author | nipkow |
Mon, 13 May 2002 15:27:28 +0200 | |
changeset 13145 | 59bc43b51aa2 |
parent 12566 | fe20540bcf93 |
child 13524 | 604d0f3622d6 |
permissions | -rw-r--r-- |
12431 | 1 |
(* Title: HOL/IMP/Transition.thy |
2 |
ID: $Id$ |
|
3 |
Author: Tobias Nipkow & Robert Sandner, TUM |
|
4 |
Isar Version: Gerwin Klein, 2001 |
|
5 |
Copyright 1996 TUM |
|
1700 | 6 |
*) |
7 |
||
12431 | 8 |
header "Transition Semantics of Commands" |
9 |
||
10 |
theory Transition = Natural: |
|
11 |
||
12 |
subsection "The transition relation" |
|
1700 | 13 |
|
12431 | 14 |
text {* |
15 |
We formalize the transition semantics as in \cite{Nielson}. This |
|
16 |
makes some of the rules a bit more intuitive, but also requires |
|
17 |
some more (internal) formal overhead. |
|
18 |
||
19 |
Since configurations that have terminated are written without |
|
20 |
a statement, the transition relation is not |
|
21 |
@{typ "((com \<times> state) \<times> (com \<times> state)) set"} |
|
22 |
but instead: |
|
23 |
*} |
|
24 |
consts evalc1 :: "((com option \<times> state) \<times> (com option \<times> state)) set" |
|
4906 | 25 |
|
12431 | 26 |
text {* |
27 |
Some syntactic sugar that we will use to hide the |
|
28 |
@{text option} part in configurations: |
|
29 |
*} |
|
4906 | 30 |
syntax |
12546 | 31 |
"_angle" :: "[com, state] \<Rightarrow> com option \<times> state" ("<_,_>") |
32 |
"_angle2" :: "state \<Rightarrow> com option \<times> state" ("<_>") |
|
12431 | 33 |
|
34 |
syntax (xsymbols) |
|
12546 | 35 |
"_angle" :: "[com, state] \<Rightarrow> com option \<times> state" ("\<langle>_,_\<rangle>") |
36 |
"_angle2" :: "state \<Rightarrow> com option \<times> state" ("\<langle>_\<rangle>") |
|
12431 | 37 |
|
38 |
translations |
|
39 |
"\<langle>c,s\<rangle>" == "(Some c, s)" |
|
40 |
"\<langle>s\<rangle>" == "(None, s)" |
|
41 |
||
42 |
text {* |
|
43 |
More syntactic sugar for the transition relation, and its |
|
44 |
iteration. |
|
45 |
*} |
|
46 |
syntax |
|
12546 | 47 |
"_evalc1" :: "[(com option\<times>state),(com option\<times>state)] \<Rightarrow> bool" |
12434 | 48 |
("_ -1-> _" [60,60] 60) |
12546 | 49 |
"_evalcn" :: "[(com option\<times>state),nat,(com option\<times>state)] \<Rightarrow> bool" |
12434 | 50 |
("_ -_-> _" [60,60,60] 60) |
12546 | 51 |
"_evalc*" :: "[(com option\<times>state),(com option\<times>state)] \<Rightarrow> bool" |
12434 | 52 |
("_ -*-> _" [60,60] 60) |
12431 | 53 |
|
54 |
syntax (xsymbols) |
|
12546 | 55 |
"_evalc1" :: "[(com option\<times>state),(com option\<times>state)] \<Rightarrow> bool" |
12434 | 56 |
("_ \<longrightarrow>\<^sub>1 _" [60,60] 61) |
12546 | 57 |
"_evalcn" :: "[(com option\<times>state),nat,(com option\<times>state)] \<Rightarrow> bool" |
12434 | 58 |
("_ -_\<rightarrow>\<^sub>1 _" [60,60,60] 60) |
12546 | 59 |
"_evalc*" :: "[(com option\<times>state),(com option\<times>state)] \<Rightarrow> bool" |
12434 | 60 |
("_ \<longrightarrow>\<^sub>1\<^sup>* _" [60,60] 60) |
1700 | 61 |
|
62 |
translations |
|
12431 | 63 |
"cs \<longrightarrow>\<^sub>1 cs'" == "(cs,cs') \<in> evalc1" |
64 |
"cs -n\<rightarrow>\<^sub>1 cs'" == "(cs,cs') \<in> evalc1^n" |
|
65 |
"cs \<longrightarrow>\<^sub>1\<^sup>* cs'" == "(cs,cs') \<in> evalc1^*" |
|
66 |
||
67 |
-- {* Isabelle converts @{text "(cs0,(c1,s1))"} to @{term "(cs0,c1,s1)"}, |
|
68 |
so we also include: *} |
|
69 |
"cs0 \<longrightarrow>\<^sub>1 (c1,s1)" == "(cs0,c1,s1) \<in> evalc1" |
|
70 |
"cs0 -n\<rightarrow>\<^sub>1 (c1,s1)" == "(cs0,c1,s1) \<in> evalc1^n" |
|
71 |
"cs0 \<longrightarrow>\<^sub>1\<^sup>* (c1,s1)" == "(cs0,c1,s1) \<in> evalc1^*" |
|
72 |
||
73 |
text {* |
|
74 |
Now, finally, we are set to write down the rules for our small step semantics: |
|
75 |
*} |
|
76 |
inductive evalc1 |
|
77 |
intros |
|
78 |
Skip: "\<langle>\<SKIP>, s\<rangle> \<longrightarrow>\<^sub>1 \<langle>s\<rangle>" |
|
79 |
Assign: "\<langle>x :== a, s\<rangle> \<longrightarrow>\<^sub>1 \<langle>s[x \<mapsto> a s]\<rangle>" |
|
80 |
||
81 |
Semi1: "\<langle>c0,s\<rangle> \<longrightarrow>\<^sub>1 \<langle>s'\<rangle> \<Longrightarrow> \<langle>c0;c1,s\<rangle> \<longrightarrow>\<^sub>1 \<langle>c1,s'\<rangle>" |
|
82 |
Semi2: "\<langle>c0,s\<rangle> \<longrightarrow>\<^sub>1 \<langle>c0',s'\<rangle> \<Longrightarrow> \<langle>c0;c1,s\<rangle> \<longrightarrow>\<^sub>1 \<langle>c0';c1,s'\<rangle>" |
|
83 |
||
84 |
IfTrue: "b s \<Longrightarrow> \<langle>\<IF> b \<THEN> c1 \<ELSE> c2,s\<rangle> \<longrightarrow>\<^sub>1 \<langle>c1,s\<rangle>" |
|
85 |
IfFalse: "\<not>b s \<Longrightarrow> \<langle>\<IF> b \<THEN> c1 \<ELSE> c2,s\<rangle> \<longrightarrow>\<^sub>1 \<langle>c2,s\<rangle>" |
|
86 |
||
87 |
While: "\<langle>\<WHILE> b \<DO> c,s\<rangle> \<longrightarrow>\<^sub>1 \<langle>\<IF> b \<THEN> c; \<WHILE> b \<DO> c \<ELSE> \<SKIP>,s\<rangle>" |
