| 23449 |      1 | (*  Title:      HOL/MetisTest/Message.thy
 | 
|  |      2 |     ID:         $Id$
 | 
|  |      3 |     Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
 | 
|  |      4 | 
 | 
|  |      5 | Testing the metis method
 | 
|  |      6 | *)
 | 
|  |      7 | 
 | 
|  |      8 | theory Message imports Main begin
 | 
|  |      9 | 
 | 
|  |     10 | (*Needed occasionally with spy_analz_tac, e.g. in analz_insert_Key_newK*)
 | 
|  |     11 | lemma strange_Un_eq [simp]: "A \<union> (B \<union> A) = B \<union> A"
 | 
|  |     12 | by blast
 | 
|  |     13 | 
 | 
|  |     14 | types 
 | 
|  |     15 |   key = nat
 | 
|  |     16 | 
 | 
|  |     17 | consts
 | 
|  |     18 |   all_symmetric :: bool        --{*true if all keys are symmetric*}
 | 
|  |     19 |   invKey        :: "key=>key"  --{*inverse of a symmetric key*}
 | 
|  |     20 | 
 | 
|  |     21 | specification (invKey)
 | 
|  |     22 |   invKey [simp]: "invKey (invKey K) = K"
 | 
|  |     23 |   invKey_symmetric: "all_symmetric --> invKey = id"
 | 
|  |     24 |     by (rule exI [of _ id], auto)
 | 
|  |     25 | 
 | 
|  |     26 | 
 | 
|  |     27 | text{*The inverse of a symmetric key is itself; that of a public key
 | 
|  |     28 |       is the private key and vice versa*}
 | 
|  |     29 | 
 | 
|  |     30 | constdefs
 | 
|  |     31 |   symKeys :: "key set"
 | 
|  |     32 |   "symKeys == {K. invKey K = K}"
 | 
|  |     33 | 
 | 
|  |     34 | datatype  --{*We allow any number of friendly agents*}
 | 
|  |     35 |   agent = Server | Friend nat | Spy
 | 
|  |     36 | 
 | 
|  |     37 | datatype
 | 
|  |     38 |      msg = Agent  agent	    --{*Agent names*}
 | 
|  |     39 |          | Number nat       --{*Ordinary integers, timestamps, ...*}
 | 
|  |     40 |          | Nonce  nat       --{*Unguessable nonces*}
 | 
|  |     41 |          | Key    key       --{*Crypto keys*}
 | 
|  |     42 | 	 | Hash   msg       --{*Hashing*}
 | 
|  |     43 | 	 | MPair  msg msg   --{*Compound messages*}
 | 
|  |     44 | 	 | Crypt  key msg   --{*Encryption, public- or shared-key*}
 | 
|  |     45 | 
 | 
|  |     46 | 
 | 
|  |     47 | text{*Concrete syntax: messages appear as {|A,B,NA|}, etc...*}
 | 
|  |     48 | syntax
 | 
|  |     49 |   "@MTuple"      :: "['a, args] => 'a * 'b"       ("(2{|_,/ _|})")
 | 
|  |     50 | 
 | 
|  |     51 | syntax (xsymbols)
 | 
|  |     52 |   "@MTuple"      :: "['a, args] => 'a * 'b"       ("(2\<lbrace>_,/ _\<rbrace>)")
 | 
|  |     53 | 
 | 
|  |     54 | translations
 | 
|  |     55 |   "{|x, y, z|}"   == "{|x, {|y, z|}|}"
 | 
|  |     56 |   "{|x, y|}"      == "MPair x y"
 | 
|  |     57 | 
 | 
|  |     58 | 
 | 
|  |     59 | constdefs
 | 
|  |     60 |   HPair :: "[msg,msg] => msg"                       ("(4Hash[_] /_)" [0, 1000])
 | 
|  |     61 |     --{*Message Y paired with a MAC computed with the help of X*}
 | 
|  |     62 |     "Hash[X] Y == {| Hash{|X,Y|}, Y|}"
 | 
|  |     63 | 
 | 
|  |     64 |   keysFor :: "msg set => key set"
 | 
|  |     65 |     --{*Keys useful to decrypt elements of a message set*}
 | 
|  |     66 |   "keysFor H == invKey ` {K. \<exists>X. Crypt K X \<in> H}"
 | 
|  |     67 | 
 | 
|  |     68 | 
 | 
|  |     69 | subsubsection{*Inductive Definition of All Parts" of a Message*}
 | 
|  |     70 | 
 | 
| 23755 |     71 | inductive_set
 | 
|  |     72 |   parts :: "msg set => msg set"
 | 
|  |     73 |   for H :: "msg set"
 | 
|  |     74 |   where
 | 
| 23449 |     75 |     Inj [intro]:               "X \<in> H ==> X \<in> parts H"
 | 
| 23755 |     76 |   | Fst:         "{|X,Y|}   \<in> parts H ==> X \<in> parts H"
 | 
|  |     77 |   | Snd:         "{|X,Y|}   \<in> parts H ==> Y \<in> parts H"
 | 
|  |     78 |   | Body:        "Crypt K X \<in> parts H ==> X \<in> parts H"
 | 
| 23449 |     79 | 
 | 
|  |     80 | 
 | 
|  |     81 | ML{*ResAtp.problem_name := "Message__parts_mono"*}
 | 
|  |     82 | lemma parts_mono: "G \<subseteq> H ==> parts(G) \<subseteq> parts(H)"
 | 
|  |     83 | apply auto
 | 
|  |     84 | apply (erule parts.induct) 
 | 
|  |     85 | apply (metis Inj set_mp)
 | 
|  |     86 | apply (metis Fst)
 | 
|  |     87 | apply (metis Snd)
 | 
|  |     88 | apply (metis Body)
 | 
|  |     89 | done
 | 
|  |     90 | 
 | 
|  |     91 | 
 | 
|  |     92 | text{*Equations hold because constructors are injective.*}
 | 
|  |     93 | lemma Friend_image_eq [simp]: "(Friend x \<in> Friend`A) = (x:A)"
 | 
|  |     94 | by auto
 | 
|  |     95 | 
 | 
|  |     96 | lemma Key_image_eq [simp]: "(Key x \<in> Key`A) = (x\<in>A)"
 | 
|  |     97 | by auto
 | 
|  |     98 | 
 | 
|  |     99 | lemma Nonce_Key_image_eq [simp]: "(Nonce x \<notin> Key`A)"
 | 
|  |    100 | by auto
 | 
|  |    101 | 
 | 
|  |    102 | 
 | 
|  |    103 | subsubsection{*Inverse of keys *}
 | 
|  |    104 | 
 | 
|  |    105 | ML{*ResAtp.problem_name := "Message__invKey_eq"*}
 | 
|  |    106 | lemma invKey_eq [simp]: "(invKey K = invKey K') = (K=K')"
 | 
|  |    107 | by (metis invKey)
 | 
|  |    108 | 
 | 
|  |    109 | 
 | 
|  |    110 | subsection{*keysFor operator*}
 | 
|  |    111 | 
 | 
|  |    112 | lemma keysFor_empty [simp]: "keysFor {} = {}"
 | 
|  |    113 | by (unfold keysFor_def, blast)
 | 
|  |    114 | 
 | 
|  |    115 | lemma keysFor_Un [simp]: "keysFor (H \<union> H') = keysFor H \<union> keysFor H'"
 | 
|  |    116 | by (unfold keysFor_def, blast)
 | 
|  |    117 | 
 | 
|  |    118 | lemma keysFor_UN [simp]: "keysFor (\<Union>i\<in>A. H i) = (\<Union>i\<in>A. keysFor (H i))"
