| author | wenzelm | 
| Wed, 23 Mar 2022 12:21:13 +0100 | |
| changeset 75311 | 5960bae73afe | 
| parent 62042 | 6c6ccf573479 | 
| child 80914 | d97fdabd9e2b | 
| permissions | -rw-r--r-- | 
| 59189 | 1 | section \<open>Generation of Verification Conditions\<close> | 
| 13020 | 2 | |
| 27104 
791607529f6d
rep_datatype command now takes list of constructors as input arguments
 haftmann parents: 
23894diff
changeset | 3 | theory OG_Tactics | 
| 
791607529f6d
rep_datatype command now takes list of constructors as input arguments
 haftmann parents: 
23894diff
changeset | 4 | imports OG_Hoare | 
| 15425 | 5 | begin | 
| 13020 | 6 | |
| 7 | lemmas ann_hoare_intros=AnnBasic AnnSeq AnnCond1 AnnCond2 AnnWhile AnnAwait AnnConseq | |
| 8 | lemmas oghoare_intros=Parallel Basic Seq Cond While Conseq | |
| 9 | ||
| 59189 | 10 | lemma ParallelConseqRule: | 
| 11 |  "\<lbrakk> p \<subseteq> (\<Inter>i\<in>{i. i<length Ts}. pre(the(com(Ts ! i))));
 | |
| 12 |   \<parallel>- (\<Inter>i\<in>{i. i<length Ts}. pre(the(com(Ts ! i))))
 | |
| 13 | (Parallel Ts) | |
| 14 |      (\<Inter>i\<in>{i. i<length Ts}. post(Ts ! i));
 | |
| 15 |   (\<Inter>i\<in>{i. i<length Ts}. post(Ts ! i)) \<subseteq> q \<rbrakk>
 | |
| 13020 | 16 | \<Longrightarrow> \<parallel>- p (Parallel Ts) q" | 
| 17 | apply (rule Conseq) | |
| 59189 | 18 | prefer 2 | 
| 13020 | 19 | apply fast | 
| 20 | apply assumption+ | |
| 21 | done | |
| 22 | ||
| 23 | lemma SkipRule: "p \<subseteq> q \<Longrightarrow> \<parallel>- p (Basic id) q" | |
| 24 | apply(rule oghoare_intros) | |
| 25 | prefer 2 apply(rule Basic) | |
| 26 | prefer 2 apply(rule subset_refl) | |
| 27 | apply(simp add:Id_def) | |
| 28 | done | |
| 29 | ||
| 30 | lemma BasicRule: "p \<subseteq> {s. (f s)\<in>q} \<Longrightarrow> \<parallel>- p (Basic f) q"
 | |
| 31 | apply(rule oghoare_intros) | |
| 32 | prefer 2 apply(rule oghoare_intros) | |
| 33 | prefer 2 apply(rule subset_refl) | |
| 34 | apply assumption | |
| 35 | done | |
| 36 | ||
| 37 | lemma SeqRule: "\<lbrakk> \<parallel>- p c1 r; \<parallel>- r c2 q \<rbrakk> \<Longrightarrow> \<parallel>- p (Seq c1 c2) q" | |
| 38 | apply(rule Seq) | |
| 39 | apply fast+ | |
| 40 | done | |
| 41 | ||
| 59189 | 42 | lemma CondRule: | 
| 43 |  "\<lbrakk> p \<subseteq> {s. (s\<in>b \<longrightarrow> s\<in>w) \<and> (s\<notin>b \<longrightarrow> s\<in>w')}; \<parallel>- w c1 q; \<parallel>- w' c2 q \<rbrakk>
 | |
| 13020 | 44 | \<Longrightarrow> \<parallel>- p (Cond b c1 c2) q" | 
| 45 | apply(rule Cond) | |
| 46 | apply(rule Conseq) | |
| 47 | prefer 4 apply(rule Conseq) | |
| 48 | apply simp_all | |
| 49 | apply force+ | |
| 50 | done | |
| 51 | ||
| 59189 | 52 | lemma WhileRule: "\<lbrakk> p \<subseteq> i; \<parallel>- (i \<inter> b) c i ; (i \<inter> (-b)) \<subseteq> q \<rbrakk> | 
| 13020 | 53 | \<Longrightarrow> \<parallel>- p (While b i c) q" | 
| 54 | apply(rule Conseq) | |
| 55 | prefer 2 apply(rule While) | |
| 56 | apply assumption+ | |
| 57 | done | |
| 58 | ||
| 62042 | 59 | text \<open>Three new proof rules for special instances of the \<open>AnnBasic\<close> and the \<open>AnnAwait\<close> commands when the transformation | 
| 60 | performed on the state is the identity, and for an \<open>AnnAwait\<close> | |
| 61 | command where the boolean condition is \<open>{s. True}\<close>:\<close>
 | |
| 13020 | 62 | |
| 63 | lemma AnnatomRule: | |
| 64 |   "\<lbrakk> atom_com(c); \<parallel>- r c q \<rbrakk>  \<Longrightarrow> \<turnstile> (AnnAwait r {s. True} c) q"
 | |
| 65 | apply(rule AnnAwait) | |
| 66 | apply simp_all | |
| 67 | done | |
| 68 | ||
| 69 | lemma AnnskipRule: | |
| 70 | "r \<subseteq> q \<Longrightarrow> \<turnstile> (AnnBasic r id) q" | |
| 71 | apply(rule AnnBasic) | |
| 72 | apply simp | |
| 73 | done | |
| 74 | ||
| 75 | lemma AnnwaitRule: | |
| 76 | "\<lbrakk> (r \<inter> b) \<subseteq> q \<rbrakk> \<Longrightarrow> \<turnstile> (AnnAwait r b (Basic id)) q" | |
| 77 | apply(rule AnnAwait) | |
| 78 | apply simp | |
| 79 | apply(rule BasicRule) | |
| 80 | apply simp | |