|
88 |
||
89 |
lemmas [intro] = evalc1.intros -- "again, use these rules in automatic proofs" |
|
90 |
||
91 |
(*<*) |
|
92 |
(* fixme: move to Relation_Power.thy *) |
|
93 |
lemma rel_pow_Suc_E2 [elim!]: |
|
94 |
"[| (x, z) \<in> R ^ Suc n; !!y. [| (x, y) \<in> R; (y, z) \<in> R ^ n |] ==> P |] ==> P" |
|
95 |
by (drule rel_pow_Suc_D2) blast |
|
96 |
||
97 |
lemma rtrancl_imp_rel_pow: "p \<in> R^* \<Longrightarrow> \<exists>n. p \<in> R^n" |
|
98 |
proof - |
|
99 |
assume "p \<in> R\<^sup>*" |
|
100 |
moreover obtain x y where p: "p = (x,y)" by (cases p) |
|
101 |
ultimately have "(x,y) \<in> R\<^sup>*" by hypsubst |
|
102 |
hence "\<exists>n. (x,y) \<in> R^n" |
|
103 |
proof induct |
|
104 |
fix a have "(a,a) \<in> R^0" by simp |
|
105 |
thus "\<exists>n. (a,a) \<in> R ^ n" .. |
|
106 |
next |
|
107 |
fix a b c assume "\<exists>n. (a,b) \<in> R ^ n" |
|
108 |
then obtain n where "(a,b) \<in> R^n" .. |
|
109 |
moreover assume "(b,c) \<in> R" |
|
110 |
ultimately have "(a,c) \<in> R^(Suc n)" by auto |
|
111 |
thus "\<exists>n. (a,c) \<in> R^n" .. |
|
112 |
qed |
|
113 |
with p show ?thesis by hypsubst |
|
114 |
qed |
|
115 |
(*>*) |
|
116 |
text {* |
|
117 |
As for the big step semantics you can read these rules in a |
|
118 |
syntax directed way: |
|
119 |
*} |
|
120 |
lemma SKIP_1: "\<langle>\<SKIP>, s\<rangle> \<longrightarrow>\<^sub>1 y = (y = \<langle>s\<rangle>)" |
|
121 |
by (rule, cases set: evalc1, auto) |
|
122 |
||
123 |
lemma Assign_1: "\<langle>x :== a, s\<rangle> \<longrightarrow>\<^sub>1 y = (y = \<langle>s[x \<mapsto> a s]\<rangle>)" |
|
124 |
by (rule, cases set: evalc1, auto) |
|
125 |
||
126 |
lemma Cond_1: |
|
127 |
"\<langle>\<IF> b \<THEN> c1 \<ELSE> c2, s\<rangle> \<longrightarrow>\<^sub>1 y = ((b s \<longrightarrow> y = \<langle>c1, s\<rangle>) \<and> (\<not>b s \<longrightarrow> y = \<langle>c2, s\<rangle>))" |
|
128 |
by (rule, cases set: evalc1, auto) |
|
129 |
||
12434 | 130 |
lemma While_1: |
131 |
"\<langle>\<WHILE> b \<DO> c, s\<rangle> \<longrightarrow>\<^sub>1 y = (y = \<langle>\<IF> b \<THEN> c; \<WHILE> b \<DO> c \<ELSE> \<SKIP>, s\<rangle>)" |
|
12431 | 132 |
by (rule, cases set: evalc1, auto) |
133 |
||
134 |
lemmas [simp] = SKIP_1 Assign_1 Cond_1 While_1 |
|
135 |
||
136 |
||
137 |
subsection "Examples" |
|
138 |
||
139 |
lemma |
|
12434 | 140 |
"s x = 0 \<Longrightarrow> \<langle>\<WHILE> \<lambda>s. s x \<noteq> 1 \<DO> (x:== \<lambda>s. s x+1), s\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>s[x \<mapsto> 1]\<rangle>" |
12431 | 141 |
(is "_ \<Longrightarrow> \<langle>?w, _\<rangle> \<longrightarrow>\<^sub>1\<^sup>* _") |
142 |
proof - |
|
12434 | 143 |
let ?c = "x:== \<lambda>s. s x+1" |
144 |
let ?if = "\<IF> \<lambda>s. s x \<noteq> 1 \<THEN> ?c; ?w \<ELSE> \<SKIP>" |
|
12431 | 145 |
assume [simp]: "s x = 0" |
146 |
have "\<langle>?w, s\<rangle> \<longrightarrow>\<^sub>1 \<langle>?if, s\<rangle>" .. |
|
12434 | 147 |
also have "\<langle>?if, s\<rangle> \<longrightarrow>\<^sub>1 \<langle>?c; ?w, s\<rangle>" by simp |
148 |
also have "\<langle>?c; ?w, s\<rangle> \<longrightarrow>\<^sub>1 \<langle>?w, s[x \<mapsto> 1]\<rangle>" by (rule Semi1, simp) |
|
12431 | 149 |
also have "\<langle>?w, s[x \<mapsto> 1]\<rangle> \<longrightarrow>\<^sub>1 \<langle>?if, s[x \<mapsto> 1]\<rangle>" .. |
150 |
also have "\<langle>?if, s[x \<mapsto> 1]\<rangle> \<longrightarrow>\<^sub>1 \<langle>\<SKIP>, s[x \<mapsto> 1]\<rangle>" by (simp add: update_def) |
|
151 |
also have "\<langle>\<SKIP>, s[x \<mapsto> 1]\<rangle> \<longrightarrow>\<^sub>1 \<langle>s[x \<mapsto> 1]\<rangle>" .. |
|
152 |
finally show ?thesis .. |
|
153 |
qed |
|
4906 | 154 |
|
12431 | 155 |
lemma |
12434 | 156 |
"s x = 2 \<Longrightarrow> \<langle>\<WHILE> \<lambda>s. s x \<noteq> 1 \<DO> (x:== \<lambda>s. s x+1), s\<rangle> \<longrightarrow>\<^sub>1\<^sup>* s'" |
12431 | 157 |
(is "_ \<Longrightarrow> \<langle>?w, _\<rangle> \<longrightarrow>\<^sub>1\<^sup>* s'") |
158 |
proof - |
|
159 |
let ?c = "x:== \<lambda>s. s x+1" |
|
160 |
let ?if = "\<IF> \<lambda>s. s x \<noteq> 1 \<THEN> ?c; ?w \<ELSE> \<SKIP>" |
|
161 |
assume [simp]: "s x = 2" |
|
162 |
note update_def [simp] |
|
163 |
have "\<langle>?w, s\<rangle> \<longrightarrow>\<^sub>1 \<langle>?if, s\<rangle>" .. |
|
164 |
also have "\<langle>?if, s\<rangle> \<longrightarrow>\<^sub>1 \<langle>?c; ?w, s\<rangle>" by simp |
|
165 |
also have "\<langle>?c; ?w, s\<rangle> \<longrightarrow>\<^sub>1 \<langle>?w, s[x \<mapsto> 3]\<rangle>" by (rule Semi1, simp) |
|
166 |
also have "\<langle>?w, s[x \<mapsto> 3]\<rangle> \<longrightarrow>\<^sub>1 \<langle>?if, s[x \<mapsto> 3]\<rangle>" .. |
|
167 |