 | 
|  |    119 | by (unfold keysFor_def, blast)
 | 
|  |    120 | 
 | 
|  |    121 | text{*Monotonicity*}
 | 
|  |    122 | lemma keysFor_mono: "G \<subseteq> H ==> keysFor(G) \<subseteq> keysFor(H)"
 | 
|  |    123 | by (unfold keysFor_def, blast)
 | 
|  |    124 | 
 | 
|  |    125 | lemma keysFor_insert_Agent [simp]: "keysFor (insert (Agent A) H) = keysFor H"
 | 
|  |    126 | by (unfold keysFor_def, auto)
 | 
|  |    127 | 
 | 
|  |    128 | lemma keysFor_insert_Nonce [simp]: "keysFor (insert (Nonce N) H) = keysFor H"
 | 
|  |    129 | by (unfold keysFor_def, auto)
 | 
|  |    130 | 
 | 
|  |    131 | lemma keysFor_insert_Number [simp]: "keysFor (insert (Number N) H) = keysFor H"
 | 
|  |    132 | by (unfold keysFor_def, auto)
 | 
|  |    133 | 
 | 
|  |    134 | lemma keysFor_insert_Key [simp]: "keysFor (insert (Key K) H) = keysFor H"
 | 
|  |    135 | by (unfold keysFor_def, auto)
 | 
|  |    136 | 
 | 
|  |    137 | lemma keysFor_insert_Hash [simp]: "keysFor (insert (Hash X) H) = keysFor H"
 | 
|  |    138 | by (unfold keysFor_def, auto)
 | 
|  |    139 | 
 | 
|  |    140 | lemma keysFor_insert_MPair [simp]: "keysFor (insert {|X,Y|} H) = keysFor H"
 | 
|  |    141 | by (unfold keysFor_def, auto)
 | 
|  |    142 | 
 | 
|  |    143 | lemma keysFor_insert_Crypt [simp]: 
 | 
|  |    144 |     "keysFor (insert (Crypt K X) H) = insert (invKey K) (keysFor H)"
 | 
|  |    145 | by (unfold keysFor_def, auto)
 | 
|  |    146 | 
 | 
|  |    147 | lemma keysFor_image_Key [simp]: "keysFor (Key`E) = {}"
 | 
|  |    148 | by (unfold keysFor_def, auto)
 | 
|  |    149 | 
 | 
|  |    150 | lemma Crypt_imp_invKey_keysFor: "Crypt K X \<in> H ==> invKey K \<in> keysFor H"
 | 
|  |    151 | by (unfold keysFor_def, blast)
 | 
|  |    152 | 
 | 
|  |    153 | 
 | 
|  |    154 | subsection{*Inductive relation "parts"*}
 | 
|  |    155 | 
 | 
|  |    156 | lemma MPair_parts:
 | 
|  |    157 |      "[| {|X,Y|} \<in> parts H;        
 | 
|  |    158 |          [| X \<in> parts H; Y \<in> parts H |] ==> P |] ==> P"
 | 
|  |    159 | by (blast dest: parts.Fst parts.Snd) 
 | 
|  |    160 | 
 | 
|  |    161 |     declare MPair_parts [elim!]  parts.Body [dest!]
 | 
|  |    162 | text{*NB These two rules are UNSAFE in the formal sense, as they discard the
 | 
|  |    163 |      compound message.  They work well on THIS FILE.  
 | 
|  |    164 |   @{text MPair_parts} is left as SAFE because it speeds up proofs.
 | 
|  |    165 |   The Crypt rule is normally kept UNSAFE to avoid breaking up certificates.*}
 | 
|  |    166 | 
 | 
|  |    167 | lemma parts_increasing: "H \<subseteq> parts(H)"
 | 
|  |    168 | by blast
 | 
|  |    169 | 
 | 
|  |    170 | lemmas parts_insertI = subset_insertI [THEN parts_mono, THEN subsetD, standard]
 | 
|  |    171 | 
 | 
|  |    172 | lemma parts_empty [simp]: "parts{} = {}"
 | 
|  |    173 | apply safe
 | 
|  |    174 | apply (erule parts.induct)
 | 
|  |    175 | apply blast+
 | 
|  |    176 | done
 | 
|  |    177 | 
 | 
|  |    178 | lemma parts_emptyE [elim!]: "X\<in> parts{} ==> P"
 | 
|  |    179 | by simp
 | 
|  |    180 | 
 | 
|  |    181 | text{*WARNING: loops if H = {Y}, therefore must not be repeated!*}
 | 
|  |    182 | lemma parts_singleton: "X\<in> parts H ==> \<exists>Y\<in>H. X\<in> parts {Y}"
 | 
|  |    183 | apply (erule parts.induct)
 | 
|  |    184 | apply blast+
 | 
|  |    185 | done
 | 
|  |    186 | 
 | 
|  |    187 | 
 | 
|  |    188 | subsubsection{*Unions *}
 | 
|  |    189 | 
 | 
|  |    190 | lemma parts_Un_subset1: "parts(G) \<union> parts(H) \<subseteq> parts(G \<union> H)"
 | 
|  |    191 | by (intro Un_least parts_mono Un_upper1 Un_upper2)
 | 
|  |    192 | 
 | 
|  |    193 | lemma parts_Un_subset2: "parts(G \<union> H) \<subseteq> parts(G) \<union> parts(H)"
 | 
|  |    194 | apply (rule subsetI)
 | 
|  |    195 | apply (erule parts.induct, blast+)
 | 
|  |    196 | done
 | 
|  |    197 | 
 | 
|  |    198 | lemma parts_Un [simp]: "parts(G \<union> H) = parts(G) \<union> parts(H)"
 | 
|  |    199 | by (intro equalityI parts_Un_subset1 parts_Un_subset2)
 | 
|  |    200 | 
 | 
|  |    201 | lemma parts_insert: "parts (insert X H) = parts {X} \<union> parts H"
 | 
|  |    202 | apply (subst insert_is_Un [of _ H])
 | 
|  |    203 | apply (simp only: parts_Un)
 | 
|  |    204 | done
 | 
|  |    205 | 
 | 
|  |    206 | ML{*ResAtp.problem_name := "Message__parts_insert_two"*}
 | 
|  |    207 | lemma parts_insert2:
 | 
|  |    208 |      "parts (insert X (insert Y H)) = parts {X} \<union> parts {Y} \<union> parts H"
 | 
|  |    209 | by (metis Un_commute Un_empty_left Un_empty_right Un_insert_left Un_insert_right insert_commute parts_Un)
 | 
|  |    210 | 
 | 
|  |    211 | 
 | 
|  |    212 | lemma parts_UN_subset1: "(\<Union>x\<in>A. parts(H x)) \<subseteq> parts(\<Union>x\<in>A. H x)"
 | 
|  |    213 | by (intro UN_least parts_mono UN_upper)
 | 
|  |    214 | 
 | 
|  |    215 | lemma parts_UN_subset2: "parts(\<Union>x\<in>A. H x) \<subseteq> (\<Union>x\<in>A. parts(H x))"
 | 
|  |    216 | apply (rule subsetI)
 | 
|  |    217 | apply (erule parts.induct, blast+)
 | 
|  |    218 | done
 | 
|  |    219 | 
 | 
|  |    220 | lemma parts_UN [simp]: "parts(\<Union>x\<in>A. H x) = (\<Union>x\<in>A. parts(H x))"
 | 
|  |    221 | by (intro equalityI parts_UN_subset1 parts_UN_subset2)
 | 
|  |    222 | 
 | 
|  |    223 | text{*Added to simplify arguments to parts, analz and synth.