| 81 | done | |
| 82 | ||
| 62042 | 83 | text \<open>Lemmata to avoid using the definition of \<open>map_ann_hoare\<close>, \<open>interfree_aux\<close>, \<open>interfree_swap\<close> and | 
| 84 | \<open>interfree\<close> by splitting it into different cases:\<close> | |
| 13020 | 85 | |
| 86 | lemma interfree_aux_rule1: "interfree_aux(co, q, None)" | |
| 87 | by(simp add:interfree_aux_def) | |
| 88 | ||
| 59189 | 89 | lemma interfree_aux_rule2: | 
| 13020 | 90 | "\<forall>(R,r)\<in>(atomics a). \<parallel>- (q \<inter> R) r q \<Longrightarrow> interfree_aux(None, q, Some a)" | 
| 91 | apply(simp add:interfree_aux_def) | |
| 92 | apply(force elim:oghoare_sound) | |
| 93 | done | |
| 94 | ||
| 59189 | 95 | lemma interfree_aux_rule3: | 
| 13020 | 96 | "(\<forall>(R, r)\<in>(atomics a). \<parallel>- (q \<inter> R) r q \<and> (\<forall>p\<in>(assertions c). \<parallel>- (p \<inter> R) r p)) | 
| 97 | \<Longrightarrow> interfree_aux(Some c, q, Some a)" | |
| 98 | apply(simp add:interfree_aux_def) | |
| 99 | apply(force elim:oghoare_sound) | |
| 100 | done | |
| 101 | ||
| 59189 | 102 | lemma AnnBasic_assertions: | 
| 103 | "\<lbrakk>interfree_aux(None, r, Some a); interfree_aux(None, q, Some a)\<rbrakk> \<Longrightarrow> | |
| 13020 | 104 | interfree_aux(Some (AnnBasic r f), q, Some a)" | 
| 105 | apply(simp add: interfree_aux_def) | |
| 106 | by force | |
| 107 | ||
| 59189 | 108 | lemma AnnSeq_assertions: | 
| 109 | "\<lbrakk> interfree_aux(Some c1, q, Some a); interfree_aux(Some c2, q, Some a)\<rbrakk>\<Longrightarrow> | |
| 13020 | 110 | interfree_aux(Some (AnnSeq c1 c2), q, Some a)" | 
| 111 | apply(simp add: interfree_aux_def) | |
| 112 | by force | |
| 113 | ||
| 59189 | 114 | lemma AnnCond1_assertions: | 
| 115 | "\<lbrakk> interfree_aux(None, r, Some a); interfree_aux(Some c1, q, Some a); | |
| 116 | interfree_aux(Some c2, q, Some a)\<rbrakk>\<Longrightarrow> | |
| 13020 | 117 | interfree_aux(Some(AnnCond1 r b c1 c2), q, Some a)" | 
| 118 | apply(simp add: interfree_aux_def) | |
| 119 | by force | |
| 120 | ||
| 59189 | 121 | lemma AnnCond2_assertions: | 
| 122 | "\<lbrakk> interfree_aux(None, r, Some a); interfree_aux(Some c, q, Some a)\<rbrakk>\<Longrightarrow> | |
| 13020 | 123 | interfree_aux(Some (AnnCond2 r b c), q, Some a)" | 
| 124 | apply(simp add: interfree_aux_def) | |
| 125 | by force | |
| 126 | ||
| 59189 | 127 | lemma AnnWhile_assertions: | 
| 128 | "\<lbrakk> interfree_aux(None, r, Some a); interfree_aux(None, i, Some a); | |
| 129 | interfree_aux(Some c, q, Some a)\<rbrakk>\<Longrightarrow> | |
| 13020 | 130 | interfree_aux(Some (AnnWhile r b i c), q, Some a)" | 
| 131 | apply(simp add: interfree_aux_def) | |
| 132 | by force | |
| 59189 | 133 | |
| 134 | lemma AnnAwait_assertions: | |
| 135 | "\<lbrakk> interfree_aux(None, r, Some a); interfree_aux(None, q, Some a)\<rbrakk>\<Longrightarrow> | |
| 13020 | 136 | interfree_aux(Some (AnnAwait r b c), q, Some a)" | 
| 137 | apply(simp add: interfree_aux_def) | |
| 138 | by force | |
| 59189 | 139 | |
| 140 | lemma AnnBasic_atomics: | |
| 13020 | 141 | "\<parallel>- (q \<inter> r) (Basic f) q \<Longrightarrow> interfree_aux(None, q, Some (AnnBasic r f))" | 
| 142 | by(simp add: interfree_aux_def oghoare_sound) | |
| 143 | ||
| 59189 | 144 | lemma AnnSeq_atomics: | 
| 145 | "\<lbrakk> interfree_aux(Any, q, Some a1); interfree_aux(Any, q, Some a2)\<rbrakk>\<Longrightarrow> | |
| 13020 | 146 | interfree_aux(Any, q, Some (AnnSeq a1 a2))" | 
| 147 | apply(simp add: interfree_aux_def) | |
| 148 | by force | |
| 149 | ||
| 150 | lemma AnnCond1_atomics: | |
| 59189 | 151 | "\<lbrakk> interfree_aux(Any, q, Some a1); interfree_aux(Any, q, Some a2)\<rbrakk>\<Longrightarrow> | 
| 13020 | 152 | interfree_aux(Any, q, Some (AnnCond1 r b a1 a2))" | 
| 153 | apply(simp add: interfree_aux_def) | |
| 154 | by force | |
| 155 | ||
| 59189 | 156 | lemma AnnCond2_atomics: | 
| 13020 | 157 | "interfree_aux (Any, q, Some a)\<Longrightarrow> interfree_aux(Any, q, Some (AnnCond2 r b a))" | 