also have "\<langle>?if, s[x \<mapsto> 3]\<rangle> \<longrightarrow>\<^sub>1 \<langle>?c; ?w, s[x \<mapsto> 3]\<rangle>" by simp |
|
168 |
also have "\<langle>?c; ?w, s[x \<mapsto> 3]\<rangle> \<longrightarrow>\<^sub>1 \<langle>?w, s[x \<mapsto> 4]\<rangle>" by (rule Semi1, simp) |
|
169 |
also have "\<langle>?w, s[x \<mapsto> 4]\<rangle> \<longrightarrow>\<^sub>1 \<langle>?if, s[x \<mapsto> 4]\<rangle>" .. |
|
170 |
also have "\<langle>?if, s[x \<mapsto> 4]\<rangle> \<longrightarrow>\<^sub>1 \<langle>?c; ?w, s[x \<mapsto> 4]\<rangle>" by simp |
|
171 |
also have "\<langle>?c; ?w, s[x \<mapsto> 4]\<rangle> \<longrightarrow>\<^sub>1 \<langle>?w, s[x \<mapsto> 5]\<rangle>" by (rule Semi1, simp) |
|
172 |
oops |
|
173 |
||
174 |
subsection "Basic properties" |
|
175 |
||
176 |
text {* |
|
177 |
There are no \emph{stuck} programs: |
|
178 |
*} |
|
179 |
lemma no_stuck: "\<exists>y. \<langle>c,s\<rangle> \<longrightarrow>\<^sub>1 y" |
|
180 |
proof (induct c) |
|
181 |
-- "case Semi:" |
|
182 |
fix c1 c2 assume "\<exists>y. \<langle>c1,s\<rangle> \<longrightarrow>\<^sub>1 y" |
|
183 |
then obtain y where "\<langle>c1,s\<rangle> \<longrightarrow>\<^sub>1 y" .. |
|
184 |
then obtain c1' s' where "\<langle>c1,s\<rangle> \<longrightarrow>\<^sub>1 \<langle>s'\<rangle> \<or> \<langle>c1,s\<rangle> \<longrightarrow>\<^sub>1 \<langle>c1',s'\<rangle>" |
|
185 |
by (cases y, cases "fst y", auto) |
|
186 |
thus "\<exists>s'. \<langle>c1;c2,s\<rangle> \<longrightarrow>\<^sub>1 s'" by auto |
|
187 |
next |
|
188 |
-- "case If:" |
|
189 |
fix b c1 c2 assume "\<exists>y. \<langle>c1,s\<rangle> \<longrightarrow>\<^sub>1 y" and "\<exists>y. \<langle>c2,s\<rangle> \<longrightarrow>\<^sub>1 y" |
|
190 |
thus "\<exists>y. \<langle>\<IF> b \<THEN> c1 \<ELSE> c2, s\<rangle> \<longrightarrow>\<^sub>1 y" by (cases "b s") auto |
|
191 |
qed auto -- "the rest is trivial" |
|
192 |
||
193 |
text {* |
|
194 |
If a configuration does not contain a statement, the program |
|
195 |
has terminated and there is no next configuration: |
|
196 |
*} |
|
12434 | 197 |
lemma stuck [elim!]: "\<langle>s\<rangle> \<longrightarrow>\<^sub>1 y \<Longrightarrow> P" |
198 |
by (auto elim: evalc1.elims) |
|
199 |
||
200 |
lemma evalc_None_retrancl [simp, dest!]: "\<langle>s\<rangle> \<longrightarrow>\<^sub>1\<^sup>* s' \<Longrightarrow> s' = \<langle>s\<rangle>" |
|
201 |
by (erule rtrancl_induct) auto |
|
12431 | 202 |
|
203 |
(*<*) |
|
204 |
(* fixme: relpow.simps don't work *) |
|
205 |
lemma rel_pow_0 [simp]: "!!R::('a*'a) set. R^0 = Id" by simp |
|
206 |
lemma rel_pow_Suc_0 [simp]: "!!R::('a*'a) set. R^(Suc 0) = R" by simp |
|
207 |
lemmas [simp del] = relpow.simps |
|
208 |
(*>*) |
|
12434 | 209 |
lemma evalc1_None_0 [simp, dest!]: "\<langle>s\<rangle> -n\<rightarrow>\<^sub>1 y = (n = 0 \<and> y = \<langle>s\<rangle>)" |
12431 | 210 |
by (cases n) auto |
4906 | 211 |
|
12431 | 212 |
lemma SKIP_n: "\<langle>\<SKIP>, s\<rangle> -n\<rightarrow>\<^sub>1 \<langle>s'\<rangle> \<Longrightarrow> s' = s \<and> n=1" |
213 |
by (cases n) auto |
|
214 |
||
215 |
subsection "Equivalence to natural semantics (after Nielson and Nielson)" |
|
216 |
||
217 |
text {* |
|
218 |
We first need two lemmas about semicolon statements: |
|
219 |
decomposition and composition. |
|
220 |
*} |
|
221 |
lemma semiD: |
|
222 |
"\<And>c1 c2 s s''. \<langle>c1; c2, s\<rangle> -n\<rightarrow>\<^sub>1 \<langle>s''\<rangle> \<Longrightarrow> |
|
223 |
\<exists>i j s'. \<langle>c1, s\<rangle> -i\<rightarrow>\<^sub>1 \<langle>s'\<rangle> \<and> \<langle>c2, s'\<rangle> -j\<rightarrow>\<^sub>1 \<langle>s''\<rangle> \<and> n = i+j" |
|
224 |
(is "PROP ?P n") |
|
225 |
proof (induct n) |
|
226 |
show "PROP ?P 0" by simp |
|
227 |
next |
|
228 |
fix n assume IH: "PROP ?P n" |
|
229 |
show "PROP ?P (Suc n)" |
|
230 |
proof - |
|
231 |
fix c1 c2 s s'' |
|
232 |
assume "\<langle>c1; c2, s\<rangle> -Suc n\<rightarrow>\<^sub>1 \<langle>s''\<rangle>" |
|
233 |
then obtain y where |
|
234 |
1: "\<langle>c1; c2, s\<rangle> \<longrightarrow>\<^sub>1 y" and |
|
235 |
n: "y -n\<rightarrow>\<^sub>1 \<langle>s''\<rangle>" |
|
236 |
by blast |
|
237 |
||
238 |
from 1 |
|
239 |
show "\<exists>i j s'. \<langle>c1, s\<rangle> -i\<rightarrow>\<^sub>1 \<langle>s'\<rangle> \<and> \<langle>c2, s'\<rangle> -j\<rightarrow>\<^sub>1 \<langle>s''\<rangle> \<and> Suc n = i+j" |
|
240 |
(is "\<exists>i j s'. ?Q i j s'") |
|
241 |
proof (cases set: evalc1) |
|
242 |
case Semi1 |
|
243 |
then obtain s' where |
|
244 |
"y = \<langle>c2, s'\<rangle>" and "\<langle>c1, s\<rangle> \<longrightarrow>\<^sub>1 \<langle>s'\<rangle>" |
|
245 |
by auto |
|
246 |
with 1 n have "?Q 1 n s'" by simp |
|
247 |
thus ?thesis by blast |
|
248 |
next |
|
249 |
case Semi2 |
|
250 |
then obtain c1' s' where |
|
251 |
y: "y = \<langle>c1'; c2, s'\<rangle>" and |