 | 
|  |    224 |   NOTE: the UN versions are no longer used!*}
 | 
|  |    225 | 
 | 
|  |    226 | 
 | 
|  |    227 | text{*This allows @{text blast} to simplify occurrences of 
 | 
|  |    228 |   @{term "parts(G\<union>H)"} in the assumption.*}
 | 
|  |    229 | lemmas in_parts_UnE = parts_Un [THEN equalityD1, THEN subsetD, THEN UnE] 
 | 
|  |    230 | declare in_parts_UnE [elim!]
 | 
|  |    231 | 
 | 
|  |    232 | lemma parts_insert_subset: "insert X (parts H) \<subseteq> parts(insert X H)"
 | 
|  |    233 | by (blast intro: parts_mono [THEN [2] rev_subsetD])
 | 
|  |    234 | 
 | 
|  |    235 | subsubsection{*Idempotence and transitivity *}
 | 
|  |    236 | 
 | 
|  |    237 | lemma parts_partsD [dest!]: "X\<in> parts (parts H) ==> X\<in> parts H"
 | 
|  |    238 | by (erule parts.induct, blast+)
 | 
|  |    239 | 
 | 
|  |    240 | lemma parts_idem [simp]: "parts (parts H) = parts H"
 | 
|  |    241 | by blast
 | 
|  |    242 | 
 | 
|  |    243 | ML{*ResAtp.problem_name := "Message__parts_subset_iff"*}
 | 
|  |    244 | lemma parts_subset_iff [simp]: "(parts G \<subseteq> parts H) = (G \<subseteq> parts H)"
 | 
|  |    245 | apply (rule iffI) 
 | 
|  |    246 | apply (metis Un_absorb1 Un_subset_iff parts_Un parts_increasing)
 | 
|  |    247 | apply (metis parts_Un parts_idem parts_increasing parts_mono)
 | 
|  |    248 | done
 | 
|  |    249 | 
 | 
|  |    250 | lemma parts_trans: "[| X\<in> parts G;  G \<subseteq> parts H |] ==> X\<in> parts H"
 | 
|  |    251 | by (blast dest: parts_mono); 
 | 
|  |    252 | 
 | 
|  |    253 | 
 | 
|  |    254 | ML{*ResAtp.problem_name := "Message__parts_cut"*}
 | 
|  |    255 | lemma parts_cut: "[|Y\<in> parts(insert X G);  X\<in> parts H|] ==> Y\<in> parts(G \<union> H)"
 | 
|  |    256 | by (metis Un_subset_iff Un_upper1 Un_upper2 insert_subset parts_Un parts_increasing parts_trans) 
 | 
|  |    257 | 
 | 
|  |    258 | 
 | 
|  |    259 | 
 | 
|  |    260 | subsubsection{*Rewrite rules for pulling out atomic messages *}
 | 
|  |    261 | 
 | 
|  |    262 | lemmas parts_insert_eq_I = equalityI [OF subsetI parts_insert_subset]
 | 
|  |    263 | 
 | 
|  |    264 | 
 | 
|  |    265 | lemma parts_insert_Agent [simp]:
 | 
|  |    266 |      "parts (insert (Agent agt) H) = insert (Agent agt) (parts H)"
 | 
|  |    267 | apply (rule parts_insert_eq_I) 
 | 
|  |    268 | apply (erule parts.induct, auto) 
 | 
|  |    269 | done
 | 
|  |    270 | 
 | 
|  |    271 | lemma parts_insert_Nonce [simp]:
 | 
|  |    272 |      "parts (insert (Nonce N) H) = insert (Nonce N) (parts H)"
 | 
|  |    273 | apply (rule parts_insert_eq_I) 
 | 
|  |    274 | apply (erule parts.induct, auto) 
 | 
|  |    275 | done
 | 
|  |    276 | 
 | 
|  |    277 | lemma parts_insert_Number [simp]:
 | 
|  |    278 |      "parts (insert (Number N) H) = insert (Number N) (parts H)"
 | 
|  |    279 | apply (rule parts_insert_eq_I) 
 | 
|  |    280 | apply (erule parts.induct, auto) 
 | 
|  |    281 | done
 | 
|  |    282 | 
 | 
|  |    283 | lemma parts_insert_Key [simp]:
 | 
|  |    284 |      "parts (insert (Key K) H) = insert (Key K) (parts H)"
 | 
|  |    285 | apply (rule parts_insert_eq_I) 
 | 
|  |    286 | apply (erule parts.induct, auto) 
 | 
|  |    287 | done
 | 
|  |    288 | 
 | 
|  |    289 | lemma parts_insert_Hash [simp]:
 | 
|  |    290 |      "parts (insert (Hash X) H) = insert (Hash X) (parts H)"
 | 
|  |    291 | apply (rule parts_insert_eq_I) 
 | 
|  |    292 | apply (erule parts.induct, auto) 
 | 
|  |    293 | done
 | 
|  |    294 | 
 | 
|  |    295 | lemma parts_insert_Crypt [simp]:
 | 
|  |    296 |      "parts (insert (Crypt K X) H) =  
 | 
|  |    297 |           insert (Crypt K X) (parts (insert X H))"
 | 
|  |    298 | apply (rule equalityI)
 | 
|  |    299 | apply (rule subsetI)
 | 
|  |    300 | apply (erule parts.induct, auto)
 | 
|  |    301 | apply (blast intro: parts.Body)
 | 
|  |    302 | done
 | 
|  |    303 | 
 | 
|  |    304 | lemma parts_insert_MPair [simp]:
 | 
|  |    305 |      "parts (insert {|X,Y|} H) =  
 | 
|  |    306 |           insert {|X,Y|} (parts (insert X (insert Y H)))"
 | 
|  |    307 | apply (rule equalityI)
 | 
|  |    308 | apply (rule subsetI)
 | 
|  |    309 | apply (erule parts.induct, auto)
 | 
|  |    310 | apply (blast intro: parts.Fst parts.Snd)+
 | 
|  |    311 | done
 | 
|  |    312 | 
 | 
|  |    313 | lemma parts_image_Key [simp]: "parts (Key`N) = Key`N"
 | 
|  |    314 | apply auto
 | 
|  |    315 | apply (erule parts.induct, auto)
 | 
|  |    316 | done
 | 
|  |    317 | 
 | 
|  |    318 | 
 | 
|  |    319 | ML{*ResAtp.problem_name := "Message__msg_Nonce_supply"*}
 | 
|  |    320 | lemma msg_Nonce_supply: "\<exists>N. \<forall>n. N\<le>n --> Nonce n \<notin> parts {msg}"
 | 
|  |    321 | apply (induct_tac "msg") 
 | 
|  |    322 | apply (simp_all add: parts_insert2)
 | 
|  |    323 | apply (metis Suc_n_not_le_n)
 | 
|  |    324 | apply (metis le_trans linorder_linear)
 | 
|  |    325 | done
 | 
|  |    326 | 
 | 
|  |    327 | subsection{*Inductive relation "analz"*}
 | 
|  |    328 | 
 | 
|  |    329 | text{*Inductive definition of "analz" -- what can be broken down from a set of
 | 
|  |    330 |     messages, including keys.  A form of downward closure.  Pairs can
