| author | haftmann | 
| Tue, 31 Mar 2015 21:54:32 +0200 | |
| changeset 59867 | 58043346ca64 | 
| parent 58889 | 5b7a9633cfa8 | 
| child 60526 | fad653acf58f | 
| permissions | -rw-r--r-- | 
| 51173 | 1 | (* Title: HOL/Number_Theory/Eratosthenes.thy | 
| 2 | Author: Florian Haftmann, TU Muenchen | |
| 3 | *) | |
| 4 | ||
| 58889 | 5 | section {* The sieve of Eratosthenes *}
 | 
| 51173 | 6 | |
| 7 | theory Eratosthenes | |
| 52379 | 8 | imports Main Primes | 
| 51173 | 9 | begin | 
| 10 | ||
| 52379 | 11 | |
| 51173 | 12 | subsection {* Preliminary: strict divisibility *}
 | 
| 13 | ||
| 14 | context dvd | |
| 15 | begin | |
| 16 | ||
| 17 | abbreviation dvd_strict :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infixl "dvd'_strict" 50) | |
| 18 | where | |
| 19 | "b dvd_strict a \<equiv> b dvd a \<and> \<not> a dvd b" | |
| 20 | ||
| 21 | end | |
| 22 | ||
| 23 | subsection {* Main corpus *}
 | |
| 24 | ||
| 25 | text {* The sieve is modelled as a list of booleans, where @{const False} means \emph{marked out}. *}
 | |
| 26 | ||
| 27 | type_synonym marks = "bool list" | |
| 28 | ||
| 29 | definition numbers_of_marks :: "nat \<Rightarrow> marks \<Rightarrow> nat set" | |
| 30 | where | |
| 31 |   "numbers_of_marks n bs = fst ` {x \<in> set (enumerate n bs). snd x}"
 | |
| 32 | ||
| 33 | lemma numbers_of_marks_simps [simp, code]: | |
| 34 |   "numbers_of_marks n [] = {}"
 | |
| 35 | "numbers_of_marks n (True # bs) = insert n (numbers_of_marks (Suc n) bs)" | |
| 36 | "numbers_of_marks n (False # bs) = numbers_of_marks (Suc n) bs" | |
| 37 | by (auto simp add: numbers_of_marks_def intro!: image_eqI) | |
| 38 | ||
| 39 | lemma numbers_of_marks_Suc: | |
| 40 | "numbers_of_marks (Suc n) bs = Suc ` numbers_of_marks n bs" | |
| 41 | by (auto simp add: numbers_of_marks_def enumerate_Suc_eq image_iff Bex_def) | |
| 42 | ||
| 43 | lemma numbers_of_marks_replicate_False [simp]: | |
| 44 |   "numbers_of_marks n (replicate m False) = {}"
 | |
| 45 | by (auto simp add: numbers_of_marks_def enumerate_replicate_eq) | |
| 46 | ||
| 47 | lemma numbers_of_marks_replicate_True [simp]: | |
| 48 |   "numbers_of_marks n (replicate m True) = {n..<n+m}"
 | |
| 49 | by (auto simp add: numbers_of_marks_def enumerate_replicate_eq image_def) | |
| 50 | ||
| 51 | lemma in_numbers_of_marks_eq: | |
| 52 |   "m \<in> numbers_of_marks n bs \<longleftrightarrow> m \<in> {n..<n + length bs} \<and> bs ! (m - n)"
 | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
55337diff
changeset | 53 | by (simp add: numbers_of_marks_def in_set_enumerate_eq image_iff add.commute) | 
| 51173 | 54 | |
| 52379 | 55 | lemma sorted_list_of_set_numbers_of_marks: | 
| 56 | "sorted_list_of_set (numbers_of_marks n bs) = map fst (filter snd (enumerate n bs))" | |
| 57 | by (auto simp add: numbers_of_marks_def distinct_map | |
| 58 | intro!: sorted_filter distinct_filter inj_onI sorted_distinct_set_unique) | |
| 59 | ||
| 51173 | 60 | |
| 61 | text {* Marking out multiples in a sieve  *}
 | |
| 62 | ||
| 63 | definition mark_out :: "nat \<Rightarrow> marks \<Rightarrow> marks" | |
| 64 | where | |
| 65 | "mark_out n bs = map (\<lambda>(q, b). b \<and> \<not> Suc n dvd Suc (Suc q)) (enumerate n bs)" | |
| 66 | ||
| 67 | lemma mark_out_Nil [simp]: | |
| 68 | "mark_out n [] = []" | |
| 69 | by (simp add: mark_out_def) | |
| 70 | ||
| 71 | lemma length_mark_out [simp]: | |
| 72 | "length (mark_out n bs) = length bs" | |
| 73 | by (simp add: mark_out_def) | |