|
252 |
c1: "\<langle>c1, s\<rangle> \<longrightarrow>\<^sub>1 \<langle>c1', s'\<rangle>" |
|
253 |
by auto |
|
254 |
with n have "\<langle>c1'; c2, s'\<rangle> -n\<rightarrow>\<^sub>1 \<langle>s''\<rangle>" by simp |
|
255 |
with IH obtain i j s0 where |
|
256 |
c1': "\<langle>c1',s'\<rangle> -i\<rightarrow>\<^sub>1 \<langle>s0\<rangle>" and |
|
257 |
c2: "\<langle>c2,s0\<rangle> -j\<rightarrow>\<^sub>1 \<langle>s''\<rangle>" and |
|
258 |
i: "n = i+j" |
|
12434 | 259 |
by fast |
12431 | 260 |
|
261 |
from c1 c1' |
|
12434 | 262 |
have "\<langle>c1,s\<rangle> -(i+1)\<rightarrow>\<^sub>1 \<langle>s0\<rangle>" by (auto intro: rel_pow_Suc_I2) |
12431 | 263 |
with c2 i |
264 |
have "?Q (i+1) j s0" by simp |
|
265 |
thus ?thesis by blast |
|
266 |
qed auto -- "the remaining cases cannot occur" |
|
267 |
qed |
|
268 |
qed |
|
1700 | 269 |
|
270 |
||
12431 | 271 |
lemma semiI: |
272 |
"\<And>c0 s s''. \<langle>c0,s\<rangle> -n\<rightarrow>\<^sub>1 \<langle>s''\<rangle> \<Longrightarrow> \<langle>c1,s''\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>s'\<rangle> \<Longrightarrow> \<langle>c0; c1, s\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>s'\<rangle>" |
|
273 |
proof (induct n) |
|
274 |
fix c0 s s'' assume "\<langle>c0,s\<rangle> -(0::nat)\<rightarrow>\<^sub>1 \<langle>s''\<rangle>" |
|
275 |
hence False by simp |
|
276 |
thus "?thesis c0 s s''" .. |
|
277 |
next |
|
278 |
fix c0 s s'' n |
|
279 |
assume c0: "\<langle>c0,s\<rangle> -Suc n\<rightarrow>\<^sub>1 \<langle>s''\<rangle>" |
|
280 |
assume c1: "\<langle>c1,s''\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>s'\<rangle>" |
|
281 |
assume IH: "\<And>c0 s s''. |
|
282 |
\<langle>c0,s\<rangle> -n\<rightarrow>\<^sub>1 \<langle>s''\<rangle> \<Longrightarrow> \<langle>c1,s''\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>s'\<rangle> \<Longrightarrow> \<langle>c0; c1,s\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>s'\<rangle>" |
|
283 |
from c0 obtain y where |
|
284 |
1: "\<langle>c0,s\<rangle> \<longrightarrow>\<^sub>1 y" and n: "y -n\<rightarrow>\<^sub>1 \<langle>s''\<rangle>" by blast |
|
285 |
from 1 obtain c0' s0' where |
|
286 |
"y = \<langle>s0'\<rangle> \<or> y = \<langle>c0', s0'\<rangle>" |
|
287 |
by (cases y, cases "fst y", auto) |
|
288 |
moreover |
|
289 |
{ assume y: "y = \<langle>s0'\<rangle>" |
|
290 |
with n have "s'' = s0'" by simp |
|
291 |
with y 1 have "\<langle>c0; c1,s\<rangle> \<longrightarrow>\<^sub>1 \<langle>c1, s''\<rangle>" by blast |
|
292 |
with c1 have "\<langle>c0; c1,s\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>s'\<rangle>" by (blast intro: rtrancl_trans) |
|
293 |
} |
|
294 |
moreover |
|
295 |
{ assume y: "y = \<langle>c0', s0'\<rangle>" |
|
296 |
with n have "\<langle>c0', s0'\<rangle> -n\<rightarrow>\<^sub>1 \<langle>s''\<rangle>" by blast |
|
297 |
with IH c1 have "\<langle>c0'; c1,s0'\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>s'\<rangle>" by blast |
|
298 |
moreover |
|
299 |
from y 1 have "\<langle>c0; c1,s\<rangle> \<longrightarrow>\<^sub>1 \<langle>c0'; c1,s0'\<rangle>" by blast |
|
300 |
hence "\<langle>c0; c1,s\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>c0'; c1,s0'\<rangle>" by blast |
|
301 |
ultimately |
|
302 |
have "\<langle>c0; c1,s\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>s'\<rangle>" by (blast intro: rtrancl_trans) |
|
303 |
} |
|
304 |
ultimately |
|
305 |
show "\<langle>c0; c1,s\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>s'\<rangle>" by blast |
|
306 |
qed |
|
307 |
||
308 |
text {* |
|
309 |
The easy direction of the equivalence proof: |
|
310 |
*} |
|
311 |
lemma evalc_imp_evalc1: |
|
312 |
"\<langle>c,s\<rangle> \<longrightarrow>\<^sub>c s' \<Longrightarrow> \<langle>c, s\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>s'\<rangle>" |
|
313 |
proof - |
|
314 |
assume "\<langle>c,s\<rangle> \<longrightarrow>\<^sub>c s'" |
|
315 |
thus "\<langle>c, s\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>s'\<rangle>" |
|
316 |
proof induct |
|
317 |
fix s show "\<langle>\<SKIP>,s\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>s\<rangle>" by auto |
|
318 |
next |
|
319 |
fix x a s show "\<langle>x :== a ,s\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>s[x\<mapsto>a s]\<rangle>" by auto |
|
320 |
next |
|
321 |
fix c0 c1 s s'' s' |
|
322 |
assume "\<langle>c0,s\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>s''\<rangle>" |
|
323 |
then obtain n where "\<langle>c0,s\<rangle> -n\<rightarrow>\<^sub>1 \<langle>s''\<rangle>" by (blast dest: rtrancl_imp_rel_pow) |
|
324 |
moreover |
|
325 |
assume "\<langle>c1,s''\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>s'\<rangle>" |
|
326 |
ultimately |
|
327 |