 | 
|  |    331 |     be taken apart; messages decrypted with known keys.  *}
 | 
|  |    332 | 
 | 
| 23755 |    333 | inductive_set
 | 
|  |    334 |   analz :: "msg set => msg set"
 | 
|  |    335 |   for H :: "msg set"
 | 
|  |    336 |   where
 | 
| 23449 |    337 |     Inj [intro,simp] :    "X \<in> H ==> X \<in> analz H"
 | 
| 23755 |    338 |   | Fst:     "{|X,Y|} \<in> analz H ==> X \<in> analz H"
 | 
|  |    339 |   | Snd:     "{|X,Y|} \<in> analz H ==> Y \<in> analz H"
 | 
|  |    340 |   | Decrypt [dest]: 
 | 
| 23449 |    341 |              "[|Crypt K X \<in> analz H; Key(invKey K): analz H|] ==> X \<in> analz H"
 | 
|  |    342 | 
 | 
|  |    343 | 
 | 
|  |    344 | text{*Monotonicity; Lemma 1 of Lowe's paper*}
 | 
|  |    345 | lemma analz_mono: "G\<subseteq>H ==> analz(G) \<subseteq> analz(H)"
 | 
|  |    346 | apply auto
 | 
|  |    347 | apply (erule analz.induct) 
 | 
|  |    348 | apply (auto dest: analz.Fst analz.Snd) 
 | 
|  |    349 | done
 | 
|  |    350 | 
 | 
|  |    351 | text{*Making it safe speeds up proofs*}
 | 
|  |    352 | lemma MPair_analz [elim!]:
 | 
|  |    353 |      "[| {|X,Y|} \<in> analz H;        
 | 
|  |    354 |              [| X \<in> analz H; Y \<in> analz H |] ==> P   
 | 
|  |    355 |           |] ==> P"
 | 
|  |    356 | by (blast dest: analz.Fst analz.Snd)
 | 
|  |    357 | 
 | 
|  |    358 | lemma analz_increasing: "H \<subseteq> analz(H)"
 | 
|  |    359 | by blast
 | 
|  |    360 | 
 | 
|  |    361 | lemma analz_subset_parts: "analz H \<subseteq> parts H"
 | 
|  |    362 | apply (rule subsetI)
 | 
|  |    363 | apply (erule analz.induct, blast+)
 | 
|  |    364 | done
 | 
|  |    365 | 
 | 
|  |    366 | lemmas analz_into_parts = analz_subset_parts [THEN subsetD, standard]
 | 
|  |    367 | 
 | 
|  |    368 | lemmas not_parts_not_analz = analz_subset_parts [THEN contra_subsetD, standard]
 | 
|  |    369 | 
 | 
|  |    370 | 
 | 
|  |    371 | ML{*ResAtp.problem_name := "Message__parts_analz"*}
 | 
|  |    372 | lemma parts_analz [simp]: "parts (analz H) = parts H"
 | 
|  |    373 | apply (rule equalityI)
 | 
|  |    374 | apply (metis analz_subset_parts parts_subset_iff)
 | 
|  |    375 | apply (metis analz_increasing parts_mono)
 | 
|  |    376 | done
 | 
|  |    377 | 
 | 
|  |    378 | 
 | 
|  |    379 | lemma analz_parts [simp]: "analz (parts H) = parts H"
 | 
|  |    380 | apply auto
 | 
|  |    381 | apply (erule analz.induct, auto)
 | 
|  |    382 | done
 | 
|  |    383 | 
 | 
|  |    384 | lemmas analz_insertI = subset_insertI [THEN analz_mono, THEN [2] rev_subsetD, standard]
 | 
|  |    385 | 
 | 
|  |    386 | subsubsection{*General equational properties *}
 | 
|  |    387 | 
 | 
|  |    388 | lemma analz_empty [simp]: "analz{} = {}"
 | 
|  |    389 | apply safe
 | 
|  |    390 | apply (erule analz.induct, blast+)
 | 
|  |    391 | done
 | 
|  |    392 | 
 | 
|  |    393 | text{*Converse fails: we can analz more from the union than from the 
 | 
|  |    394 |   separate parts, as a key in one might decrypt a message in the other*}
 | 
|  |    395 | lemma analz_Un: "analz(G) \<union> analz(H) \<subseteq> analz(G \<union> H)"
 | 
|  |    396 | by (intro Un_least analz_mono Un_upper1 Un_upper2)
 | 
|  |    397 | 
 | 
|  |    398 | lemma analz_insert: "insert X (analz H) \<subseteq> analz(insert X H)"
 | 
|  |    399 | by (blast intro: analz_mono [THEN [2] rev_subsetD])
 | 
|  |    400 | 
 | 
|  |    401 | subsubsection{*Rewrite rules for pulling out atomic messages *}
 | 
|  |    402 | 
 | 
|  |    403 | lemmas analz_insert_eq_I = equalityI [OF subsetI analz_insert]
 | 
|  |    404 | 
 | 
|  |    405 | lemma analz_insert_Agent [simp]:
 | 
|  |    406 |      "analz (insert (Agent agt) H) = insert (Agent agt) (analz H)"
 | 
|  |    407 | apply (rule analz_insert_eq_I) 
 | 
|  |    408 | apply (erule analz.induct, auto) 
 | 
|  |    409 | done
 | 
|  |    410 | 
 | 
|  |    411 | lemma analz_insert_Nonce [simp]:
 | 
|  |    412 |      "analz (insert (Nonce N) H) = insert (Nonce N) (analz H)"
 | 
|  |    413 | apply (rule analz_insert_eq_I) 
 | 
|  |    414 | apply (erule analz.induct, auto) 
 | 
|  |    415 | done
 | 
|  |    416 | 
 | 
|  |    417 | lemma analz_insert_Number [simp]:
 | 
|  |    418 |      "analz (insert (Number N) H) = insert (Number N) (analz H)"
 | 
|  |    419 | apply (rule analz_insert_eq_I) 
 | 
|  |    420 | apply (erule analz.induct, auto) 
 | 
|  |    421 | done
 | 
|  |    422 | 
 | 
|  |    423 | lemma analz_insert_Hash [simp]:
 | 
|  |    424 |      "analz (insert (Hash X) H) = insert (Hash X) (analz H)"
 | 
|  |    425 | apply (rule analz_insert_eq_I) 
 | 
|  |    426 | apply (erule analz.induct, auto) 
 | 
|  |    427 | done
 | 
|  |    428 | 
 | 
|  |    429 | text{*Can only pull out Keys if they are not needed to decrypt the rest*}
 | 
|  |    430 | lemma analz_insert_Key [simp]: 
 | 
|  |    431 |     "K \<notin> keysFor (analz H) ==>   
 | 
|  |    432 |           analz (insert (Key K) H) = insert (Key K) (analz H)"
 | 
|  |    433 | apply (unfold keysFor_def)
 | 
|  |    434 | apply (rule analz_insert_eq_I) 
 | 
|  |    435 | apply (erule analz.induct, auto) 
 | 
|  |    436 | done
 | 
|  |    437 | 
 | 
|  |    438 | lemma analz_insert_MPair [simp]:
 | 
|  |    439 |      "analz (insert {|X,Y|} H) =  
 | 
|  |    440 |           insert {|X,Y|} (analz (insert X (insert Y H)))"
 | 
|  |    441 | apply (rule equalityI)
 | 
|  |    442 | apply (rule subsetI)
 | 
|  |    443 | apply (erule analz.induct, auto)
 | 
|  |    444 | apply (erule analz.induct)
 | 
|  |    445 | apply (blast intro: analz.Fst analz.Snd)+
 | 
|  |    446 | done
 | 
|  |    447 | 
 | 
|  |    448 | text{*Can pull out enCrypted message if the Key is not known*}
 | 
|  |    449 | lemma analz_insert_Crypt:
 | 
|  |    450 |      "Key (invKey K) \<notin> analz H 
 | 
|  |    451 |       ==> analz (insert (Crypt K X) H) = insert (Crypt K X) (analz H)"
 | 
|  |    452 | apply (rule analz_insert_eq_I) 
 | 
|  |    453 | apply (erule analz.induct, auto) 
 | 
|  |    454 | 
 | 
|  |    455 | done
 | 
|  |    456 | 
 | 
|  |    457 | lemma lemma1: "Key (invKey K) \<in> analz H ==>   
 | 
|  |    458 |                analz (insert (Crypt K X) H) \<subseteq>  
 | 
|  |    459 |                insert (Crypt K X) (analz (insert X H))" 
 | 
|  |    460 | apply (rule subsetI)
 | 
| 23755 |    461 | apply (erule_tac x = x in analz.induct, auto)
 | 
| 23449 |    462 | done
 | 
|  |    463 | 
 | 
|  |    464 | lemma lemma2: "Key (invKey K) \<in> analz H ==>   
 | 
|  |    465 |                insert (Crypt K X) (analz (insert X H)) \<subseteq>  
 | 
|  |    466 |                analz (insert (Crypt K X) H)"
 | 
|  |    467 | apply auto
 | 
| 23755 |    468 | apply (erule_tac x = x in analz.induct, auto)
 | 
| 23449 |    469 | apply (blast intro: analz_insertI analz.Decrypt)
 | 
|  |    470 | done
 | 
|  |    471 | 
 | 
|  |    472 | lemma analz_insert_Decrypt:
 | 
|  |    473 |      "Key (invKey K) \<in> analz H ==>   
 | 
|  |    474 |                analz (insert (Crypt K X) H) =  
 | 
|  |    475 |                insert (Crypt K X) (analz (insert X H))"
 | 
|  |    476 | by (intro equalityI lemma1 lemma2)
 | 
|  |    477 | 
 | 
|  |    478 | text{*Case analysis: either the message is secure, or it is not! Effective,
 | 
|  |    479 | but can cause subgoals to blow up! Use with @{text "split_if"}; apparently
 | 
|  |    480 | @{text "split_tac"} does not cope with patterns such as @{term"analz (insert
 | 
|  |    481 | (Crypt K X) H)"} *} 
 | 
|  |    482 | lemma analz_Crypt_if [simp]:
 | 
|  |    483 |      "analz (insert (Crypt K X) H) =                 
 | 
|  |    484 |           (if (Key (invKey K) \<in> analz H)                 
 | 
|  |    485 |            then insert (Crypt K X) (analz (insert X H))  
 | 
|  |    486 |            else insert (Crypt K X) (analz H))"
 | 
|  |    487 | by (simp add: analz_insert_Crypt analz_insert_Decrypt)
 | 
|  |    488 | 
 | 
|  |    489 | 
 | 
|  |    490 | text{*This rule supposes "for the sake of argument" that we have the key.*}
 | 
|  |    491 | lemma analz_insert_Crypt_subset:
 | 
|  |    492 |      "analz (insert (Crypt K X) H) \<subseteq>   
 | 
|  |    493 |            insert (Crypt K X) (analz (insert X H))"
 | 
|  |    494 | apply (rule subsetI)
 | 
|  |    495 | apply (erule analz.induct, auto)
 | 
|  |    496 | done
 | 
|  |    497 | 
 | 
|  |    498 | 
 | 
|  |    499 | lemma analz_image_Key [simp]: "analz (Key`N) = Key`N"
 | 
|  |    500 | apply auto
 | 
|  |    501 | apply (erule analz.induct, auto)
 | 
|  |    502 | done
 | 
|  |    503 | 
 | 
|  |    504 | 
 | 
|  |    505 | subsubsection{*Idempotence and transitivity *}
 | 
|  |    506 | 
 | 
|  |    507 | lemma analz_analzD [dest!]: "X\<in> analz (analz H) ==> X\<in> analz H"
 | 
|  |    508 | by (erule analz.induct, blast+)
 | 
|  |    509 | 
 | 
|  |    510 | lemma analz_idem [simp]: "analz (analz H) = analz H"
 | 
|  |    511 | by blast
 | 
|  |    512 | 
 | 
|  |    513 | lemma analz_subset_iff [simp]: "(analz G \<subseteq> analz H) = (G \<subseteq> analz H)"
 | 
|  |    514 | apply (rule iffI)
 | 
|  |    515 | apply (iprover intro: subset_trans analz_increasing)  
 | 
|  |    516 | apply (frule analz_mono, simp) 
 | 
|  |    517 | done
 | 
|  |    518 | 
 | 
|  |    519 | lemma analz_trans: "[| X\<in> analz G;  G \<subseteq> analz H |] ==> X\<in> analz H"
 | 
|  |    520 | by (drule analz_mono, blast)
 | 
|  |    521 | 
 | 
|  |    522 | 
 | 
|  |    523 | ML{*ResAtp.problem_name := "Message__analz_cut"*}
 | 
|  |    524 |     declare analz_trans[intro]
 | 
|  |    525 | lemma analz_cut: "[| Y\<in> analz (insert X H);  X\<in> analz H |] ==> Y\<in> analz H"
 | 
|  |    526 | (*TOO SLOW
 | 
|  |    527 | by (metis analz_idem analz_increasing analz_mono insert_absorb insert_mono insert_subset) --{*317s*}
 | 
|  |    528 | ??*)
 | 
|  |    529 | by (erule analz_trans, blast)
 | 
|  |    530 | 
 | 
|  |    531 | 
 | 
|  |    532 | text{*This rewrite rule helps in the simplification of messages that involve
 | 
|  |    533 |   the forwarding of unknown components (X).  Without it, removing occurrences
 | 
|  |    534 |   of X can be very complicated. *}
 | 
|  |    535 | lemma analz_insert_eq: "X\<in> analz H ==> analz (insert X H) = analz H"
 | 
|  |    536 | by (blast intro: analz_cut analz_insertI)
 | 
|  |    537 | 
 | 
|  |    538 | 
 | 
|  |    539 | text{*A congruence rule for "analz" *}
 | 
