x. x < z \<longrightarrow> (P x = P1 x)" | |
| 253 | shows "(EX x. P1 x) \<longrightarrow> (EX x. P x)" | |
| 254 | proof | |
| 255 | assume eP1: "EX x. P1 x" | |
| 256 | then obtain x where P1: "P1 x" .. | |
| 257 | from ePeqP1 obtain z where P1eqP: "ALL x. x < z \<longrightarrow> (P x = P1 x)" .. | |
| 258 | let ?w = "x - (abs(x-z)+1) * d" | |
| 259 | from dpos have w: "?w < z" by(rule decr_lemma) | |
| 260 | have "P1 x = P1 ?w" using P1eqP1 by blast | |
| 261 | also have "\<dots> = P(?w)" using w P1eqP by blast | |
| 262 | finally have "P ?w" using P1 by blast | |
| 263 | thus "EX x. P x" .. | |
| 264 | qed | |
| 265 | ||
| 266 | lemma cpmi: | |
| 267 | assumes dp: "0 < D" and p1:"\<exists>z. \<forall> x< z. P x = P' x" | |
| 268 |   and nb:"\<forall>x.(\<forall> j\<in> {1..D}. \<forall>(b::int) \<in> B. x \<noteq> b+j) --> P (x) --> P (x - D)"
 | |
| 269 | and pd: "\<forall> x k. P' x = P' (x-k*D)" | |
| 270 |   shows "(\<exists>x. P x) = ((\<exists> j\<in> {1..D} . P' j) | (\<exists> j \<in> {1..D}.\<exists> b\<in> B. P (b+j)))" 
 | |
| 271 | (is "?L = (?R1 \<or> ?R2)") | |
| 272 | proof- | |
| 273 |  {assume "?R2" hence "?L"  by blast}
 | |
| 274 | moreover | |
| 275 |  {assume H:"?R1" hence "?L" using minusinfinity[OF dp pd p1] periodic_finite_ex[OF dp pd] by simp}
 | |
| 276 | moreover | |
| 277 |  { fix x
 | |
| 278 | assume P: "P x" and H: "\<not> ?R2" | |
| 279 |    {fix y assume "\<not> (\<exists>j\<in>{1..D}. \<exists>b\<in>B. P (b + j))" and P: "P y"
 | |
| 280 |      hence "~(EX (j::int) : {1..D}. EX (b::int) : B. y = b+j)" by auto
 | |
| 281 | with nb P have "P (y - D)" by auto } | |
| 282 |    hence "ALL x.~(EX (j::int) : {1..D}. EX (b::int) : B. P(b+j)) --> P (x) --> P (x - D)" by blast
 | |
| 283 | with H P have th: " \<forall>x. P x \<longrightarrow> P (x - D)" by auto | |
| 284 | from p1 obtain z where z: "ALL x. x < z --> (P x = P' x)" by blast | |
| 285 | let ?y = "x - (\<bar>x - z\<bar> + 1)*D" | |
| 286 | have zp: "0 <= (\<bar>x - z\<bar> + 1)" by arith | |
| 287 | from dp have yz: "?y < z" using decr_lemma[OF dp] by simp | |
| 288 | from z[rule_format, OF yz] decr_mult_lemma[OF dp th zp, rule_format, OF P] have th2: " P' ?y" by auto | |
| 289 | with periodic_finite_ex[OF dp pd] | |
| 290 | have "?R1" by blast} | |
| 291 | ultimately show ?thesis by blast | |
| 292 | qed | |
| 293 | ||
| 294 | subsubsection {* The @{text "+\<infinity>"} Version*}
 | |
| 295 | ||
| 296 | lemma plusinfinity: | |
| 297 | assumes dpos: "(0::int) < d" and | |
| 298 | P1eqP1: "\<forall>x k. P' x = P'(x - k*d)" and ePeqP1: "\<exists> z. \<forall> x>z. P x = P' x" | |
| 299 | shows "(\<exists> x. P' x) \<longrightarrow> (\<exists> x. P x)" | |
| 300 | proof | |
| 301 | assume eP1: "EX x. P' x" | |
| 302 | then obtain x where P1: "P' x" .. | |
| 303 | from ePeqP1 obtain z where P1eqP: "\<forall>x>z. P x = P' x" .. | |
| 304 | let ?w' = "x + (abs(x-z)+1) * d" | |