| 74 | ||
| 75 | lemma numbers_of_marks_mark_out: | |
| 76 |   "numbers_of_marks n (mark_out m bs) = {q \<in> numbers_of_marks n bs. \<not> Suc m dvd Suc q - n}"
 | |
| 77 | by (auto simp add: numbers_of_marks_def mark_out_def in_set_enumerate_eq image_iff | |
| 54222 | 78 | nth_enumerate_eq less_eq_dvd_minus) | 
| 51173 | 79 | |
| 80 | ||
| 81 | text {* Auxiliary operation for efficient implementation  *}
 | |
| 82 | ||
| 83 | definition mark_out_aux :: "nat \<Rightarrow> nat \<Rightarrow> marks \<Rightarrow> marks" | |
| 84 | where | |
| 85 | "mark_out_aux n m bs = | |
| 86 | map (\<lambda>(q, b). b \<and> (q < m + n \<or> \<not> Suc n dvd Suc (Suc q) + (n - m mod Suc n))) (enumerate n bs)" | |
| 87 | ||
| 88 | lemma mark_out_code [code]: | |
| 89 | "mark_out n bs = mark_out_aux n n bs" | |
| 90 | proof - | |
| 91 |   { fix a
 | |
| 92 | assume A: "Suc n dvd Suc (Suc a)" | |
| 93 | and B: "a < n + n" | |
| 94 | and C: "n \<le> a" | |
| 95 | have False | |
| 96 | proof (cases "n = 0") | |
| 97 | case True with A B C show False by simp | |
| 98 | next | |
| 99 | def m \<equiv> "Suc n" then have "m > 0" by simp | |
| 100 | case False then have "n > 0" by simp | |
| 101 | from A obtain q where q: "Suc (Suc a) = Suc n * q" by (rule dvdE) | |
| 102 | have "q > 0" | |
| 103 | proof (rule ccontr) | |
| 104 | assume "\<not> q > 0" | |
| 105 | with q show False by simp | |
| 106 | qed | |
| 107 | with `n > 0` have "Suc n * q \<ge> 2" by (auto simp add: gr0_conv_Suc) | |
| 108 | with q have a: "a = Suc n * q - 2" by simp | |
| 109 | with B have "q + n * q < n + n + 2" | |
| 110 | by auto | |
| 111 | then have "m * q < m * 2" by (simp add: m_def) | |
| 112 | with `m > 0` have "q < 2" by simp | |
| 113 | with `q > 0` have "q = 1" by simp | |
| 114 | with a have "a = n - 1" by simp | |
| 115 | with `n > 0` C show False by simp | |
| 116 | qed | |
| 117 | } note aux = this | |
| 118 | show ?thesis | |
| 119 | by (auto simp add: mark_out_def mark_out_aux_def in_set_enumerate_eq intro: aux) | |
| 120 | qed | |
| 121 | ||
| 122 | lemma mark_out_aux_simps [simp, code]: | |
| 123 | "mark_out_aux n m [] = []" (is ?thesis1) | |
| 124 | "mark_out_aux n 0 (b # bs) = False # mark_out_aux n n bs" (is ?thesis2) | |
| 125 | "mark_out_aux n (Suc m) (b # bs) = b # mark_out_aux n m bs" (is ?thesis3) | |
| 126 | proof - | |
| 127 | show ?thesis1 | |
| 128 | by (simp add: mark_out_aux_def) | |
| 129 | show ?thesis2 | |
| 130 | by (auto simp add: mark_out_code [symmetric] mark_out_aux_def mark_out_def | |
| 54222 | 131 | enumerate_Suc_eq in_set_enumerate_eq less_eq_dvd_minus) | 
| 51173 | 132 |   { def v \<equiv> "Suc m" and w \<equiv> "Suc n"
 | 
| 133 | fix q | |
| 134 | assume "m + n \<le> q" | |
| 135 | then obtain r where q: "q = m + n + r" by (auto simp add: le_iff_add) | |
| 136 |     { fix u
 | |
| 137 | from w_def have "u mod w < w" by simp | |
| 138 | then have "u + (w - u mod w) = w + (u - u mod w)" | |
| 139 | by simp | |
| 140 | then have "u + (w - u mod w) = w + u div w * w" | |
| 141 | by (simp add: div_mod_equality' [symmetric]) | |
| 142 | } | |
| 143 | then have "w dvd v + w + r + (w - v mod w) \<longleftrightarrow> w dvd m + w + r + (w - m mod w)" | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
55337diff
changeset | 144 | by (simp add: add.assoc add.left_commute [of m] add.left_commute [of v] | 
| 58649 
a62065b5e1e2
generalized and consolidated some theorems concerning divisibility
 haftmann parents: 