|  |    540 | 
 | 
|  |    541 | ML{*ResAtp.problem_name := "Message__analz_subset_cong"*}
 | 
|  |    542 | lemma analz_subset_cong:
 | 
|  |    543 |      "[| analz G \<subseteq> analz G'; analz H \<subseteq> analz H' |] 
 | 
|  |    544 |       ==> analz (G \<union> H) \<subseteq> analz (G' \<union> H')"
 | 
|  |    545 | apply simp
 | 
|  |    546 | apply (metis Un_absorb2 Un_commute Un_subset_iff Un_upper1 Un_upper2 analz_mono)
 | 
|  |    547 | done
 | 
|  |    548 | 
 | 
|  |    549 | 
 | 
|  |    550 | lemma analz_cong:
 | 
|  |    551 |      "[| analz G = analz G'; analz H = analz H'  
 | 
|  |    552 |                |] ==> analz (G \<union> H) = analz (G' \<union> H')"
 | 
|  |    553 | by (intro equalityI analz_subset_cong, simp_all) 
 | 
|  |    554 | 
 | 
|  |    555 | lemma analz_insert_cong:
 | 
|  |    556 |      "analz H = analz H' ==> analz(insert X H) = analz(insert X H')"
 | 
|  |    557 | by (force simp only: insert_def intro!: analz_cong)
 | 
|  |    558 | 
 | 
|  |    559 | text{*If there are no pairs or encryptions then analz does nothing*}
 | 
|  |    560 | lemma analz_trivial:
 | 
|  |    561 |      "[| \<forall>X Y. {|X,Y|} \<notin> H;  \<forall>X K. Crypt K X \<notin> H |] ==> analz H = H"
 | 
|  |    562 | apply safe
 | 
|  |    563 | apply (erule analz.induct, blast+)
 | 
|  |    564 | done
 | 
|  |    565 | 
 | 
|  |    566 | text{*These two are obsolete (with a single Spy) but cost little to prove...*}
 | 
|  |    567 | lemma analz_UN_analz_lemma:
 | 
|  |    568 |      "X\<in> analz (\<Union>i\<in>A. analz (H i)) ==> X\<in> analz (\<Union>i\<in>A. H i)"
 | 
|  |    569 | apply (erule analz.induct)
 | 
|  |    570 | apply (blast intro: analz_mono [THEN [2] rev_subsetD])+
 | 
|  |    571 | done
 | 
|  |    572 | 
 | 
|  |    573 | lemma analz_UN_analz [simp]: "analz (\<Union>i\<in>A. analz (H i)) = analz (\<Union>i\<in>A. H i)"
 | 
|  |    574 | by (blast intro: analz_UN_analz_lemma analz_mono [THEN [2] rev_subsetD])
 | 
|  |    575 | 
 | 
|  |    576 | 
 | 
|  |    577 | subsection{*Inductive relation "synth"*}
 | 
|  |    578 | 
 | 
|  |    579 | text{*Inductive definition of "synth" -- what can be built up from a set of
 | 
|  |    580 |     messages.  A form of upward closure.  Pairs can be built, messages
 | 
|  |    581 |     encrypted with known keys.  Agent names are public domain.
 | 
|  |    582 |     Numbers can be guessed, but Nonces cannot be.  *}
 | 
|  |    583 | 
 | 
| 23755 |    584 | inductive_set
 | 
|  |    585 |   synth :: "msg set => msg set"
 | 
|  |    586 |   for H :: "msg set"
 | 
|  |    587 |   where
 | 
| 23449 |    588 |     Inj    [intro]:   "X \<in> H ==> X \<in> synth H"
 | 
| 23755 |    589 |   | Agent  [intro]:   "Agent agt \<in> synth H"
 | 
|  |    590 |   | Number [intro]:   "Number n  \<in> synth H"
 | 
|  |    591 |   | Hash   [intro]:   "X \<in> synth H ==> Hash X \<in> synth H"
 | 
|  |    592 |   | MPair  [intro]:   "[|X \<in> synth H;  Y \<in> synth H|] ==> {|X,Y|} \<in> synth H"
 | 
|  |    593 |   | Crypt  [intro]:   "[|X \<in> synth H;  Key(K) \<in> H|] ==> Crypt K X \<in> synth H"
 | 
| 23449 |    594 | 
 | 
|  |    595 | text{*Monotonicity*}
 | 
|  |    596 | lemma synth_mono: "G\<subseteq>H ==> synth(G) \<subseteq> synth(H)"
 | 
|  |    597 |   by (auto, erule synth.induct, auto)  
 | 
|  |    598 | 
 | 
|  |    599 | text{*NO @{text Agent_synth}, as any Agent name can be synthesized.  
 | 
|  |    600 |   The same holds for @{term Number}*}
 | 
|  |    601 | inductive_cases Nonce_synth [elim!]: "Nonce n \<in> synth H"
 | 
|  |    602 | inductive_cases Key_synth   [elim!]: "Key K \<in> synth H"
 | 
|  |    603 | inductive_cases Hash_synth  [elim!]: "Hash X \<in> synth H"
 | 
|  |    604 | inductive_cases MPair_synth [elim!]: "{|X,Y|} \<in> synth H"
 | 
|  |    605 | inductive_cases Crypt_synth [elim!]: "Crypt K X \<in> synth H"
 | 
|  |    606 | 
 | 
|  |    607 | 
 | 
|  |    608 | lemma synth_increasing: "H \<subseteq> synth(H)"
 | 
|  |    609 | by blast
 | 
|  |    610 | 
 | 
|  |    611 | subsubsection{*Unions *}
 | 
|  |    612 | 
 | 
|  |    613 | text{*Converse fails: we can synth more from the union than from the 
 | 
|  |    614 |   separate parts, building a compound message using elements of each.*}
 | 
|  |    615 | lemma synth_Un: "synth(G) \<union> synth(H) \<subseteq> synth(G \<union> H)"
 | 
|  |    616 | by (intro Un_least synth_mono Un_upper1 Un_upper2)
 | 
|  |    617 | 
 | 
|  |    618 | 
 | 
|  |    619 | ML{*ResAtp.problem_name := "Message__synth_insert"*}
 | 
|  |    620 |  
 | 
|  |    621 | lemma synth_insert: "insert X (synth H) \<subseteq> synth(insert X H)"
 | 
|  |    622 | by (metis insert_iff insert_subset subset_insertI synth.Inj synth_mono)
 | 
|  |    623 | 
 | 
|  |    624 | subsubsection{*Idempotence and transitivity *}
 | 
|  |    625 | 
 | 
|  |    626 | lemma synth_synthD [dest!]: "X\<in> synth (synth H) ==> X\<in> synth H"
 | 
|  |    627 | by (erule synth.induct, blast+)
 | 
|  |    628 | 
 | 
|  |    629 | lemma synth_idem: "synth (synth H) = synth H"
 | 
|  |    630 | by blast
 | 
|  |    631 | 
 | 
|  |    632 | lemma synth_subset_iff [simp]: "(synth G \<subseteq> synth H) = (G \<subseteq> synth H)"
 | 