| 305 | let ?w = "x - (-(abs(x-z) + 1))*d" | |
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23472diff
changeset | 306 | have ww'[simp]: "?w = ?w'" by (simp add: ring_simps) | 
| 23465 | 307 | from dpos have w: "?w > z" by(simp only: ww' incr_lemma) | 
| 308 | hence "P' x = P' ?w" using P1eqP1 by blast | |
| 309 | also have "\<dots> = P(?w)" using w P1eqP by blast | |
| 310 | finally have "P ?w" using P1 by blast | |
| 311 | thus "EX x. P x" .. | |
| 312 | qed | |
| 313 | ||
| 314 | lemma incr_mult_lemma: | |
| 315 | assumes dpos: "(0::int) < d" and plus: "ALL x::int. P x \<longrightarrow> P(x + d)" and knneg: "0 <= k" | |
| 316 | shows "ALL x. P x \<longrightarrow> P(x + k*d)" | |
| 317 | using knneg | |
| 318 | proof (induct rule:int_ge_induct) | |
| 319 | case base thus ?case by simp | |
| 320 | next | |
| 321 | case (step i) | |
| 322 |   {fix x
 | |
| 323 | have "P x \<longrightarrow> P (x + i * d)" using step.hyps by blast | |
| 324 | also have "\<dots> \<longrightarrow> P(x + (i + 1) * d)" using plus[THEN spec, of "x + i * d"] | |
| 325 | by (simp add:int_distrib zadd_ac) | |
| 326 | ultimately have "P x \<longrightarrow> P(x + (i + 1) * d)" by blast} | |
| 327 | thus ?case .. | |
| 328 | qed | |
| 329 | ||
| 330 | lemma cppi: | |
| 331 | assumes dp: "0 < D" and p1:"\<exists>z. \<forall> x> z. P x = P' x" | |
| 332 |   and nb:"\<forall>x.(\<forall> j\<in> {1..D}. \<forall>(b::int) \<in> A. x \<noteq> b - j) --> P (x) --> P (x + D)"
 | |
| 333 | and pd: "\<forall> x k. P' x= P' (x-k*D)" | |
| 334 |   shows "(\<exists>x. P x) = ((\<exists> j\<in> {1..D} . P' j) | (\<exists> j \<in> {1..D}.\<exists> b\<in> A. P (b - j)))" (is "?L = (?R1 \<or> ?R2)")
 | |
| 335 | proof- | |
| 336 |  {assume "?R2" hence "?L"  by blast}
 | |
| 337 | moreover | |
| 338 |  {assume H:"?R1" hence "?L" using plusinfinity[OF dp pd p1] periodic_finite_ex[OF dp pd] by simp}
 | |
| 339 | moreover | |
| 340 |  { fix x
 | |
| 341 | assume P: "P x" and H: "\<not> ?R2" | |
| 342 |    {fix y assume "\<not> (\<exists>j\<in>{1..D}. \<exists>b\<in>A. P (b - j))" and P: "P y"
 | |
| 343 |      hence "~(EX (j::int) : {1..D}. EX (b::int) : A. y = b - j)" by auto
 | |
| 344 | with nb P have "P (y + D)" by auto } | |
| 345 |    hence "ALL x.~(EX (j::int) : {1..D}. EX (b::int) : A. P(b-j)) --> P (x) --> P (x + D)" by blast
 | |
| 346 | with H P have th: " \<forall>x. P x \<longrightarrow> P (x + D)" by auto | |
| 347 | from p1 obtain z where z: "ALL x. x > z --> (P x = P' x)" by blast | |
| 348 | let ?y = "x + (\<bar>x - z\<bar> + 1)*D" | |
| 349 | have zp: "0 <= (\<bar>x - z\<bar> + 1)" by arith | |
| 350 | from dp have yz: "?y > z" using incr_lemma[OF dp] by simp | |
| 351 | from z[rule_format, OF yz] incr_mult_lemma[OF dp th zp, rule_format, OF P] have th2: " P' ?y" by auto | |
| 352 | with periodic_finite_ex[OF dp pd] | |
| 353 | have "?R1" by blast} | |
| 354 | ultimately show ?thesis by blast | |