| 158 | by(simp add: interfree_aux_def) | |
| 159 | ||
| 59189 | 160 | lemma AnnWhile_atomics: "interfree_aux (Any, q, Some a) | 
| 13020 | 161 | \<Longrightarrow> interfree_aux(Any, q, Some (AnnWhile r b i a))" | 
| 162 | by(simp add: interfree_aux_def) | |
| 163 | ||
| 59189 | 164 | lemma Annatom_atomics: | 
| 13020 | 165 |   "\<parallel>- (q \<inter> r) a q \<Longrightarrow> interfree_aux (None, q, Some (AnnAwait r {x. True} a))"
 | 
| 59189 | 166 | by(simp add: interfree_aux_def oghoare_sound) | 
| 13020 | 167 | |
| 59189 | 168 | lemma AnnAwait_atomics: | 
| 13020 | 169 | "\<parallel>- (q \<inter> (r \<inter> b)) a q \<Longrightarrow> interfree_aux (None, q, Some (AnnAwait r b a))" | 
| 170 | by(simp add: interfree_aux_def oghoare_sound) | |
| 171 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32621diff
changeset | 172 | definition interfree_swap :: "('a ann_triple_op * ('a ann_triple_op) list) \<Rightarrow> bool" where
 | 
| 13020 | 173 | "interfree_swap == \<lambda>(x, xs). \<forall>y\<in>set xs. interfree_aux (com x, post x, com y) | 
| 174 | \<and> interfree_aux(com y, post y, com x)" | |
| 175 | ||
| 176 | lemma interfree_swap_Empty: "interfree_swap (x, [])" | |
| 177 | by(simp add:interfree_swap_def) | |
| 178 | ||
| 59189 | 179 | lemma interfree_swap_List: | 
| 180 | "\<lbrakk> interfree_aux (com x, post x, com y); | |
| 181 | interfree_aux (com y, post y ,com x); interfree_swap (x, xs) \<rbrakk> | |
| 13020 | 182 | \<Longrightarrow> interfree_swap (x, y#xs)" | 
| 183 | by(simp add:interfree_swap_def) | |
| 184 | ||
| 59189 | 185 | lemma interfree_swap_Map: "\<forall>k. i\<le>k \<and> k<j \<longrightarrow> interfree_aux (com x, post x, c k) | 
| 186 | \<and> interfree_aux (c k, Q k, com x) | |
| 15425 | 187 | \<Longrightarrow> interfree_swap (x, map (\<lambda>k. (c k, Q k)) [i..<j])" | 
| 13020 | 188 | by(force simp add: interfree_swap_def less_diff_conv) | 
| 189 | ||
| 190 | lemma interfree_Empty: "interfree []" | |
| 191 | by(simp add:interfree_def) | |
| 192 | ||
| 59189 | 193 | lemma interfree_List: | 
| 13020 | 194 | "\<lbrakk> interfree_swap(x, xs); interfree xs \<rbrakk> \<Longrightarrow> interfree (x#xs)" | 
| 195 | apply(simp add:interfree_def interfree_swap_def) | |
| 196 | apply clarify | |
| 197 | apply(case_tac i) | |
| 198 | apply(case_tac j) | |
| 199 | apply simp_all | |
| 200 | apply(case_tac j,simp+) | |
| 201 | done | |
| 202 | ||
| 59189 | 203 | lemma interfree_Map: | 
| 204 | "(\<forall>i j. a\<le>i \<and> i<b \<and> a\<le>j \<and> j<b \<and> i\<noteq>j \<longrightarrow> interfree_aux (c i, Q i, c j)) | |
| 15425 | 205 | \<Longrightarrow> interfree (map (\<lambda>k. (c k, Q k)) [a..<b])" | 
| 13020 | 206 | by(force simp add: interfree_def less_diff_conv) | 
| 207 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32621diff
changeset | 208 | definition map_ann_hoare :: "(('a ann_com_op * 'a assn) list) \<Rightarrow> bool " ("[\<turnstile>] _" [0] 45) where
 | 
| 13020 | 209 | "[\<turnstile>] Ts == (\<forall>i<length Ts. \<exists>c q. Ts!i=(Some c, q) \<and> \<turnstile> c q)" | 
| 210 | ||
| 211 | lemma MapAnnEmpty: "[\<turnstile>] []" | |
| 212 | by(simp add:map_ann_hoare_def) | |
| 213 | ||
| 214 | lemma MapAnnList: "\<lbrakk> \<turnstile> c q ; [\<turnstile>] xs \<rbrakk> \<Longrightarrow> [\<turnstile>] (Some c,q)#xs" | |
| 215 | apply(simp add:map_ann_hoare_def) | |
| 216 | apply clarify | |
| 217 | apply(case_tac i,simp+) | |
| 218 | done | |
| 219 | ||
| 59189 | 220 | lemma MapAnnMap: | 
| 15425 | 221 | "\<forall>k. i\<le>k \<and> k<j \<longrightarrow> \<turnstile> (c k) (Q k) \<Longrightarrow> [\<turnstile>] map (\<lambda>k. (Some (c k), Q k)) [i..<j]" | 
| 13020 | 222 | apply(simp add: map_ann_hoare_def less_diff_conv) | 
| 223 | done | |
| 224 | ||
| 225 | lemma ParallelRule:"\<lbrakk> [\<turnstile>] Ts ; interfree Ts \<rbrakk> | |
| 59189 | 226 |   \<Longrightarrow> \<parallel>- (\<Inter>i\<in>{i. i<length Ts}. pre(the(com(Ts!i))))
 | 
| 227 | Parallel Ts | |
| 13020 | 228 |         (\<Inter>i\<in>{i. i<length Ts}. post(Ts!i))"