|  |    633 | apply (rule iffI)
 | 
|  |    634 | apply (iprover intro: subset_trans synth_increasing)  
 | 
|  |    635 | apply (frule synth_mono, simp add: synth_idem) 
 | 
|  |    636 | done
 | 
|  |    637 | 
 | 
|  |    638 | lemma synth_trans: "[| X\<in> synth G;  G \<subseteq> synth H |] ==> X\<in> synth H"
 | 
|  |    639 | by (drule synth_mono, blast)
 | 
|  |    640 | 
 | 
|  |    641 | ML{*ResAtp.problem_name := "Message__synth_cut"*}
 | 
|  |    642 | lemma synth_cut: "[| Y\<in> synth (insert X H);  X\<in> synth H |] ==> Y\<in> synth H"
 | 
|  |    643 | (*TOO SLOW
 | 
|  |    644 | by (metis insert_absorb insert_mono insert_subset synth_idem synth_increasing synth_mono)
 | 
|  |    645 | *)
 | 
|  |    646 | by (erule synth_trans, blast)
 | 
|  |    647 | 
 | 
|  |    648 | 
 | 
|  |    649 | lemma Agent_synth [simp]: "Agent A \<in> synth H"
 | 
|  |    650 | by blast
 | 
|  |    651 | 
 | 
|  |    652 | lemma Number_synth [simp]: "Number n \<in> synth H"
 | 
|  |    653 | by blast
 | 
|  |    654 | 
 | 
|  |    655 | lemma Nonce_synth_eq [simp]: "(Nonce N \<in> synth H) = (Nonce N \<in> H)"
 | 
|  |    656 | by blast
 | 
|  |    657 | 
 | 
|  |    658 | lemma Key_synth_eq [simp]: "(Key K \<in> synth H) = (Key K \<in> H)"
 | 
|  |    659 | by blast
 | 
|  |    660 | 
 | 
|  |    661 | lemma Crypt_synth_eq [simp]:
 | 
|  |    662 |      "Key K \<notin> H ==> (Crypt K X \<in> synth H) = (Crypt K X \<in> H)"
 | 
|  |    663 | by blast
 | 
|  |    664 | 
 | 
|  |    665 | 
 | 
|  |    666 | lemma keysFor_synth [simp]: 
 | 
|  |    667 |     "keysFor (synth H) = keysFor H \<union> invKey`{K. Key K \<in> H}"
 | 
|  |    668 | by (unfold keysFor_def, blast)
 | 
|  |    669 | 
 | 
|  |    670 | 
 | 
|  |    671 | subsubsection{*Combinations of parts, analz and synth *}
 | 
|  |    672 | 
 | 
|  |    673 | ML{*ResAtp.problem_name := "Message__parts_synth"*}
 | 
|  |    674 | lemma parts_synth [simp]: "parts (synth H) = parts H \<union> synth H"
 | 
|  |    675 | apply (rule equalityI)
 | 
|  |    676 | apply (rule subsetI)
 | 
|  |    677 | apply (erule parts.induct)
 | 
|  |    678 | apply (metis UnCI)
 | 
|  |    679 | apply (metis MPair_synth UnCI UnE insert_absorb insert_subset parts.Fst parts_increasing)
 | 
|  |    680 | apply (metis MPair_synth UnCI UnE insert_absorb insert_subset parts.Snd parts_increasing)
 | 
|  |    681 | apply (metis Body Crypt_synth UnCI UnE insert_absorb insert_subset parts_increasing)
 | 
|  |    682 | apply (metis Un_subset_iff parts_increasing parts_mono synth_increasing)
 | 
|  |    683 | done
 | 
|  |    684 | 
 | 
|  |    685 | 
 | 
|  |    686 | 
 | 
|  |    687 | 
 | 
|  |    688 | ML{*ResAtp.problem_name := "Message__analz_analz_Un"*}
 | 
|  |    689 | lemma analz_analz_Un [simp]: "analz (analz G \<union> H) = analz (G \<union> H)"
 | 
|  |    690 | apply (rule equalityI);
 | 
|  |    691 | apply (metis analz_idem analz_subset_cong order_eq_refl)
 | 
|  |    692 | apply (metis analz_increasing analz_subset_cong order_eq_refl)
 | 
|  |    693 | done
 | 
|  |    694 | 
 | 
|  |    695 | ML{*ResAtp.problem_name := "Message__analz_synth_Un"*}
 | 
|  |    696 |     declare analz_mono [intro] analz.Fst [intro] analz.Snd [intro] Un_least [intro]
 | 
|  |    697 | lemma analz_synth_Un [simp]: "analz (synth G \<union> H) = analz (G \<union> H) \<union> synth G"
 | 
|  |    698 | apply (rule equalityI)
 | 
|  |    699 | apply (rule subsetI)
 | 
|  |    700 | apply (erule analz.induct)
 | 
|  |    701 | apply (metis UnCI UnE Un_commute analz.Inj)
 | 
|  |    702 | apply (metis MPair_synth UnCI UnE Un_commute Un_upper1 analz.Fst analz_increasing analz_mono insert_absorb insert_subset)
 | 
|  |    703 | apply (metis MPair_synth UnCI UnE Un_commute Un_upper1 analz.Snd analz_increasing analz_mono insert_absorb insert_subset)
 | 
|  |    704 | apply (blast intro: analz.Decrypt)
 | 
|  |    705 | apply (metis Diff_Int Diff_empty Diff_subset_conv Int_empty_right Un_commute Un_subset_iff Un_upper1 analz_increasing analz_mono synth_increasing)
 | 
|  |    706 | done
 | 
|  |    707 | 
 | 
|  |    708 | 
 | 
|  |    709 | ML{*ResAtp.problem_name := "Message__analz_synth"*}
 | 
|  |    710 | lemma analz_synth [simp]: "analz (synth H) = analz H \<union> synth H"
 | 
|  |    711 | proof (neg_clausify)
 | 
|  |    712 | assume 0: "analz (synth H) \<noteq> analz H \<union> synth H"
 | 
|  |    713 | have 1: "\<And>X1 X3. sup (analz (sup X3 X1)) (synth X3) = analz (sup (synth X3) X1)"
 | 
|  |    714 |   by (metis analz_synth_Un sup_set_eq sup_set_eq sup_set_eq)
 | 
|  |    715 | have 2: "sup (analz H) (synth H) \<noteq> analz (synth H)"
 | 
|  |    716 |   by (metis 0 sup_set_eq)
 | 
|  |    717 | have 3: "\<And>X1 X3. sup (synth X3) (analz (sup X3 X1)) = analz (sup (synth X3) X1)"
 | 
|  |    718 |   by (metis 1 Un_commute sup_set_eq sup_set_eq)
 | 
|  |    719 | have 4: "\<And>X3. sup (synth X3) (analz X3) = analz (sup (synth X3) {})"
 | 
|  |    720 |   by (metis 3 Un_empty_right sup_set_eq)
 | 
|  |    721 | have 5: "\<And>X3. sup (synth X3) (analz X3) = analz (synth X3)"
 | 
|  |    722 |   by (metis 4 Un_empty_right sup_set_eq)
 | 
|  |    723 | have 6: "\<And>X3. sup (analz X3) (synth X3) = analz (synth X3)"
 | 