| 355 | qed | |
| 356 | ||
| 357 | lemma simp_from_to: "{i..j::int} = (if j < i then {} else insert i {i+1..j})"
 | |
| 358 | apply(simp add:atLeastAtMost_def atLeast_def atMost_def) | |
| 359 | apply(fastsimp) | |
| 360 | done | |
| 361 | ||
| 24993 | 362 | theorem unity_coeff_ex: "(\<exists>(x::'a::{semiring_0,Divides.div}). P (l * x)) \<equiv> (\<exists>x. l dvd (x + 0) \<and> P x)"
 | 
| 23465 | 363 | apply (rule eq_reflection[symmetric]) | 
| 364 | apply (rule iffI) | |
| 365 | defer | |
| 366 | apply (erule exE) | |
| 367 | apply (rule_tac x = "l * x" in exI) | |
| 368 | apply (simp add: dvd_def) | |
| 369 | apply (rule_tac x="x" in exI, simp) | |
| 370 | apply (erule exE) | |
| 371 | apply (erule conjE) | |
| 372 | apply (erule dvdE) | |
| 373 | apply (rule_tac x = k in exI) | |
| 374 | apply simp | |
| 375 | done | |
| 376 | ||
| 377 | lemma zdvd_mono: assumes not0: "(k::int) \<noteq> 0" | |
| 378 | shows "((m::int) dvd t) \<equiv> (k*m dvd k*t)" | |
| 379 | using not0 by (simp add: dvd_def) | |
| 380 | ||
| 381 | lemma uminus_dvd_conv: "(d dvd (t::int)) \<equiv> (-d dvd t)" "(d dvd (t::int)) \<equiv> (d dvd -t)" | |
| 382 | by simp_all | |
| 383 | text {* \bigskip Theorems for transforming predicates on nat to predicates on @{text int}*}
 | |
| 384 | lemma all_nat: "(\<forall>x::nat. P x) = (\<forall>x::int. 0 <= x \<longrightarrow> P (nat x))" | |
| 385 | by (simp split add: split_nat) | |
| 386 | ||
| 387 | lemma ex_nat: "(\<exists>x::nat. P x) = (\<exists>x::int. 0 <= x \<and> P (nat x))" | |
| 388 | apply (auto split add: split_nat) | |
| 389 | apply (rule_tac x="int x" in exI, simp) | |
| 390 | apply (rule_tac x = "nat x" in exI,erule_tac x = "nat x" in allE, simp) | |
| 391 | done | |
| 392 | ||
| 393 | lemma zdiff_int_split: "P (int (x - y)) = | |
| 394 | ((y \<le> x \<longrightarrow> P (int x - int y)) \<and> (x < y \<longrightarrow> P 0))" | |
| 395 | by (case_tac "y \<le> x", simp_all add: zdiff_int) | |
| 396 | ||
| 397 | lemma number_of1: "(0::int) <= number_of n \<Longrightarrow> (0::int) <= number_of (n BIT b)" by simp | |
| 398 | lemma number_of2: "(0::int) <= Numeral0" by simp | |
| 399 | lemma Suc_plus1: "Suc n = n + 1" by simp | |
| 400 | ||
| 401 | text {*
 | |
| 402 | \medskip Specific instances of congruence rules, to prevent | |
| 403 | simplifier from looping. *} | |
| 404 | ||
| 405 | theorem imp_le_cong: "(0 <= x \<Longrightarrow> P = P') \<Longrightarrow> (0 <= (x::int) \<longrightarrow> P) = (0 <= x \<longrightarrow> P')" by simp | |
| 406 | ||
| 407 | theorem conj_le_cong: "(0 <= x \<Longrightarrow> P = P') \<Longrightarrow> (0 <= (x::int) \<and> P) = (0 <= x \<and> P')" | |
| 408 | by (simp cong: conj_cong) | |
| 409 | lemma int_eq_number_of_eq: | |
| 410 | "(((number_of v)::int) = (number_of w)) = iszero ((number_of (v + (uminus w)))::int)" | |
| 411 | by simp | |
| 412 | ||
| 413 | lemma mod_eq0_dvd_iff[presburger]: "(m::nat) mod n = 0 \<longleftrightarrow> n dvd m" | |