show "\<langle>c0; c1,s\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>s'\<rangle>" by (rule semiI) |
|
328 |
next |
|
329 |
fix s::state and b c0 c1 s' |
|
330 |
assume "b s" |
|
331 |
hence "\<langle>\<IF> b \<THEN> c0 \<ELSE> c1,s\<rangle> \<longrightarrow>\<^sub>1 \<langle>c0,s\<rangle>" by simp |
|
332 |
also assume "\<langle>c0,s\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>s'\<rangle>" |
|
333 |
finally show "\<langle>\<IF> b \<THEN> c0 \<ELSE> c1,s\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>s'\<rangle>" . |
|
334 |
next |
|
335 |
fix s::state and b c0 c1 s' |
|
336 |
assume "\<not>b s" |
|
337 |
hence "\<langle>\<IF> b \<THEN> c0 \<ELSE> c1,s\<rangle> \<longrightarrow>\<^sub>1 \<langle>c1,s\<rangle>" by simp |
|
338 |
also assume "\<langle>c1,s\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>s'\<rangle>" |
|
339 |
finally show "\<langle>\<IF> b \<THEN> c0 \<ELSE> c1,s\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>s'\<rangle>" . |
|
340 |
next |
|
341 |
fix b c and s::state |
|
342 |
assume b: "\<not>b s" |
|
343 |
let ?if = "\<IF> b \<THEN> c; \<WHILE> b \<DO> c \<ELSE> \<SKIP>" |
|
344 |
have "\<langle>\<WHILE> b \<DO> c,s\<rangle> \<longrightarrow>\<^sub>1 \<langle>?if, s\<rangle>" by blast |
|
345 |
also have "\<langle>?if,s\<rangle> \<longrightarrow>\<^sub>1 \<langle>\<SKIP>, s\<rangle>" by (simp add: b) |
|
346 |
also have "\<langle>\<SKIP>, s\<rangle> \<longrightarrow>\<^sub>1 \<langle>s\<rangle>" by blast |
|
347 |
finally show "\<langle>\<WHILE> b \<DO> c,s\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>s\<rangle>" .. |
|
348 |
next |
|
349 |
fix b c s s'' s' |
|
350 |
let ?w = "\<WHILE> b \<DO> c" |
|
351 |
let ?if = "\<IF> b \<THEN> c; ?w \<ELSE> \<SKIP>" |
|
352 |
assume w: "\<langle>?w,s''\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>s'\<rangle>" |
|
353 |
assume c: "\<langle>c,s\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>s''\<rangle>" |
|
354 |
assume b: "b s" |
|
355 |
have "\<langle>?w,s\<rangle> \<longrightarrow>\<^sub>1 \<langle>?if, s\<rangle>" by blast |
|
356 |
also have "\<langle>?if, s\<rangle> \<longrightarrow>\<^sub>1 \<langle>c; ?w, s\<rangle>" by (simp add: b) |
|
357 |
also |
|
358 |
from c obtain n where "\<langle>c,s\<rangle> -n\<rightarrow>\<^sub>1 \<langle>s''\<rangle>" by (blast dest: rtrancl_imp_rel_pow) |
|
359 |
with w have "\<langle>c; ?w,s\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>s'\<rangle>" by - (rule semiI) |
|
360 |
finally show "\<langle>\<WHILE> b \<DO> c,s\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>s'\<rangle>" .. |
|
361 |
qed |
|
362 |
qed |
|
363 |
||
364 |
text {* |
|
365 |
Finally, the equivalence theorem: |
|
366 |
*} |
|
367 |
theorem evalc_equiv_evalc1: |
|
368 |
"\<langle>c, s\<rangle> \<longrightarrow>\<^sub>c s' = \<langle>c,s\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>s'\<rangle>" |
|
369 |
proof |
|
370 |
assume "\<langle>c,s\<rangle> \<longrightarrow>\<^sub>c s'" |
|
371 |
show "\<langle>c, s\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>s'\<rangle>" by (rule evalc_imp_evalc1) |
|
372 |
next |
|
373 |
assume "\<langle>c, s\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>s'\<rangle>" |
|
374 |
then obtain n where "\<langle>c, s\<rangle> -n\<rightarrow>\<^sub>1 \<langle>s'\<rangle>" by (blast dest: rtrancl_imp_rel_pow) |
|
375 |
moreover |
|
376 |
have "\<And>c s s'. \<langle>c, s\<rangle> -n\<rightarrow>\<^sub>1 \<langle>s'\<rangle> \<Longrightarrow> \<langle>c,s\<rangle> \<longrightarrow>\<^sub>c s'" |
|
377 |
proof (induct rule: nat_less_induct) |
|
378 |
fix n |
|
379 |
assume IH: "\<forall>m. m < n \<longrightarrow> (\<forall>c s s'. \<langle>c, s\<rangle> -m\<rightarrow>\<^sub>1 \<langle>s'\<rangle> \<longrightarrow> \<langle>c,s\<rangle> \<longrightarrow>\<^sub>c s')" |
|
380 |
fix c s s' |
|
381 |
assume c: "\<langle>c, s\<rangle> -n\<rightarrow>\<^sub>1 \<langle>s'\<rangle>" |
|
382 |
then obtain m where n: "n = Suc m" by (cases n) auto |
|
383 |
with c obtain y where |
|
384 |
c': "\<langle>c, s\<rangle> \<longrightarrow>\<^sub>1 y" and m: "y -m\<rightarrow>\<^sub>1 \<langle>s'\<rangle>" by blast |
|
385 |
show "\<langle>c,s\<rangle> \<longrightarrow>\<^sub>c s'" |
|
386 |
proof (cases c) |
|
387 |
case SKIP |
|
388 |
with c n show ?thesis by auto |
|
389 |
next |
|
390 |
case Assign |
|
391 |
with c n show ?thesis by auto |
|
392 |
next |
|
393 |
fix c1 c2 assume semi: "c = (c1; c2)" |
|
394 |
with c obtain i j s'' where |
|
395 |
c1: "\<langle>c1, s\<rangle> -i\<rightarrow>\<^sub>1 \<langle>s''\<rangle>" and |
|
396 |
c2: "\<langle>c2, s''\<rangle> -j\<rightarrow>\<^sub>1 \<langle>s'\<rangle>" and |
|
397 |
ij: "n = i+j" |
|
398 |
by (blast dest: semiD) |
|
399 |