 | 
| 229 | apply(rule Parallel) | |
| 230 | apply(simp add:map_ann_hoare_def) | |
| 231 | apply simp | |
| 232 | done | |
| 233 | (* | |
| 234 | lemma ParamParallelRule: | |
| 59189 | 235 | "\<lbrakk> \<forall>k<n. \<turnstile> (c k) (Q k); | 
| 13020 | 236 | \<forall>k l. k<n \<and> l<n \<and> k\<noteq>l \<longrightarrow> interfree_aux (Some(c k), Q k, Some(c l)) \<rbrakk> | 
| 237 |   \<Longrightarrow> \<parallel>- (\<Inter>i\<in>{i. i<n} . pre(c i)) COBEGIN SCHEME [0\<le>i<n] (c i) (Q i) COEND  (\<Inter>i\<in>{i. i<n} . Q i )"
 | |
| 238 | apply(rule ParallelConseqRule) | |
| 239 | apply simp | |
| 240 | apply clarify | |
| 241 | apply force | |
| 242 | apply(rule ParallelRule) | |
| 243 | apply(rule MapAnnMap) | |
| 244 | apply simp | |
| 245 | apply(rule interfree_Map) | |
| 246 | apply simp | |
| 247 | apply simp | |
| 248 | apply clarify | |
| 249 | apply force | |
| 250 | done | |
| 251 | *) | |
| 252 | ||
| 59189 | 253 | text \<open>The following are some useful lemmas and simplification | 
| 13020 | 254 | tactics to control which theorems are used to simplify at each moment, | 
| 255 | so that the original input does not suffer any unexpected | |
| 59189 | 256 | transformation.\<close> | 
| 13020 | 257 | |
| 258 | lemma Compl_Collect: "-(Collect b) = {x. \<not>(b x)}"
 | |
| 52597 
a8a81453833d
more precise fact declarations -- fewer warnings;
 wenzelm parents: 
51717diff
changeset | 259 | by fast | 
| 
a8a81453833d
more precise fact declarations -- fewer warnings;
 wenzelm parents: 
51717diff
changeset | 260 | |
| 
a8a81453833d
more precise fact declarations -- fewer warnings;
 wenzelm parents: 
51717diff
changeset | 261 | lemma list_length: "length []=0" "length (x#xs) = Suc(length xs)" | 
| 
a8a81453833d
more precise fact declarations -- fewer warnings;
 wenzelm parents: 
51717diff
changeset | 262 | by simp_all | 
| 
a8a81453833d
more precise fact declarations -- fewer warnings;
 wenzelm parents: 
51717diff
changeset | 263 | lemma list_lemmas: "length []=0" "length (x#xs) = Suc(length xs)" | 
| 
a8a81453833d
more precise fact declarations -- fewer warnings;
 wenzelm parents: 
51717diff
changeset | 264 | "(x#xs) ! 0 = x" "(x#xs) ! Suc n = xs ! n" | 
| 
a8a81453833d
more precise fact declarations -- fewer warnings;
 wenzelm parents: 
51717diff
changeset | 265 | by simp_all | 
| 13020 | 266 | lemma le_Suc_eq_insert: "{i. i <Suc n} = insert n {i. i< n}"
 | 
| 52597 
a8a81453833d
more precise fact declarations -- fewer warnings;
 wenzelm parents: 
51717diff
changeset | 267 | by auto | 
| 13020 | 268 | lemmas primrecdef_list = "pre.simps" "assertions.simps" "atomics.simps" "atom_com.simps" | 
| 269 | lemmas my_simp_list = list_lemmas fst_conv snd_conv | |
| 27104 
791607529f6d
rep_datatype command now takes list of constructors as input arguments
 haftmann parents: 
23894diff
changeset | 270 | not_less0 refl le_Suc_eq_insert Suc_not_Zero Zero_not_Suc nat.inject | 
| 13020 | 271 | Collect_mem_eq ball_simps option.simps primrecdef_list | 
| 52597 
a8a81453833d
more precise fact declarations -- fewer warnings;
 wenzelm parents: 
51717diff
changeset | 272 | lemmas ParallelConseq_list = INTER_eq Collect_conj_eq length_map length_upt length_append | 
| 13020 | 273 | |
| 59189 | 274 | ML \<open> | 
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
44928diff
changeset | 275 | fun before_interfree_simp_tac ctxt = | 
| 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
44928diff
changeset | 276 |   simp_tac (put_simpset HOL_basic_ss ctxt addsimps [@{thm com.simps}, @{thm post.simps}])
 | 
| 13020 | 277 | |
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
44928diff
changeset | 278 | fun interfree_simp_tac ctxt = | 
| 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
44928diff
changeset | 279 | asm_simp_tac (put_simpset HOL_ss ctxt | 
| 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
44928diff
changeset | 280 |     addsimps [@{thm split}, @{thm ball_Un}, @{thm ball_empty}] @ @{thms my_simp_list})