| 414 | unfolding dvd_eq_mod_eq_0[symmetric] .. | |
| 415 | ||
| 416 | lemma zmod_eq0_zdvd_iff[presburger]: "(m::int) mod n = 0 \<longleftrightarrow> n dvd m" | |
| 417 | unfolding zdvd_iff_zmod_eq_0[symmetric] .. | |
| 418 | declare mod_1[presburger] | |
| 419 | declare mod_0[presburger] | |
| 420 | declare zmod_1[presburger] | |
| 421 | declare zmod_zero[presburger] | |
| 422 | declare zmod_self[presburger] | |
| 423 | declare mod_self[presburger] | |
| 424 | declare DIVISION_BY_ZERO_MOD[presburger] | |
| 425 | declare nat_mod_div_trivial[presburger] | |
| 426 | declare div_mod_equality2[presburger] | |
| 427 | declare div_mod_equality[presburger] | |
| 428 | declare mod_div_equality2[presburger] | |
| 429 | declare mod_div_equality[presburger] | |
| 430 | declare mod_mult_self1[presburger] | |
| 431 | declare mod_mult_self2[presburger] | |
| 432 | declare zdiv_zmod_equality2[presburger] | |
| 433 | declare zdiv_zmod_equality[presburger] | |
| 434 | declare mod2_Suc_Suc[presburger] | |
| 435 | lemma [presburger]: "(a::int) div 0 = 0" and [presburger]: "a mod 0 = a" | |
| 436 | using IntDiv.DIVISION_BY_ZERO by blast+ | |
| 437 | ||
| 438 | use "Tools/Qelim/cooper.ML" | |
| 439 | oracle linzqe_oracle ("term") = Coopereif.cooper_oracle
 | |
| 440 | ||
| 441 | use "Tools/Qelim/presburger.ML" | |
| 442 | ||
| 24075 | 443 | declaration {* fn _ =>
 | 
| 444 | arith_tactic_add | |
| 24094 | 445 | (mk_arith_tactic "presburger" (fn ctxt => fn i => fn st => | 
| 23465 | 446 | (warning "Trying Presburger arithmetic ..."; | 
| 24094 | 447 | Presburger.cooper_tac true [] [] ctxt i st))) | 
| 23465 | 448 | *} | 
| 449 | ||
| 450 | method_setup presburger = {*
 | |
| 451 | let | |
| 452 | fun keyword k = Scan.lift (Args.$$$ k -- Args.colon) >> K () | |
| 453 | fun simple_keyword k = Scan.lift (Args.$$$ k) >> K () | |
| 454 | val addN = "add" | |
| 455 | val delN = "del" | |
| 456 | val elimN = "elim" | |
| 457 | val any_keyword = keyword addN || keyword delN || simple_keyword elimN | |
| 458 | val thms = Scan.repeat (Scan.unless any_keyword Attrib.multi_thm) >> flat; | |
| 459 | in | |
| 460 | fn src => Method.syntax | |
| 461 | ((Scan.optional (simple_keyword elimN >> K false) true) -- | |
| 462 | (Scan.optional (keyword addN |-- thms) []) -- | |
| 463 | (Scan.optional (keyword delN |-- thms) [])) src | |
| 464 | #> (fn (((elim, add_ths), del_ths),ctxt) => | |
| 465 | Method.SIMPLE_METHOD' (Presburger.cooper_tac elim add_ths del_ths ctxt)) | |
| 466 | end | |
| 467 | *} "Cooper's algorithm for Presburger arithmetic" | |
| 468 | ||
| 469 | lemma [presburger]: "m mod 2 = (1::nat) \<longleftrightarrow> \<not> 2 dvd m " by presburger | |
| 470 | lemma [presburger]: "m mod 2 = Suc 0 \<longleftrightarrow> \<not> 2 dvd m " by presburger | |
| 471 | lemma [presburger]: "m mod (Suc (Suc 0)) = (1::nat) \<longleftrightarrow> \<not> 2 dvd m " by presburger | |