57512diff
changeset | 145 | dvd_add_left_iff dvd_add_right_iff) | 
| 51173 | 146 | moreover from q have "Suc q = m + w + r" by (simp add: w_def) | 
| 147 | moreover from q have "Suc (Suc q) = v + w + r" by (simp add: v_def w_def) | |
| 148 | ultimately have "w dvd Suc (Suc (q + (w - v mod w))) \<longleftrightarrow> w dvd Suc (q + (w - m mod w))" | |
| 149 | by (simp only: add_Suc [symmetric]) | |
| 150 | then have "Suc n dvd Suc (Suc (Suc (q + n) - Suc m mod Suc n)) \<longleftrightarrow> | |
| 151 | Suc n dvd Suc (Suc (q + n - m mod Suc n))" | |
| 152 | by (simp add: v_def w_def Suc_diff_le trans_le_add2) | |
| 153 | } | |
| 154 | then show ?thesis3 | |
| 155 | by (auto simp add: mark_out_aux_def | |
| 156 | enumerate_Suc_eq in_set_enumerate_eq not_less) | |
| 157 | qed | |
| 158 | ||
| 159 | ||
| 160 | text {* Main entry point to sieve *}
 | |
| 161 | ||
| 162 | fun sieve :: "nat \<Rightarrow> marks \<Rightarrow> marks" | |
| 163 | where | |
| 164 | "sieve n [] = []" | |
| 165 | | "sieve n (False # bs) = False # sieve (Suc n) bs" | |
| 166 | | "sieve n (True # bs) = True # sieve (Suc n) (mark_out n bs)" | |
| 167 | ||
| 168 | text {*
 | |
| 169 | There are the following possible optimisations here: | |
| 170 | ||
| 171 |   \begin{itemize}
 | |
| 172 | ||
| 173 |     \item @{const sieve} can abort as soon as @{term n} is too big to let
 | |
| 174 |       @{const mark_out} have any effect.
 | |
| 175 | ||
| 176 | \item Search for further primes can be given up as soon as the search | |
| 177 | position exceeds the square root of the maximum candidate. | |
| 178 | ||
| 179 |   \end{itemize}
 | |
| 180 | ||
| 181 | This is left as an constructive exercise to the reader. | |
| 182 | *} | |
| 183 | ||
| 184 | lemma numbers_of_marks_sieve: | |
| 185 | "numbers_of_marks (Suc n) (sieve n bs) = | |
| 186 |     {q \<in> numbers_of_marks (Suc n) bs. \<forall>m \<in> numbers_of_marks (Suc n) bs. \<not> m dvd_strict q}"
 | |
| 187 | proof (induct n bs rule: sieve.induct) | |
| 188 | case 1 show ?case by simp | |
| 189 | next | |
| 190 | case 2 then show ?case by simp | |
| 191 | next | |
| 192 | case (3 n bs) | |
| 193 | have aux: "\<And>M n. n \<in> Suc ` M \<longleftrightarrow> n > 0 \<and> n - 1 \<in> M" | |
| 194 | proof | |
| 195 | fix M and n | |
| 196 | assume "n \<in> Suc ` M" then show "n > 0 \<and> n - 1 \<in> M" by auto | |
| 197 | next | |
| 198 | fix M and n :: nat | |
| 199 | assume "n > 0 \<and> n - 1 \<in> M" | |
| 200 | then have "n > 0" and "n - 1 \<in> M" by auto | |
| 201 | then have "Suc (n - 1) \<in> Suc ` M" by blast | |
| 202 | with `n > 0` show "n \<in> Suc ` M" by simp | |
| 203 | qed | |
| 204 |   { fix m :: nat
 | |
| 205 | assume "Suc (Suc n) \<le> m" and "m dvd Suc n" | |
| 206 | from `m dvd Suc n` obtain q where "Suc n = m * q" .. | |
| 207 | with `Suc (Suc n) \<le> m` have "Suc (m * q) \<le> m" by simp | |
| 208 | then have "m * q < m" by arith | |
| 209 | then have "q = 0" by simp | |
| 210 | with `Suc n = m * q` have False by simp | |
| 211 | } note aux1 = this | |
| 212 |   { fix m q :: nat
 | |
| 213 | assume "\<forall>q>0. 1 < q \<longrightarrow> Suc n < q \<longrightarrow> q \<le> Suc (n + length bs) | |
| 214 | \<longrightarrow> bs ! (q - Suc (Suc n)) \<longrightarrow> \<not> Suc n dvd q \<longrightarrow> q dvd m \<longrightarrow> m dvd q" | |
| 215 | then have *: "\<And>q. Suc n < q \<Longrightarrow> q \<le> Suc (n + length bs) | |