 | 
| 13020 | 281 | |
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
44928diff
changeset | 282 | fun ParallelConseq ctxt = | 
| 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
44928diff
changeset | 283 | simp_tac (put_simpset HOL_basic_ss ctxt | 
| 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
44928diff
changeset | 284 |     addsimps @{thms ParallelConseq_list} @ @{thms my_simp_list})
 | 
| 59189 | 285 | \<close> | 
| 13020 | 286 | |
| 62042 | 287 | text \<open>The following tactic applies \<open>tac\<close> to each conjunct in a | 
| 288 | subgoal of the form \<open>A \<Longrightarrow> a1 \<and> a2 \<and> .. \<and> an\<close> returning | |
| 289 | \<open>n\<close> subgoals, one for each conjunct:\<close> | |
| 13020 | 290 | |
| 59189 | 291 | ML \<open> | 
| 60754 | 292 | fun conjI_Tac ctxt tac i st = st |> | 
| 293 | ( (EVERY [resolve_tac ctxt [conjI] i, | |
| 294 | conjI_Tac ctxt tac (i+1), | |
| 13020 | 295 | tac i]) ORELSE (tac i) ) | 
| 59189 | 296 | \<close> | 
| 13020 | 297 | |
| 298 | ||
| 59189 | 299 | subsubsection \<open>Tactic for the generation of the verification conditions\<close> | 
| 13020 | 300 | |
| 59189 | 301 | text \<open>The tactic basically uses two subtactics: | 
| 13020 | 302 | |
| 303 | \begin{description}
 | |
| 304 | ||
| 59189 | 305 | \item[HoareRuleTac] is called at the level of parallel programs, it | 
| 306 | uses the ParallelTac to solve parallel composition of programs. | |
| 307 | This verification has two parts, namely, (1) all component programs are | |
| 62042 | 308 | correct and (2) they are interference free. \<open>HoareRuleTac\<close> is | 
| 309 | also called at the level of atomic regions, i.e. \<open>\<langle> \<rangle>\<close> and | |
| 310 | \<open>AWAIT b THEN _ END\<close>, and at each interference freedom test. | |
| 13020 | 311 | |
| 59189 | 312 | \item[AnnHoareRuleTac] is for component programs which | 
| 313 | are annotated programs and so, there are not unknown assertions | |
| 13020 | 314 | (no need to use the parameter precond, see NOTE). | 
| 315 | ||
| 62042 | 316 | NOTE: precond(::bool) informs if the subgoal has the form \<open>\<parallel>- ?p c q\<close>, | 
| 59189 | 317 | in this case we have precond=False and the generated verification | 
| 62042 | 318 | condition would have the form \<open>?p \<subseteq> \<dots>\<close> which can be solved by | 
| 319 | \<open>rtac subset_refl\<close>, if True we proceed to simplify it using | |
| 13020 | 320 | the simplification tactics above. | 
| 321 | ||
| 322 | \end{description}
 | |
| 59189 | 323 | \<close> | 
| 13020 | 324 | |
| 59189 | 325 | ML \<open> | 
| 13020 | 326 | |
| 60754 | 327 | fun WlpTac ctxt i = resolve_tac ctxt @{thms SeqRule} i THEN HoareRuleTac ctxt false (i + 1)
 | 
| 59189 | 328 | and HoareRuleTac ctxt precond i st = st |> | 
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
44928diff
changeset | 329 | ( (WlpTac ctxt i THEN HoareRuleTac ctxt precond i) | 
| 13020 | 330 | ORELSE | 
| 60754 | 331 |       (FIRST[resolve_tac ctxt @{thms SkipRule} i,
 | 
| 332 |              resolve_tac ctxt @{thms BasicRule} i,
 | |
| 333 |              EVERY[resolve_tac ctxt @{thms ParallelConseqRule} i,
 | |
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
44928diff
changeset | 334 | ParallelConseq ctxt (i+2), | 
| 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
44928diff
changeset | 335 | ParallelTac ctxt (i+1), | 
| 59189 | 336 | ParallelConseq ctxt i], | 
| 60754 | 337 |              EVERY[resolve_tac ctxt @{thms CondRule} i,
 | 
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
44928diff
changeset | 338 | HoareRuleTac ctxt false (i+2), | 
| 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
44928diff
changeset | 339 | HoareRuleTac ctxt false (i+1)], | 
| 60754 | 340 |              EVERY[resolve_tac ctxt @{thms WhileRule} i,
 | 
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
44928diff
changeset | 341 | HoareRuleTac ctxt true (i+1)], | 
| 13020 | 342 | K all_tac i ] | 