| 472 | lemma [presburger]: "m mod (Suc (Suc 0)) = Suc 0 \<longleftrightarrow> \<not> 2 dvd m " by presburger | |
| 473 | lemma [presburger]: "m mod 2 = (1::int) \<longleftrightarrow> \<not> 2 dvd m " by presburger | |
| 474 | ||
| 475 | ||
| 23685 | 476 | lemma zdvd_period: | 
| 477 | fixes a d :: int | |
| 478 | assumes advdd: "a dvd d" | |
| 479 | shows "a dvd (x + t) \<longleftrightarrow> a dvd ((x + c * d) + t)" | |
| 480 | proof- | |
| 481 |   {
 | |
| 482 | fix x k | |
| 483 | from inf_period(3) [OF advdd, rule_format, where x=x and k="-k"] | |
| 484 | have "a dvd (x + t) \<longleftrightarrow> a dvd (x + k * d + t)" by simp | |
| 485 | } | |
| 486 | hence "\<forall>x.\<forall>k. ((a::int) dvd (x + t)) = (a dvd (x+k*d + t))" by simp | |
| 487 | then show ?thesis by simp | |
| 488 | qed | |
| 489 | ||
| 490 | ||
| 23465 | 491 | subsection {* Code generator setup *}
 | 
| 492 | ||
| 493 | text {*
 | |
| 494 | Presburger arithmetic is convenient to prove some | |
| 495 | of the following code lemmas on integer numerals: | |
| 496 | *} | |
| 497 | ||
| 498 | lemma eq_Pls_Pls: | |
| 499 | "Numeral.Pls = Numeral.Pls \<longleftrightarrow> True" by presburger | |
| 500 | ||
| 501 | lemma eq_Pls_Min: | |
| 502 | "Numeral.Pls = Numeral.Min \<longleftrightarrow> False" | |
| 503 | unfolding Pls_def Numeral.Min_def by presburger | |
| 504 | ||
| 505 | lemma eq_Pls_Bit0: | |
| 506 | "Numeral.Pls = Numeral.Bit k bit.B0 \<longleftrightarrow> Numeral.Pls = k" | |
| 507 | unfolding Pls_def Bit_def bit.cases by presburger | |
| 508 | ||
| 509 | lemma eq_Pls_Bit1: | |
| 510 | "Numeral.Pls = Numeral.Bit k bit.B1 \<longleftrightarrow> False" | |
| 511 | unfolding Pls_def Bit_def bit.cases by presburger | |
| 512 | ||
| 513 | lemma eq_Min_Pls: | |
| 514 | "Numeral.Min = Numeral.Pls \<longleftrightarrow> False" | |
| 515 | unfolding Pls_def Numeral.Min_def by presburger | |
| 516 | ||
| 517 | lemma eq_Min_Min: | |
| 518 | "Numeral.Min = Numeral.Min \<longleftrightarrow> True" by presburger | |
| 519 | ||
| 520 | lemma eq_Min_Bit0: | |
| 521 | "Numeral.Min = Numeral.Bit k bit.B0 \<longleftrightarrow> False" | |
| 522 | unfolding Numeral.Min_def Bit_def bit.cases by presburger | |
| 523 | ||
| 524 | lemma eq_Min_Bit1: | |
| 525 | "Numeral.Min = Numeral.Bit k bit.B1 \<longleftrightarrow> Numeral.Min = k" | |
| 526 | unfolding Numeral.Min_def Bit_def bit.cases by presburger | |
| 527 | ||
| 528 | lemma eq_Bit0_Pls: | |
| 529 | "Numeral.Bit k bit.B0 = Numeral.Pls \<longleftrightarrow> Numeral.Pls = k" | |
| 530 | unfolding Pls_def Bit_def bit.cases by presburger | |
| 531 | ||
| 532 | lemma eq_Bit1_Pls: | |
| 533 | "Numeral.Bit k bit.B1 = Numeral.Pls \<longleftrightarrow> False" | |
| 534 | unfolding Pls_def Bit_def bit.cases by presburger | |
| 535 | ||
| 536 | lemma eq_Bit0_Min: | |
| 537 | "Numeral.Bit k bit.B0 = Numeral.Min \<longleftrightarrow> False" | |