from c1 c2 obtain |
|
400 |
"0 < i" and "0 < j" by (cases i, auto, cases j, auto) |
|
401 |
with ij obtain |
|
402 |
i: "i < n" and j: "j < n" by simp |
|
403 |
from c1 i IH |
|
404 |
have "\<langle>c1,s\<rangle> \<longrightarrow>\<^sub>c s''" by blast |
|
405 |
moreover |
|
406 |
from c2 j IH |
|
407 |
have "\<langle>c2,s''\<rangle> \<longrightarrow>\<^sub>c s'" by blast |
|
408 |
moreover |
|
409 |
note semi |
|
410 |
ultimately |
|
411 |
show "\<langle>c,s\<rangle> \<longrightarrow>\<^sub>c s'" by blast |
|
412 |
next |
|
413 |
fix b c1 c2 assume If: "c = \<IF> b \<THEN> c1 \<ELSE> c2" |
|
414 |
{ assume True: "b s = True" |
|
415 |
with If c n |
|
416 |
have "\<langle>c1,s\<rangle> -m\<rightarrow>\<^sub>1 \<langle>s'\<rangle>" by auto |
|
417 |
with n IH |
|
418 |
have "\<langle>c1,s\<rangle> \<longrightarrow>\<^sub>c s'" by blast |
|
419 |
with If True |
|
420 |
have "\<langle>c,s\<rangle> \<longrightarrow>\<^sub>c s'" by simp |
|
421 |
} |
|
422 |
moreover |
|
423 |
{ assume False: "b s = False" |
|
424 |
with If c n |
|
425 |
have "\<langle>c2,s\<rangle> -m\<rightarrow>\<^sub>1 \<langle>s'\<rangle>" by auto |
|
426 |
with n IH |
|
427 |
have "\<langle>c2,s\<rangle> \<longrightarrow>\<^sub>c s'" by blast |
|
428 |
with If False |
|
429 |
have "\<langle>c,s\<rangle> \<longrightarrow>\<^sub>c s'" by simp |
|
430 |
} |
|
431 |
ultimately |
|
432 |
show "\<langle>c,s\<rangle> \<longrightarrow>\<^sub>c s'" by (cases "b s") auto |
|
433 |
next |
|
434 |
fix b c' assume w: "c = \<WHILE> b \<DO> c'" |
|
435 |
with c n |
|
436 |
have "\<langle>\<IF> b \<THEN> c'; \<WHILE> b \<DO> c' \<ELSE> \<SKIP>,s\<rangle> -m\<rightarrow>\<^sub>1 \<langle>s'\<rangle>" |
|
437 |
(is "\<langle>?if,_\<rangle> -m\<rightarrow>\<^sub>1 _") by auto |
|
438 |
with n IH |
|
439 |
have "\<langle>\<IF> b \<THEN> c'; \<WHILE> b \<DO> c' \<ELSE> \<SKIP>,s\<rangle> \<longrightarrow>\<^sub>c s'" by blast |
|
440 |
moreover note unfold_while [of b c'] |
|
441 |
-- {* @{thm unfold_while [of b c']} *} |
|
442 |
ultimately |
|
443 |
have "\<langle>\<WHILE> b \<DO> c',s\<rangle> \<longrightarrow>\<^sub>c s'" by (blast dest: equivD2) |
|
444 |
with w show "\<langle>c,s\<rangle> \<longrightarrow>\<^sub>c s'" by simp |
|
445 |
qed |
|
446 |
qed |
|
447 |
ultimately |
|
448 |
show "\<langle>c,s\<rangle> \<longrightarrow>\<^sub>c s'" by blast |
|
449 |
qed |
|
450 |
||
451 |
||
452 |
subsection "Winskel's Proof" |
|
453 |
||
454 |
declare rel_pow_0_E [elim!] |
|
455 |
||
456 |
text {* |
|
457 |
Winskel's small step rules are a bit different \cite{Winskel}; |
|
458 |
we introduce their equivalents as derived rules: |
|
459 |
*} |
|
460 |
lemma whileFalse1 [intro]: |
|
461 |
"\<not> b s \<Longrightarrow> \<langle>\<WHILE> b \<DO> c,s\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>s\<rangle>" (is "_ \<Longrightarrow> \<langle>?w, s\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>s\<rangle>") |
|
462 |
proof - |
|
463 |
assume "\<not>b s" |
|
464 |
have "\<langle>?w, s\<rangle> \<longrightarrow>\<^sub>1 \<langle>\<IF> b \<THEN> c;?w \<ELSE> \<SKIP>, s\<rangle>" .. |
|
465 |
also have "\<langle>\<IF> b \<THEN> c;?w \<ELSE> \<SKIP>, s\<rangle> \<longrightarrow>\<^sub>1 \<langle>\<SKIP>, s\<rangle>" .. |
|
466 |
also have "\<langle>\<SKIP>, s\<rangle> \<longrightarrow>\<^sub>1 \<langle>s\<rangle>" .. |
|
467 |
finally show "\<langle>?w, s\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>s\<rangle>" .. |
|
468 |
qed |
|
469 |
||
470 |
lemma whileTrue1 [intro]: |
|
471 |
"b s \<Longrightarrow> \<langle>\<WHILE> b \<DO> c,s\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>c;\<WHILE> b \<DO> c, s\<rangle>" |
|
472 |
(is "_ \<Longrightarrow> \<langle>?w, s\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>c;?w,s\<rangle>") |
|
473 |
proof - |
|
474 |
assume "b s" |
|
475 |
have "\<langle>?w, s\<rangle> \<longrightarrow>\<^sub>1 \<langle>\<IF> b \<THEN> c;?w \<ELSE> \<SKIP>, s\<rangle>" .. |
|
476 |
also have "\<langle>\<IF> b \<THEN> c;?w \<ELSE> \<SKIP>, s\<rangle> \<longrightarrow>\<^sub>1 \<langle>c;?w, s\<rangle>" .. |
|
477 |
finally show "\<langle>?w, s\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>c;?w,s\<rangle>" .. |
|
478 |
qed |
|
1700 | 479 |
|
12431 | 480 |
inductive_cases evalc1_SEs: |
481 |
"\<langle>\<SKIP>,s\<rangle> \<longrightarrow>\<^sub>1 t" |
|
482 |
"\<langle>x:==a,s\<rangle> \<longrightarrow>\<^sub>1 t" |
|
483 |
"\<langle>c1;c2, s\<rangle> \<longrightarrow>\<^sub>1 t" |
|
484 |
"\<langle>\<IF> b \<THEN> c1 \<ELSE> c2, s\<rangle> \<longrightarrow>\<^sub>1 t" |
|
485 |
"\<langle>\<WHILE> b \<DO> c, s\<rangle> \<longrightarrow>\<^sub>1 t" |
|
486 |
||
487 |
inductive_cases evalc1_E: "\<langle>\<WHILE> b \<DO> c, s\<rangle> \<longrightarrow>\<^sub>1 t" |