| 60754 | 343 |        THEN (if precond then (K all_tac i) else resolve_tac ctxt @{thms subset_refl} i)))
 | 
| 13020 | 344 | |
| 60754 | 345 | and AnnWlpTac ctxt i = resolve_tac ctxt @{thms AnnSeq} i THEN AnnHoareRuleTac ctxt (i + 1)
 | 
| 59189 | 346 | and AnnHoareRuleTac ctxt i st = st |> | 
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
44928diff
changeset | 347 | ( (AnnWlpTac ctxt i THEN AnnHoareRuleTac ctxt i ) | 
| 13020 | 348 | ORELSE | 
| 60754 | 349 |       (FIRST[(resolve_tac ctxt @{thms AnnskipRule} i),
 | 
| 350 |              EVERY[resolve_tac ctxt @{thms AnnatomRule} i,
 | |
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
44928diff
changeset | 351 | HoareRuleTac ctxt true (i+1)], | 
| 60754 | 352 |              (resolve_tac ctxt @{thms AnnwaitRule} i),
 | 
| 353 |              resolve_tac ctxt @{thms AnnBasic} i,
 | |
| 354 |              EVERY[resolve_tac ctxt @{thms AnnCond1} i,
 | |
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
44928diff
changeset | 355 | AnnHoareRuleTac ctxt (i+3), | 
| 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
44928diff
changeset | 356 | AnnHoareRuleTac ctxt (i+1)], | 
| 60754 | 357 |              EVERY[resolve_tac ctxt @{thms AnnCond2} i,
 | 
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
44928diff
changeset | 358 | AnnHoareRuleTac ctxt (i+1)], | 
| 60754 | 359 |              EVERY[resolve_tac ctxt @{thms AnnWhile} i,
 | 
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
44928diff
changeset | 360 | AnnHoareRuleTac ctxt (i+2)], | 
| 60754 | 361 |              EVERY[resolve_tac ctxt @{thms AnnAwait} i,
 | 
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
44928diff
changeset | 362 | HoareRuleTac ctxt true (i+1)], | 
| 13020 | 363 | K all_tac i])) | 
| 364 | ||
| 60754 | 365 | and ParallelTac ctxt i = EVERY[resolve_tac ctxt @{thms ParallelRule} i,
 | 
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
44928diff
changeset | 366 | interfree_Tac ctxt (i+1), | 
| 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
44928diff
changeset | 367 | MapAnn_Tac ctxt i] | 
| 13020 | 368 | |
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
44928diff
changeset | 369 | and MapAnn_Tac ctxt i st = st |> | 
| 60754 | 370 |     (FIRST[resolve_tac ctxt @{thms MapAnnEmpty} i,
 | 
| 371 |            EVERY[resolve_tac ctxt @{thms MapAnnList} i,
 | |
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
44928diff
changeset | 372 | MapAnn_Tac ctxt (i+1), | 
| 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
44928diff
changeset | 373 | AnnHoareRuleTac ctxt i], | 
| 60754 | 374 |            EVERY[resolve_tac ctxt @{thms MapAnnMap} i,
 | 
| 375 |                  resolve_tac ctxt @{thms allI} i,
 | |
| 376 |                  resolve_tac ctxt @{thms impI} i,
 | |
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
44928diff
changeset | 377 | AnnHoareRuleTac ctxt i]]) | 
| 13020 | 378 | |
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
44928diff
changeset | 379 | and interfree_swap_Tac ctxt i st = st |> | 
| 60754 | 380 |     (FIRST[resolve_tac ctxt @{thms interfree_swap_Empty} i,
 | 
| 381 |            EVERY[resolve_tac ctxt @{thms interfree_swap_List} i,
 | |
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
44928diff
changeset | 382 | interfree_swap_Tac ctxt (i+2), | 
| 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
44928diff
changeset | 383 | interfree_aux_Tac ctxt (i+1), | 
| 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
44928diff
changeset | 384 | interfree_aux_Tac ctxt i ], | 
| 60754 | 385 |            EVERY[resolve_tac ctxt @{thms interfree_swap_Map} i,
 | 
| 386 |                  resolve_tac ctxt @{thms allI} i,
 | |
| 387 |                  resolve_tac ctxt @{thms impI} i,
 | |
| 388 | conjI_Tac ctxt (interfree_aux_Tac ctxt) i]]) | |
| 13020 | 389 | |
| 59189 | 390 | and interfree_Tac ctxt i st = st |> | 
| 60754 | 391 |    (FIRST[resolve_tac ctxt @{thms interfree_Empty} i,
 | 
| 392 |           EVERY[resolve_tac ctxt @{thms interfree_List} i,
 | |