| 538 | unfolding Numeral.Min_def Bit_def bit.cases by presburger | |
| 539 | ||
| 540 | lemma eq_Bit1_Min: | |
| 541 | "(Numeral.Bit k bit.B1) = Numeral.Min \<longleftrightarrow> Numeral.Min = k" | |
| 542 | unfolding Numeral.Min_def Bit_def bit.cases by presburger | |
| 543 | ||
| 544 | lemma eq_Bit_Bit: | |
| 545 | "Numeral.Bit k1 v1 = Numeral.Bit k2 v2 \<longleftrightarrow> | |
| 546 | v1 = v2 \<and> k1 = k2" | |
| 547 | unfolding Bit_def | |
| 548 | apply (cases v1) | |
| 549 | apply (cases v2) | |
| 550 | apply auto | |
| 551 | apply presburger | |
| 552 | apply (cases v2) | |
| 553 | apply auto | |
| 554 | apply presburger | |
| 555 | apply (cases v2) | |
| 556 | apply auto | |
| 557 | done | |
| 558 | ||
| 559 | lemma eq_number_of: | |
| 560 | "(number_of k \<Colon> int) = number_of l \<longleftrightarrow> k = l" | |
| 561 | unfolding number_of_is_id .. | |
| 562 | ||
| 563 | ||
| 564 | lemma less_eq_Pls_Pls: | |
| 565 | "Numeral.Pls \<le> Numeral.Pls \<longleftrightarrow> True" by rule+ | |
| 566 | ||
| 567 | lemma less_eq_Pls_Min: | |
| 568 | "Numeral.Pls \<le> Numeral.Min \<longleftrightarrow> False" | |
| 569 | unfolding Pls_def Numeral.Min_def by presburger | |
| 570 | ||
| 571 | lemma less_eq_Pls_Bit: | |
| 572 | "Numeral.Pls \<le> Numeral.Bit k v \<longleftrightarrow> Numeral.Pls \<le> k" | |
| 573 | unfolding Pls_def Bit_def by (cases v) auto | |
| 574 | ||
| 575 | lemma less_eq_Min_Pls: | |
| 576 | "Numeral.Min \<le> Numeral.Pls \<longleftrightarrow> True" | |
| 577 | unfolding Pls_def Numeral.Min_def by presburger | |
| 578 | ||
| 579 | lemma less_eq_Min_Min: | |
| 580 | "Numeral.Min \<le> Numeral.Min \<longleftrightarrow> True" by rule+ | |
| 581 | ||
| 582 | lemma less_eq_Min_Bit0: | |
| 583 | "Numeral.Min \<le> Numeral.Bit k bit.B0 \<longleftrightarrow> Numeral.Min < k" | |
| 584 | unfolding Numeral.Min_def Bit_def by auto | |
| 585 | ||
| 586 | lemma less_eq_Min_Bit1: | |
| 587 | "Numeral.Min \<le> Numeral.Bit k bit.B1 \<longleftrightarrow> Numeral.Min \<le> k" | |
| 588 | unfolding Numeral.Min_def Bit_def by auto | |
| 589 | ||
| 590 | lemma less_eq_Bit0_Pls: | |
| 591 | "Numeral.Bit k bit.B0 \<le> Numeral.Pls \<longleftrightarrow> k \<le> Numeral.Pls" | |
| 592 | unfolding Pls_def Bit_def by simp | |
| 593 | ||
| 594 | lemma less_eq_Bit1_Pls: | |
| 595 | "Numeral.Bit k bit.B1 \<le> Numeral.Pls \<longleftrightarrow> k < Numeral.Pls" | |
| 596 | unfolding Pls_def Bit_def by auto | |
| 597 | ||
| 598 | lemma less_eq_Bit_Min: | |
| 599 | "Numeral.Bit k v \<le> Numeral.Min \<longleftrightarrow> k \<le> Numeral.Min" | |
| 600 | unfolding Numeral.Min_def Bit_def by (cases v) auto | |
| 601 | ||
| 602 | lemma less_eq_Bit0_Bit: | |
| 603 | "Numeral.Bit k1 bit.B0 \<le> Numeral.Bit k2 v \<longleftrightarrow> k1 \<le> k2" | |
| 604 | unfolding Bit_def bit.cases by (cases v) auto | |
| 605 | ||
| 606 | lemma less_eq_Bit_Bit1: | |
| 607 | "Numeral.Bit k1 v \<le> Numeral.Bit k2 bit.B1 \<longleftrightarrow> k1 \<le> k2" | |