| 216 | \<Longrightarrow> bs ! (q - Suc (Suc n)) \<Longrightarrow> \<not> Suc n dvd q \<Longrightarrow> q dvd m \<Longrightarrow> m dvd q" | |
| 217 | by auto | |
| 218 | assume "\<not> Suc n dvd m" and "q dvd m" | |
| 219 | then have "\<not> Suc n dvd q" by (auto elim: dvdE) | |
| 220 | moreover assume "Suc n < q" and "q \<le> Suc (n + length bs)" | |
| 221 | and "bs ! (q - Suc (Suc n))" | |
| 222 | moreover note `q dvd m` | |
| 223 | ultimately have "m dvd q" by (auto intro: *) | |
| 224 | } note aux2 = this | |
| 225 | from 3 show ?case | |
| 226 | apply (simp_all add: numbers_of_marks_mark_out numbers_of_marks_Suc Compr_image_eq inj_image_eq_iff | |
| 227 | in_numbers_of_marks_eq Ball_def imp_conjL aux) | |
| 228 | apply safe | |
| 229 | apply (simp_all add: less_diff_conv2 le_diff_conv2 dvd_minus_self not_less) | |
| 230 | apply (clarsimp dest!: aux1) | |
| 231 | apply (simp add: Suc_le_eq less_Suc_eq_le) | |
| 232 | apply (rule aux2) apply (clarsimp dest!: aux1)+ | |
| 233 | done | |
| 234 | qed | |
| 235 | ||
| 236 | ||
| 52379 | 237 | text {* Relation of the sieve algorithm to actual primes *}
 | 
| 51173 | 238 | |
| 52379 | 239 | definition primes_upto :: "nat \<Rightarrow> nat list" | 
| 51173 | 240 | where | 
| 52379 | 241 |   "primes_upto n = sorted_list_of_set {m. m \<le> n \<and> prime m}"
 | 
| 51173 | 242 | |
| 52379 | 243 | lemma set_primes_upto: | 
| 244 |   "set (primes_upto n) = {m. m \<le> n \<and> prime m}"
 | |
| 51173 | 245 | by (simp add: primes_upto_def) | 
| 246 | ||
| 52379 | 247 | lemma sorted_primes_upto [iff]: | 
| 248 | "sorted (primes_upto n)" | |
| 249 | by (simp add: primes_upto_def) | |
| 250 | ||
| 251 | lemma distinct_primes_upto [iff]: | |
| 252 | "distinct (primes_upto n)" | |
| 253 | by (simp add: primes_upto_def) | |
| 254 | ||
| 255 | lemma set_primes_upto_sieve: | |
| 256 | "set (primes_upto n) = numbers_of_marks 2 (sieve 1 (replicate (n - 1) True))" | |
| 51173 | 257 | proof (cases "n > 1") | 
| 258 | case False then have "n = 0 \<or> n = 1" by arith | |
| 259 | then show ?thesis | |
| 55130 
70db8d380d62
Restored Suc rather than +1, and using Library/Binimial
 paulson <lp15@cam.ac.uk> parents: 
54222diff
changeset | 260 | by (auto simp add: numbers_of_marks_sieve numeral_2_eq_2 set_primes_upto dest: prime_gt_Suc_0_nat) | 
| 51173 | 261 | next | 
| 262 |   { fix m q
 | |
| 263 | assume "Suc (Suc 0) \<le> q" | |
| 264 | and "q < Suc n" | |
| 265 | and "m dvd q" | |
| 266 | then have "m < Suc n" by (auto dest: dvd_imp_le) | |
| 267 |     assume *: "\<forall>m\<in>{Suc (Suc 0)..<Suc n}. m dvd q \<longrightarrow> q dvd m"
 | |
| 268 | and "m dvd q" and "m \<noteq> 1" | |
| 269 | have "m = q" proof (cases "m = 0") | |
| 270 | case True with `m dvd q` show ?thesis by simp | |
| 271 | next | |
| 272 | case False with `m \<noteq> 1` have "Suc (Suc 0) \<le> m" by arith | |
| 273 | with `m < Suc n` * `m dvd q` have "q dvd m" by simp | |
| 274 | with `m dvd q` show ?thesis by (simp add: dvd.eq_iff) | |
| 275 | qed | |
| 276 | } | |
| 277 | then have aux: "\<And>m q. Suc (Suc 0) \<le> q \<Longrightarrow> | |
| 278 | q < Suc n \<Longrightarrow> | |
| 279 | m dvd q \<Longrightarrow> | |
| 280 |     \<forall>m\<in>{Suc (Suc 0)..<Suc n}. m dvd q \<longrightarrow> q dvd m \<Longrightarrow>
 | |
| 281 | m dvd q \<Longrightarrow> m \<noteq> q \<Longrightarrow> m = 1" by auto | |
| 282 | case True then show ?thesis | |
| 55337 
5d45fb978d5a
Number_Theory no longer introduces One_nat_def as a simprule. Tidied some proofs.