|
488 |
||
489 |
declare evalc1_SEs [elim!] |
|
490 |
||
491 |
lemma evalc_impl_evalc1: "\<langle>c,s\<rangle> \<longrightarrow>\<^sub>c s1 \<Longrightarrow> \<langle>c,s\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>s1\<rangle>" |
|
492 |
apply (erule evalc.induct) |
|
493 |
||
494 |
-- SKIP |
|
495 |
apply blast |
|
496 |
||
497 |
-- ASSIGN |
|
498 |
apply fast |
|
499 |
||
500 |
-- SEMI |
|
501 |
apply (fast dest: rtrancl_imp_UN_rel_pow intro: semiI) |
|
502 |
||
503 |
-- IF |
|
12566
fe20540bcf93
renamed rtrancl_into_rtrancl2 to converse_rtrancl_into_rtrancl
nipkow
parents:
12546
diff
changeset
|
504 |
apply (fast intro: converse_rtrancl_into_rtrancl) |
fe20540bcf93
renamed rtrancl_into_rtrancl2 to converse_rtrancl_into_rtrancl
nipkow
parents:
12546
diff
changeset
|
505 |
apply (fast intro: converse_rtrancl_into_rtrancl) |
12431 | 506 |
|
507 |
-- WHILE |
|
508 |
apply fast |
|
12566
fe20540bcf93
renamed rtrancl_into_rtrancl2 to converse_rtrancl_into_rtrancl
nipkow
parents:
12546
diff
changeset
|
509 |
apply (fast dest: rtrancl_imp_UN_rel_pow intro: converse_rtrancl_into_rtrancl semiI) |
12431 | 510 |
|
511 |
done |
|
512 |
||
513 |
||
514 |
lemma lemma2 [rule_format (no_asm)]: |
|
515 |
"\<forall>c d s u. \<langle>c;d,s\<rangle> -n\<rightarrow>\<^sub>1 \<langle>u\<rangle> \<longrightarrow> (\<exists>t m. \<langle>c,s\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>t\<rangle> \<and> \<langle>d,t\<rangle> -m\<rightarrow>\<^sub>1 \<langle>u\<rangle> \<and> m \<le> n)" |
|
516 |
apply (induct_tac "n") |
|
517 |
-- "case n = 0" |
|
518 |
apply fastsimp |
|
519 |
-- "induction step" |
|
520 |
apply (fast intro!: le_SucI le_refl dest!: rel_pow_Suc_D2 |
|
12566
fe20540bcf93
renamed rtrancl_into_rtrancl2 to converse_rtrancl_into_rtrancl
nipkow
parents:
12546
diff
changeset
|
521 |
elim!: rel_pow_imp_rtrancl converse_rtrancl_into_rtrancl) |
12431 | 522 |
done |
523 |
||
524 |
lemma evalc1_impl_evalc [rule_format (no_asm)]: |
|
525 |
"\<forall>s t. \<langle>c,s\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>t\<rangle> \<longrightarrow> \<langle>c,s\<rangle> \<longrightarrow>\<^sub>c t" |
|
526 |
apply (induct_tac "c") |
|
527 |
apply (safe dest!: rtrancl_imp_UN_rel_pow) |
|
528 |
||
529 |
-- SKIP |
|
530 |
apply (simp add: SKIP_n) |
|
531 |
||
532 |
-- ASSIGN |
|
533 |
apply (fastsimp elim: rel_pow_E2) |
|
534 |
||
535 |
-- SEMI |
|
536 |
apply (fast dest!: rel_pow_imp_rtrancl lemma2) |
|
537 |
||
538 |
-- IF |
|
539 |
apply (erule rel_pow_E2) |
|
540 |
apply simp |
|
541 |
apply (fast dest!: rel_pow_imp_rtrancl) |
|
542 |
||
543 |
-- "WHILE, induction on the length of the computation" |
|
544 |
apply (rename_tac b c s t n) |
|
545 |
apply (erule_tac P = "?X -n\<rightarrow>\<^sub>1 ?Y" in rev_mp) |
|
546 |
apply (rule_tac x = "s" in spec) |
|
547 |
apply (induct_tac "n" rule: nat_less_induct) |
|
548 |
apply (intro strip) |
|
549 |
apply (erule rel_pow_E2) |
|
550 |
apply simp |
|
551 |
apply (erule evalc1_E) |
|
552 |
||
553 |
apply simp |
|
554 |
apply (case_tac "b x") |
|
555 |
-- WhileTrue |
|
556 |
apply (erule rel_pow_E2) |
|
557 |
apply simp |
|
558 |
apply (clarify dest!: lemma2) |
|
559 |
apply (erule allE, erule allE, erule impE, assumption) |
|
560 |
apply (erule_tac x=mb in allE, erule impE, fastsimp) |
|
561 |
apply blast |
|
562 |
-- WhileFalse |
|
563 |
apply (erule rel_pow_E2) |
|
564 |
apply simp |
|
565 |
apply (simp add: SKIP_n) |
|
566 |
done |
|
567 |
||
568 |
||
569 |
text {* proof of the equivalence of evalc and evalc1 *} |
|
570 |
lemma evalc1_eq_evalc: "(\<langle>c, s\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>t\<rangle>) = (\<langle>c,s\<rangle> \<longrightarrow>\<^sub>c t)" |
|
571 |
apply (fast elim!: evalc1_impl_evalc evalc_impl_evalc1) |
|
572 |
done |
|
573 |
||
574 |
||
575 |
subsection "A proof without n" |
|
576 |
||
577 |
text {* |
|
578 |
The inductions are a bit awkward to write in this section, |
|
579 |
because @{text None} as result statement in the small step |
|
580 |
semantics doesn't have a direct counterpart in the big step |
|
581 |
semantics. |
|
1700 | 582 |
|
12431 | 583 |
Winskel's small step rule set (using the @{text "\<SKIP>"} statement |
584 |
to indicate termination) is better suited for this proof. |
|
585 |
*} |
|
586 |
||
587 |
lemma my_lemma1 [rule_format (no_asm)]: |
|
588 |
"\<langle>c1,s1\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>s2\<rangle> \<Longrightarrow> \<langle>c2,s2\<rangle> \<longrightarrow>\<^sub>1\<^sup>* cs3 \<Longrightarrow> \<langle>c1;c2,s1\<rangle> \<longrightarrow>\<^sub>1\<^sup>* cs3" |
|
589 |
proof - |
|
590 |
-- {* The induction rule needs @{text P} to be a function of @{term "Some c1"} *} |
|
591 |