| 608 | unfolding Bit_def bit.cases by (cases v) auto | |
| 609 | ||
| 610 | lemma less_eq_Bit1_Bit0: | |
| 611 | "Numeral.Bit k1 bit.B1 \<le> Numeral.Bit k2 bit.B0 \<longleftrightarrow> k1 < k2" | |
| 612 | unfolding Bit_def by (auto split: bit.split) | |
| 613 | ||
| 614 | lemma less_eq_number_of: | |
| 615 | "(number_of k \<Colon> int) \<le> number_of l \<longleftrightarrow> k \<le> l" | |
| 616 | unfolding number_of_is_id .. | |
| 617 | ||
| 618 | ||
| 619 | lemma less_Pls_Pls: | |
| 620 | "Numeral.Pls < Numeral.Pls \<longleftrightarrow> False" by simp | |
| 621 | ||
| 622 | lemma less_Pls_Min: | |
| 623 | "Numeral.Pls < Numeral.Min \<longleftrightarrow> False" | |
| 624 | unfolding Pls_def Numeral.Min_def by presburger | |
| 625 | ||
| 626 | lemma less_Pls_Bit0: | |
| 627 | "Numeral.Pls < Numeral.Bit k bit.B0 \<longleftrightarrow> Numeral.Pls < k" | |
| 628 | unfolding Pls_def Bit_def by auto | |
| 629 | ||
| 630 | lemma less_Pls_Bit1: | |
| 631 | "Numeral.Pls < Numeral.Bit k bit.B1 \<longleftrightarrow> Numeral.Pls \<le> k" | |
| 632 | unfolding Pls_def Bit_def by auto | |
| 633 | ||
| 634 | lemma less_Min_Pls: | |
| 635 | "Numeral.Min < Numeral.Pls \<longleftrightarrow> True" | |
| 636 | unfolding Pls_def Numeral.Min_def by presburger | |
| 637 | ||
| 638 | lemma less_Min_Min: | |
| 639 | "Numeral.Min < Numeral.Min \<longleftrightarrow> False" by simp | |
| 640 | ||
| 641 | lemma less_Min_Bit: | |
| 642 | "Numeral.Min < Numeral.Bit k v \<longleftrightarrow> Numeral.Min < k" | |
| 643 | unfolding Numeral.Min_def Bit_def by (auto split: bit.split) | |
| 644 | ||
| 645 | lemma less_Bit_Pls: | |
| 646 | "Numeral.Bit k v < Numeral.Pls \<longleftrightarrow> k < Numeral.Pls" | |
| 647 | unfolding Pls_def Bit_def by (auto split: bit.split) | |
| 648 | ||
| 649 | lemma less_Bit0_Min: | |
| 650 | "Numeral.Bit k bit.B0 < Numeral.Min \<longleftrightarrow> k \<le> Numeral.Min" | |
| 651 | unfolding Numeral.Min_def Bit_def by auto | |
| 652 | ||
| 653 | lemma less_Bit1_Min: | |
| 654 | "Numeral.Bit k bit.B1 < Numeral.Min \<longleftrightarrow> k < Numeral.Min" | |
| 655 | unfolding Numeral.Min_def Bit_def by auto | |
| 656 | ||
| 657 | lemma less_Bit_Bit0: | |
| 658 | "Numeral.Bit k1 v < Numeral.Bit k2 bit.B0 \<longleftrightarrow> k1 < k2" | |
| 659 | unfolding Bit_def by (auto split: bit.split) | |
| 660 | ||
| 661 | lemma less_Bit1_Bit: | |
| 662 | "Numeral.Bit k1 bit.B1 < Numeral.Bit k2 v \<longleftrightarrow> k1 < k2" | |
| 663 | unfolding Bit_def by (auto split: bit.split) | |
| 664 | ||
| 665 | lemma less_Bit0_Bit1: | |
| 666 | "Numeral.Bit k1 bit.B0 < Numeral.Bit k2 bit.B1 \<longleftrightarrow> k1 \<le> k2" | |
| 667 | unfolding Bit_def bit.cases by arith | |
| 668 | ||
| 669 | lemma less_number_of: | |
| 670 | "(number_of k \<Colon> int) < number_of l \<longleftrightarrow> k < l" | |
| 671 | unfolding number_of_is_id .. | |
| 672 | ||