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
44928diff
changeset | 393 | interfree_Tac ctxt (i+1), | 
| 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
44928diff
changeset | 394 | interfree_swap_Tac ctxt i], | 
| 60754 | 395 |           EVERY[resolve_tac ctxt @{thms interfree_Map} i,
 | 
| 396 |                 resolve_tac ctxt @{thms allI} i,
 | |
| 397 |                 resolve_tac ctxt @{thms allI} i,
 | |
| 398 |                 resolve_tac ctxt @{thms impI} i,
 | |
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
44928diff
changeset | 399 | interfree_aux_Tac ctxt i ]]) | 
| 13020 | 400 | |
| 59189 | 401 | and interfree_aux_Tac ctxt i = (before_interfree_simp_tac ctxt i ) THEN | 
| 60754 | 402 |         (FIRST[resolve_tac ctxt @{thms interfree_aux_rule1} i,
 | 
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
44928diff
changeset | 403 | dest_assertions_Tac ctxt i]) | 
| 13020 | 404 | |
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
44928diff
changeset | 405 | and dest_assertions_Tac ctxt i st = st |> | 
| 60754 | 406 |     (FIRST[EVERY[resolve_tac ctxt @{thms AnnBasic_assertions} i,
 | 
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
44928diff
changeset | 407 | dest_atomics_Tac ctxt (i+1), | 
| 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
44928diff
changeset | 408 | dest_atomics_Tac ctxt i], | 
| 60754 | 409 |            EVERY[resolve_tac ctxt @{thms AnnSeq_assertions} i,
 | 
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
44928diff
changeset | 410 | dest_assertions_Tac ctxt (i+1), | 
| 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
44928diff
changeset | 411 | dest_assertions_Tac ctxt i], | 
| 60754 | 412 |            EVERY[resolve_tac ctxt @{thms AnnCond1_assertions} i,
 | 
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
44928diff
changeset | 413 | dest_assertions_Tac ctxt (i+2), | 
| 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
44928diff
changeset | 414 | dest_assertions_Tac ctxt (i+1), | 
| 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
44928diff
changeset | 415 | dest_atomics_Tac ctxt i], | 
| 60754 | 416 |            EVERY[resolve_tac ctxt @{thms AnnCond2_assertions} i,
 | 
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
44928diff
changeset | 417 | dest_assertions_Tac ctxt (i+1), | 
| 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
44928diff
changeset | 418 | dest_atomics_Tac ctxt i], | 
| 60754 | 419 |            EVERY[resolve_tac ctxt @{thms AnnWhile_assertions} i,
 | 
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
44928diff
changeset | 420 | dest_assertions_Tac ctxt (i+2), | 
| 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
44928diff
changeset | 421 | dest_atomics_Tac ctxt (i+1), | 
| 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
44928diff
changeset | 422 | dest_atomics_Tac ctxt i], | 
| 60754 | 423 |            EVERY[resolve_tac ctxt @{thms AnnAwait_assertions} i,
 | 
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
44928diff
changeset | 424 | dest_atomics_Tac ctxt (i+1), | 
| 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
44928diff
changeset | 425 | dest_atomics_Tac ctxt i], | 
| 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
44928diff
changeset | 426 | dest_atomics_Tac ctxt i]) | 
| 13020 | 427 | |
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
44928diff
changeset | 428 | and dest_atomics_Tac ctxt i st = st |> | 
| 60754 | 429 |     (FIRST[EVERY[resolve_tac ctxt @{thms AnnBasic_atomics} i,
 | 
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
44928diff
changeset | 430 | HoareRuleTac ctxt true i], | 
| 60754 | 431 |            EVERY[resolve_tac ctxt @{thms AnnSeq_atomics} i,
 | 
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
44928diff
changeset | 432 | dest_atomics_Tac ctxt (i+1), | 
| 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
44928diff
changeset | 433 | dest_atomics_Tac ctxt i], | 
| 60754 | 434 |            EVERY[resolve_tac ctxt @{thms AnnCond1_atomics} i,
 | 