 paulson <lp15@cam.ac.uk> parents: 
55130diff
changeset | 283 | apply (auto simp add: One_nat_def numbers_of_marks_sieve numeral_2_eq_2 set_primes_upto | 
| 
5d45fb978d5a
Number_Theory no longer introduces One_nat_def as a simprule. Tidied some proofs.
 paulson <lp15@cam.ac.uk> parents: 
55130diff
changeset | 284 | dest: prime_gt_Suc_0_nat) | 
| 55130 
70db8d380d62
Restored Suc rather than +1, and using Library/Binimial
 paulson <lp15@cam.ac.uk> parents: 
54222diff
changeset | 285 | apply (metis One_nat_def Suc_le_eq less_not_refl prime_nat_def) | 
| 
70db8d380d62
Restored Suc rather than +1, and using Library/Binimial
 paulson <lp15@cam.ac.uk> parents: 
54222diff
changeset | 286 | apply (metis One_nat_def Suc_le_eq aux prime_nat_def) | 
| 51173 | 287 | done | 
| 288 | qed | |
| 289 | ||
| 52379 | 290 | lemma primes_upto_sieve [code]: | 
| 291 | "primes_upto n = map fst (filter snd (enumerate 2 (sieve 1 (replicate (n - 1) True))))" | |
| 292 | proof - | |
| 293 | have "primes_upto n = sorted_list_of_set (numbers_of_marks 2 (sieve 1 (replicate (n - 1) True)))" | |
| 294 | apply (rule sorted_distinct_set_unique) | |
| 295 | apply (simp_all only: set_primes_upto_sieve numbers_of_marks_def) | |
| 296 | apply auto | |
| 297 | done | |
| 298 | then show ?thesis by (simp add: sorted_list_of_set_numbers_of_marks) | |
| 299 | qed | |
| 300 | ||
| 301 | lemma prime_in_primes_upto: | |
| 302 | "prime n \<longleftrightarrow> n \<in> set (primes_upto n)" | |
| 303 | by (simp add: set_primes_upto) | |
| 304 | ||
| 305 | ||
| 306 | subsection {* Application: smallest prime beyond a certain number *}
 | |
| 307 | ||
| 308 | definition smallest_prime_beyond :: "nat \<Rightarrow> nat" | |
| 309 | where | |
| 310 | "smallest_prime_beyond n = (LEAST p. prime p \<and> p \<ge> n)" | |
| 311 | ||
| 312 | lemma | |
| 313 | prime_smallest_prime_beyond [iff]: "prime (smallest_prime_beyond n)" (is ?P) | |
| 314 | and smallest_prime_beyond_le [iff]: "smallest_prime_beyond n \<ge> n" (is ?Q) | |
| 315 | proof - | |
| 316 | let ?least = "LEAST p. prime p \<and> p \<ge> n" | |
| 317 | from primes_infinite obtain q where "prime q \<and> q \<ge> n" | |
| 318 | by (metis finite_nat_set_iff_bounded_le mem_Collect_eq nat_le_linear) | |
| 319 | then have "prime ?least \<and> ?least \<ge> n" by (rule LeastI) | |
| 320 | then show ?P and ?Q by (simp_all add: smallest_prime_beyond_def) | |
| 321 | qed | |
| 322 | ||
| 323 | lemma smallest_prime_beyond_smallest: | |
| 324 | "prime p \<Longrightarrow> p \<ge> n \<Longrightarrow> smallest_prime_beyond n \<le> p" | |
| 325 | by (simp only: smallest_prime_beyond_def) (auto intro: Least_le) | |
| 326 | ||
| 327 | lemma smallest_prime_beyond_eq: | |
| 328 | "prime p \<Longrightarrow> p \<ge> n \<Longrightarrow> (\<And>q. prime q \<Longrightarrow> q \<ge> n \<Longrightarrow> q \<ge> p) \<Longrightarrow> smallest_prime_beyond n = p" | |