| 673 | lemmas pred_succ_numeral_code [code func] = | |
| 674 | arith_simps(5-12) | |
| 675 | ||
| 676 | lemmas plus_numeral_code [code func] = | |
| 677 | arith_simps(13-17) | |
| 678 | arith_simps(26-27) | |
| 679 | arith_extra_simps(1) [where 'a = int] | |
| 680 | ||
| 681 | lemmas minus_numeral_code [code func] = | |
| 682 | arith_simps(18-21) | |
| 683 | arith_extra_simps(2) [where 'a = int] | |
| 684 | arith_extra_simps(5) [where 'a = int] | |
| 685 | ||
| 686 | lemmas times_numeral_code [code func] = | |
| 687 | arith_simps(22-25) | |
| 688 | arith_extra_simps(4) [where 'a = int] | |
| 689 | ||
| 690 | lemmas eq_numeral_code [code func] = | |
| 691 | eq_Pls_Pls eq_Pls_Min eq_Pls_Bit0 eq_Pls_Bit1 | |
| 692 | eq_Min_Pls eq_Min_Min eq_Min_Bit0 eq_Min_Bit1 | |
| 693 | eq_Bit0_Pls eq_Bit1_Pls eq_Bit0_Min eq_Bit1_Min eq_Bit_Bit | |
| 694 | eq_number_of | |
| 695 | ||
| 696 | lemmas less_eq_numeral_code [code func] = less_eq_Pls_Pls less_eq_Pls_Min less_eq_Pls_Bit | |
| 697 | less_eq_Min_Pls less_eq_Min_Min less_eq_Min_Bit0 less_eq_Min_Bit1 | |
| 698 | less_eq_Bit0_Pls less_eq_Bit1_Pls less_eq_Bit_Min less_eq_Bit0_Bit less_eq_Bit_Bit1 less_eq_Bit1_Bit0 | |
| 699 | less_eq_number_of | |
| 700 | ||
| 701 | lemmas less_numeral_code [code func] = less_Pls_Pls less_Pls_Min less_Pls_Bit0 | |
| 702 | less_Pls_Bit1 less_Min_Pls less_Min_Min less_Min_Bit less_Bit_Pls | |
| 703 | less_Bit0_Min less_Bit1_Min less_Bit_Bit0 less_Bit1_Bit less_Bit0_Bit1 | |
| 704 | less_number_of | |
| 705 | ||
| 25230 | 706 | context ring_1 | 
| 707 | begin | |
| 23856 | 708 | |
| 709 | lemma of_int_num [code func]: | |
| 710 | "of_int k = (if k = 0 then 0 else if k < 0 then | |
| 711 | - of_int (- k) else let | |
| 712 | (l, m) = divAlg (k, 2); | |
| 713 | l' = of_int l | |
| 714 | in if m = 0 then l' + l' else l' + l' + 1)" | |
| 715 | proof - | |
| 716 | have aux1: "k mod (2\<Colon>int) \<noteq> (0\<Colon>int) \<Longrightarrow> | |
| 717 | of_int k = of_int (k div 2 * 2 + 1)" | |
| 718 | proof - | |
| 719 | assume "k mod 2 \<noteq> 0" | |
| 720 | then have "k mod 2 = 1" by arith | |
| 721 | moreover have "of_int k = of_int (k div 2 * 2 + k mod 2)" by simp | |
| 722 | ultimately show ?thesis by auto | |
| 723 | qed | |
| 724 | have aux2: "\<And>x. of_int 2 * x = x + x" | |
| 725 | proof - | |
| 726 | fix x | |
| 727 | have int2: "(2::int) = 1 + 1" by arith | |
| 728 | show "of_int 2 * x = x + x" | |
| 729 | unfolding int2 of_int_add left_distrib by simp | |
| 730 | qed | |
| 731 | have aux3: "\<And>x. x * of_int 2 = x + x" | |
| 732 | proof - | |
| 733 | fix x | |
| 734 | have int2: "(2::int) = 1 + 1" by arith | |
| 735 | show "x * of_int 2 = x + x" | |
| 736 | unfolding int2 of_int_add right_distrib by simp | |
| 737 | qed | |
| 738 | from aux1 show ?thesis by (auto simp add: divAlg_mod_div Let_def aux2 aux3) | |
| 739 | qed | |
| 740 | ||
| 23465 | 741 | end | 
| 25230 | 742 | |
| 743 | end |