have "\<langle>c1,s1\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>s2\<rangle> \<Longrightarrow> \<langle>c2,s2\<rangle> \<longrightarrow>\<^sub>1\<^sup>* cs3 \<longrightarrow> |
|
592 |
\<langle>(\<lambda>c. if c = None then c2 else the c; c2) (Some c1),s1\<rangle> \<longrightarrow>\<^sub>1\<^sup>* cs3" |
|
593 |
apply (erule converse_rtrancl_induct2) |
|
594 |
apply simp |
|
595 |
apply (rename_tac c s') |
|
596 |
apply simp |
|
597 |
apply (rule conjI) |
|
12434 | 598 |
apply fast |
12431 | 599 |
apply clarify |
600 |
apply (case_tac c) |
|
12566
fe20540bcf93
renamed rtrancl_into_rtrancl2 to converse_rtrancl_into_rtrancl
nipkow
parents:
12546
diff
changeset
|
601 |
apply (auto intro: converse_rtrancl_into_rtrancl) |
12431 | 602 |
done |
603 |
moreover assume "\<langle>c1,s1\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>s2\<rangle>" "\<langle>c2,s2\<rangle> \<longrightarrow>\<^sub>1\<^sup>* cs3" |
|
604 |
ultimately show "\<langle>c1;c2,s1\<rangle> \<longrightarrow>\<^sub>1\<^sup>* cs3" by simp |
|
605 |
qed |
|
606 |
||
607 |
lemma evalc_impl_evalc1: "\<langle>c,s\<rangle> \<longrightarrow>\<^sub>c s1 \<Longrightarrow> \<langle>c,s\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>s1\<rangle>" |
|
608 |
apply (erule evalc.induct) |
|
609 |
||
610 |
-- SKIP |
|
611 |
apply fast |
|
612 |
||
613 |
-- ASSIGN |
|
614 |
apply fast |
|
615 |
||
616 |
-- SEMI |
|
617 |
apply (fast intro: my_lemma1) |
|
618 |
||
619 |
-- IF |
|
12566
fe20540bcf93
renamed rtrancl_into_rtrancl2 to converse_rtrancl_into_rtrancl
nipkow
parents:
12546
diff
changeset
|
620 |
apply (fast intro: converse_rtrancl_into_rtrancl) |
fe20540bcf93
renamed rtrancl_into_rtrancl2 to converse_rtrancl_into_rtrancl
nipkow
parents:
12546
diff
changeset
|
621 |
apply (fast intro: converse_rtrancl_into_rtrancl) |
12431 | 622 |
|
623 |
-- WHILE |
|
624 |
apply fast |
|
12566
fe20540bcf93
renamed rtrancl_into_rtrancl2 to converse_rtrancl_into_rtrancl
nipkow
parents:
12546
diff
changeset
|
625 |
apply (fast intro: converse_rtrancl_into_rtrancl my_lemma1) |
12431 | 626 |
|
627 |
done |
|
628 |
||
629 |
text {* |
|
630 |
The opposite direction is based on a Coq proof done by Ranan Fraer and |
|
631 |
Yves Bertot. The following sketch is from an email by Ranan Fraer. |
|
632 |
||
633 |
\begin{verbatim} |
|
634 |
First we've broke it into 2 lemmas: |
|
1700 | 635 |
|
12431 | 636 |
Lemma 1 |
637 |
((c,s) --> (SKIP,t)) => (<c,s> -c-> t) |
|
638 |
||
639 |
This is a quick one, dealing with the cases skip, assignment |
|
640 |
and while_false. |
|
641 |
||
642 |
Lemma 2 |
|
643 |
((c,s) -*-> (c',s')) /\ <c',s'> -c'-> t |
|
644 |
=> |
|
645 |
<c,s> -c-> t |
|
646 |
||
647 |
This is proved by rule induction on the -*-> relation |
|
648 |
and the induction step makes use of a third lemma: |
|
649 |
||
650 |
Lemma 3 |
|
651 |
((c,s) --> (c',s')) /\ <c',s'> -c'-> t |
|
652 |
=> |
|
653 |
<c,s> -c-> t |
|
654 |
||
655 |
This captures the essence of the proof, as it shows that <c',s'> |
|
656 |
behaves as the continuation of <c,s> with respect to the natural |
|
657 |
semantics. |
|
658 |
The proof of Lemma 3 goes by rule induction on the --> relation, |
|
659 |
dealing with the cases sequence1, sequence2, if_true, if_false and |
|
660 |
while_true. In particular in the case (sequence1) we make use again |
|
661 |
of Lemma 1. |
|
662 |
\end{verbatim} |
|
663 |
*} |
|
664 |
||
665 |
inductive_cases evalc1_term_cases: "\<langle>c,s\<rangle> \<longrightarrow>\<^sub>1 \<langle>s'\<rangle>" |
|
666 |
||
667 |
lemma FB_lemma3 [rule_format]: |
|
668 |
"(c,s) \<longrightarrow>\<^sub>1 (c',s') \<Longrightarrow> c \<noteq> None \<longrightarrow> |
|
669 |
(\<forall>t. \<langle>if c'=None then \<SKIP> else the c',s'\<rangle> \<longrightarrow>\<^sub>c t \<longrightarrow> \<langle>the c,s\<rangle> \<longrightarrow>\<^sub>c t)" |
|
670 |
apply (erule evalc1.induct) |
|
671 |
apply (auto elim!: evalc1_term_cases equivD2 [OF unfold_while]) |
|
672 |
done |
|
673 |
||
674 |
lemma FB_lemma2 [rule_format]: |
|
675 |
"(c,s) \<longrightarrow>\<^sub>1\<^sup>* (c',s') \<Longrightarrow> c \<noteq> None \<longrightarrow> |
|
676 |
\<langle>if c' = None then \<SKIP> else the c',s'\<rangle> \<longrightarrow>\<^sub>c t \<longrightarrow> \<langle>the c,s\<rangle> \<longrightarrow>\<^sub>c t" |
|
677 |
apply (erule converse_rtrancl_induct2) |
|
678 |
apply simp |
|
679 |
apply clarsimp |
|
12434 | 680 |
apply (fastsimp elim!: evalc1_term_cases intro: FB_lemma3) |
12431 | 681 |
done |
682 |
||
683 |
lemma evalc1_impl_evalc: "\<langle>c,s\<rangle> \<longrightarrow>\<^sub>1\<^sup>* \<langle>t\<rangle> \<Longrightarrow> \<langle>c,s\<rangle> \<longrightarrow>\<^sub>c t" |
|
684 |
apply (fastsimp dest: FB_lemma2) |
|
685 |
done |
|
1700 | 686 |
|
687 |
end |