| 329 | by (simp only: smallest_prime_beyond_def) (auto intro: Least_equality) | |
| 330 | ||
| 331 | definition smallest_prime_between :: "nat \<Rightarrow> nat \<Rightarrow> nat option" | |
| 332 | where | |
| 333 | "smallest_prime_between m n = | |
| 334 | (if (\<exists>p. prime p \<and> m \<le> p \<and> p \<le> n) then Some (smallest_prime_beyond m) else None)" | |
| 335 | ||
| 336 | lemma smallest_prime_between_None: | |
| 337 | "smallest_prime_between m n = None \<longleftrightarrow> (\<forall>q. m \<le> q \<and> q \<le> n \<longrightarrow> \<not> prime q)" | |
| 338 | by (auto simp add: smallest_prime_between_def) | |
| 339 | ||
| 340 | lemma smallest_prime_betwen_Some: | |
| 341 | "smallest_prime_between m n = Some p \<longleftrightarrow> smallest_prime_beyond m = p \<and> p \<le> n" | |
| 342 | by (auto simp add: smallest_prime_between_def dest: smallest_prime_beyond_smallest [of _ m]) | |
| 343 | ||
| 344 | lemma [code]: | |
| 345 | "smallest_prime_between m n = List.find (\<lambda>p. p \<ge> m) (primes_upto n)" | |
| 346 | proof - | |
| 347 |   { fix p
 | |
| 348 |     def A \<equiv> "{p. p \<le> n \<and> prime p \<and> m \<le> p}"
 | |
| 349 | assume assms: "m \<le> p" "prime p" "p \<le> n" | |
| 350 | then have "smallest_prime_beyond m \<le> p" by (auto intro: smallest_prime_beyond_smallest) | |
| 351 | from this `p \<le> n` have *: "smallest_prime_beyond m \<le> n" by (rule order_trans) | |
| 352 | from assms have ex: "\<exists>p\<le>n. prime p \<and> m \<le> p" by auto | |
| 353 | then have "finite A" by (auto simp add: A_def) | |
| 354 | with * have "Min A = smallest_prime_beyond m" | |
| 355 | by (auto simp add: A_def intro: Min_eqI smallest_prime_beyond_smallest) | |
| 356 | with ex sorted_primes_upto have "List.find (\<lambda>p. p \<ge> m) (primes_upto n) = Some (smallest_prime_beyond m)" | |
| 357 | by (auto simp add: set_primes_upto sorted_find_Min A_def) | |
| 358 | } then show ?thesis | |
| 359 | by (auto simp add: smallest_prime_between_def find_None_iff set_primes_upto intro!: sym [of _ None]) | |
| 360 | qed | |
| 361 | ||
| 362 | definition smallest_prime_beyond_aux :: "nat \<Rightarrow> nat \<Rightarrow> nat" | |
| 363 | where | |
| 364 | "smallest_prime_beyond_aux k n = smallest_prime_beyond n" | |
| 365 | ||
| 366 | lemma [code]: | |
| 367 | "smallest_prime_beyond_aux k n = | |
| 368 | (case smallest_prime_between n (k * n) | |
| 369 | of Some p \<Rightarrow> p | |
| 370 | | None \<Rightarrow> smallest_prime_beyond_aux (Suc k) n)" | |
| 371 | by (simp add: smallest_prime_beyond_aux_def smallest_prime_betwen_Some split: option.split) | |
| 372 | ||
| 373 | lemma [code]: | |
| 374 | "smallest_prime_beyond n = smallest_prime_beyond_aux 2 n" | |
| 375 | by (simp add: smallest_prime_beyond_aux_def) | |
| 376 | ||
| 51173 | 377 | end | 
| 378 |