|  |    724 |   by (metis 5 Un_commute sup_set_eq sup_set_eq)
 | 
|  |    725 | show "False"
 | 
|  |    726 |   by (metis 2 6)
 | 
|  |    727 | qed
 | 
|  |    728 | 
 | 
|  |    729 | 
 | 
|  |    730 | subsubsection{*For reasoning about the Fake rule in traces *}
 | 
|  |    731 | 
 | 
|  |    732 | ML{*ResAtp.problem_name := "Message__parts_insert_subset_Un"*}
 | 
|  |    733 | lemma parts_insert_subset_Un: "X\<in> G ==> parts(insert X H) \<subseteq> parts G \<union> parts H"
 | 
|  |    734 | proof (neg_clausify)
 | 
|  |    735 | assume 0: "X \<in> G"
 | 
|  |    736 | assume 1: "\<not> parts (insert X H) \<subseteq> parts G \<union> parts H"
 | 
|  |    737 | have 2: "\<not> parts (insert X H) \<subseteq> parts (G \<union> H)"
 | 
|  |    738 |   by (metis 1 parts_Un)
 | 
|  |    739 | have 3: "\<not> insert X H \<subseteq> G \<union> H"
 | 
|  |    740 |   by (metis 2 parts_mono)
 | 
|  |    741 | have 4: "X \<notin> G \<union> H \<or> \<not> H \<subseteq> G \<union> H"
 | 
|  |    742 |   by (metis 3 insert_subset)
 | 
|  |    743 | have 5: "X \<notin> G \<union> H"
 | 
|  |    744 |   by (metis 4 Un_upper2)
 | 
|  |    745 | have 6: "X \<notin> G"
 | 
|  |    746 |   by (metis 5 UnCI)
 | 
|  |    747 | show "False"
 | 
|  |    748 |   by (metis 6 0)
 | 
|  |    749 | qed
 | 
|  |    750 | 
 | 
|  |    751 | ML{*ResAtp.problem_name := "Message__Fake_parts_insert"*}
 | 
|  |    752 | lemma Fake_parts_insert:
 | 
|  |    753 |      "X \<in> synth (analz H) ==>  
 | 
|  |    754 |       parts (insert X H) \<subseteq> synth (analz H) \<union> parts H"
 | 
|  |    755 | proof (neg_clausify)
 | 
|  |    756 | assume 0: "X \<in> synth (analz H)"
 | 
|  |    757 | assume 1: "\<not> parts (insert X H) \<subseteq> synth (analz H) \<union> parts H"
 | 
|  |    758 | have 2: "\<And>X3. parts X3 \<union> synth (analz X3) = parts (synth (analz X3))"
 | 
|  |    759 |   by (metis parts_synth parts_analz)
 | 
|  |    760 | have 3: "\<And>X3. analz X3 \<union> synth (analz X3) = analz (synth (analz X3))"
 | 
|  |    761 |   by (metis analz_synth analz_idem)
 | 
|  |    762 | have 4: "\<And>X3. analz X3 \<subseteq> analz (synth X3)"
 | 
|  |    763 |   by (metis Un_upper1 analz_synth)
 | 
|  |    764 | have 5: "\<not> parts (insert X H) \<subseteq> parts H \<union> synth (analz H)"
 | 
|  |    765 |   by (metis 1 Un_commute)
 | 
|  |    766 | have 6: "\<not> parts (insert X H) \<subseteq> parts (synth (analz H))"
 | 
|  |    767 |   by (metis 5 2)
 | 
|  |    768 | have 7: "\<not> insert X H \<subseteq> synth (analz H)"
 | 
|  |    769 |   by (metis 6 parts_mono)
 | 
|  |    770 | have 8: "X \<notin> synth (analz H) \<or> \<not> H \<subseteq> synth (analz H)"
 | 
|  |    771 |   by (metis 7 insert_subset)
 | 
|  |    772 | have 9: "\<not> H \<subseteq> synth (analz H)"
 | 
|  |    773 |   by (metis 8 0)
 | 
|  |    774 | have 10: "\<And>X3. X3 \<subseteq> analz (synth X3)"
 | 
|  |    775 |   by (metis analz_subset_iff 4)
 | 
|  |    776 | have 11: "\<And>X3. X3 \<subseteq> analz (synth (analz X3))"
 | 
|  |    777 |   by (metis analz_subset_iff 10)
 | 
|  |    778 | have 12: "\<And>X3. analz (synth (analz X3)) = synth (analz X3) \<or>
 | 
|  |    779 |      \<not> analz X3 \<subseteq> synth (analz X3)"
 | 
|  |    780 |   by (metis Un_absorb1 3)
 | 
|  |    781 | have 13: "\<And>X3. analz (synth (analz X3)) = synth (analz X3)"
 | 
|  |    782 |   by (metis 12 synth_increasing)
 | 
|  |    783 | have 14: "\<And>X3. X3 \<subseteq> synth (analz X3)"
 | 
|  |    784 |   by (metis 11 13)
 | 
|  |    785 | show "False"
 | 
|  |    786 |   by (metis 9 14)
 | 
|  |    787 | qed
 | 
|  |    788 | 
 | 
|  |    789 | lemma Fake_parts_insert_in_Un:
 | 
|  |    790 |      "[|Z \<in> parts (insert X H);  X: synth (analz H)|] 
 | 
|  |    791 |       ==> Z \<in>  synth (analz H) \<union> parts H";
 | 
|  |    792 | by (blast dest: Fake_parts_insert  [THEN subsetD, dest])
 | 
|  |    793 | 
 | 
|  |    794 | ML{*ResAtp.problem_name := "Message__Fake_analz_insert"*}
 | 
|  |    795 |     declare analz_mono [intro] synth_mono [intro] 
 | 
|  |    796 | lemma Fake_analz_insert:
 | 
|  |    797 |      "X\<in> synth (analz G) ==>  
 | 
|  |    798 |       analz (insert X H) \<subseteq> synth (analz G) \<union> analz (G \<union> H)"
 | 
|  |    799 | by (metis Un_commute Un_insert_left Un_insert_right Un_upper1 analz_analz_Un analz_mono analz_synth_Un equalityE insert_absorb order_le_less xt1(12))
 | 
|  |    800 | 
 | 
|  |    801 | ML{*ResAtp.problem_name := "Message__Fake_analz_insert_simpler"*}
 | 
|  |    802 | (*simpler problems?  BUT METIS CAN'T PROVE
 | 
|  |    803 | lemma Fake_analz_insert_simpler:
 | 
|  |    804 |      "X\<in> synth (analz G) ==>  
 | 
|  |    805 |       analz (insert X H) \<subseteq> synth (analz G) \<union> analz (G \<union> H)"
 | 
|  |    806 | apply (rule subsetI)
 | 
|  |    807 | apply (subgoal_tac "x \<in> analz (synth (analz G) \<union> H) ")
 | 
|  |    808 | apply (metis Un_commute analz_analz_Un analz_synth_Un)
 | 
|  |    809 | apply (metis Un_commute Un_upper1 Un_upper2 analz_cut analz_increasing analz_mono insert_absorb insert_mono insert_subset)
 | 
|  |    810 | done
 | 
|  |    811 | *)
 | 
|  |    812 | 
 | 
|  |    813 | end
 |