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
44928diff
changeset | 435 | dest_atomics_Tac ctxt (i+1), | 
| 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
44928diff
changeset | 436 | dest_atomics_Tac ctxt i], | 
| 60754 | 437 |            EVERY[resolve_tac ctxt @{thms AnnCond2_atomics} i,
 | 
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
44928diff
changeset | 438 | dest_atomics_Tac ctxt i], | 
| 60754 | 439 |            EVERY[resolve_tac ctxt @{thms AnnWhile_atomics} i,
 | 
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
44928diff
changeset | 440 | dest_atomics_Tac ctxt i], | 
| 60754 | 441 |            EVERY[resolve_tac ctxt @{thms Annatom_atomics} i,
 | 
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
44928diff
changeset | 442 | HoareRuleTac ctxt true i], | 
| 60754 | 443 |            EVERY[resolve_tac ctxt @{thms AnnAwait_atomics} i,
 | 
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
44928diff
changeset | 444 | HoareRuleTac ctxt true i], | 
| 13020 | 445 | K all_tac i]) | 
| 59189 | 446 | \<close> | 
| 13020 | 447 | |
| 448 | ||
| 62042 | 449 | text \<open>The final tactic is given the name \<open>oghoare\<close>:\<close> | 
| 13020 | 450 | |
| 59189 | 451 | ML \<open> | 
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
44928diff
changeset | 452 | fun oghoare_tac ctxt = SUBGOAL (fn (_, i) => HoareRuleTac ctxt true i) | 
| 59189 | 453 | \<close> | 
| 13020 | 454 | |
| 62042 | 455 | text \<open>Notice that the tactic for parallel programs \<open>oghoare_tac\<close> is initially invoked with the value \<open>true\<close> for | 
| 456 | the parameter \<open>precond\<close>. | |
| 13020 | 457 | |
| 458 | Parts of the tactic can be also individually used to generate the | |
| 459 | verification conditions for annotated sequential programs and to | |
| 59189 | 460 | generate verification conditions out of interference freedom tests:\<close> | 
| 13020 | 461 | |
| 59189 | 462 | ML \<open> | 
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
44928diff
changeset | 463 | fun annhoare_tac ctxt = SUBGOAL (fn (_, i) => AnnHoareRuleTac ctxt i) | 
| 13020 | 464 | |
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
44928diff
changeset | 465 | fun interfree_aux_tac ctxt = SUBGOAL (fn (_, i) => interfree_aux_Tac ctxt i) | 
| 59189 | 466 | \<close> | 
| 13020 | 467 | |
| 59189 | 468 | text \<open>The so defined ML tactics are then ``exported'' to be used in | 
| 469 | Isabelle proofs.\<close> | |
| 13020 | 470 | |
| 59189 | 471 | method_setup oghoare = \<open> | 
| 472 | Scan.succeed (SIMPLE_METHOD' o oghoare_tac)\<close> | |
| 13020 | 473 | "verification condition generator for the oghoare logic" | 
| 474 | ||
| 59189 | 475 | method_setup annhoare = \<open> | 
| 476 | Scan.succeed (SIMPLE_METHOD' o annhoare_tac)\<close> | |
| 13020 | 477 | "verification condition generator for the ann_hoare logic" | 
| 478 | ||
| 59189 | 479 | method_setup interfree_aux = \<open> | 
| 480 | Scan.succeed (SIMPLE_METHOD' o interfree_aux_tac)\<close> | |
| 13020 | 481 | "verification condition generator for interference freedom tests" | 
| 482 | ||
| 59189 | 483 | text \<open>Tactics useful for dealing with the generated verification conditions:\<close> | 
| 13020 | 484 | |
| 59189 | 485 | method_setup conjI_tac = \<open> | 
| 60754 | 486 | Scan.succeed (fn ctxt => SIMPLE_METHOD' (conjI_Tac ctxt (K all_tac)))\<close> | 
| 13020 | 487 | "verification condition generator for interference freedom tests" | 
| 488 | ||
| 59189 | 489 | ML \<open> | 
| 60754 | 490 | fun disjE_Tac ctxt tac i st = st |> | 
| 491 | ( (EVERY [eresolve_tac ctxt [disjE] i, | |
| 492 | disjE_Tac ctxt tac (i+1), | |
| 13020 | 493 | tac i]) ORELSE (tac i) ) | 
| 59189 | 494 | \<close> | 
| 13020 | 495 | |
| 59189 | 496 | method_setup disjE_tac = \<open> | 
| 60754 | 497 | Scan.succeed (fn ctxt => SIMPLE_METHOD' (disjE_Tac ctxt (K all_tac)))\<close> | 
| 13020 | 498 | "verification condition generator for interference freedom tests" | 
| 499 | ||
| 13187 | 500 | end |