| author | wenzelm | 
| Wed, 03 Feb 1999 20:56:29 +0100 | |
| changeset 6220 | 5a29b53eca45 | 
| parent 5192 | 704dd3a6d47d | 
| child 8935 | 548901d05a0e | 
| permissions | -rw-r--r-- | 
| 2640 | 1  | 
(* Title: HOLCF/Porder.thy  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
2  | 
ID: $Id$  | 
| 1461 | 3  | 
Author: Franz Regensburger  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
4  | 
Copyright 1993 Technische Universitaet Muenchen  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
5  | 
|
| 2640 | 6  | 
Lemmas for theory Porder.thy  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
7  | 
*)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
8  | 
|
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
9  | 
open Porder;  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
10  | 
|
| 625 | 11  | 
(* ------------------------------------------------------------------------ *)  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
12  | 
(* lubs are unique *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
13  | 
(* ------------------------------------------------------------------------ *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
14  | 
|
| 4031 | 15  | 
qed_goalw "unique_lub" thy [is_lub, is_ub]  | 
| 1461 | 16  | 
"[| S <<| x ; S <<| y |] ==> x=y"  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
17  | 
( fn prems =>  | 
| 1461 | 18  | 
[  | 
19  | 
(cut_facts_tac prems 1),  | 
|
20  | 
(etac conjE 1),  | 
|
21  | 
(etac conjE 1),  | 
|
22  | 
(rtac antisym_less 1),  | 
|
23  | 
(rtac mp 1),((etac allE 1) THEN (atac 1) THEN (atac 1)),  | 
|
24  | 
(rtac mp 1),((etac allE 1) THEN (atac 1) THEN (atac 1))  | 
|
25  | 
]);  | 
|
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
26  | 
|
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
27  | 
(* ------------------------------------------------------------------------ *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
28  | 
(* chains are monotone functions *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
29  | 
(* ------------------------------------------------------------------------ *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
30  | 
|
| 
4721
 
c8a8482a8124
renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
 
oheimb 
parents: 
4098 
diff
changeset
 | 
31  | 
qed_goalw "chain_mono" thy [chain] "chain F ==> x<y --> F x<<F y"  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
32  | 
( fn prems =>  | 
| 1461 | 33  | 
[  | 
34  | 
(cut_facts_tac prems 1),  | 
|
| 5192 | 35  | 
(induct_tac "y" 1),  | 
| 1461 | 36  | 
(rtac impI 1),  | 
37  | 
(etac less_zeroE 1),  | 
|
| 2033 | 38  | 
(stac less_Suc_eq 1),  | 
| 1461 | 39  | 
(strip_tac 1),  | 
40  | 
(etac disjE 1),  | 
|
41  | 
(rtac trans_less 1),  | 
|
42  | 
(etac allE 2),  | 
|
43  | 
(atac 2),  | 
|
44  | 
(fast_tac HOL_cs 1),  | 
|
45  | 
(hyp_subst_tac 1),  | 
|
46  | 
(etac allE 1),  | 
|
47  | 
(atac 1)  | 
|
48  | 
]);  | 
|
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
49  | 
|
| 
4721
 
c8a8482a8124
renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
 
oheimb 
parents: 
4098 
diff
changeset
 | 
50  | 
qed_goal "chain_mono3" thy "[| chain F; x <= y |] ==> F x << F y"  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
51  | 
(fn prems =>  | 
| 1461 | 52  | 
[  | 
53  | 
(cut_facts_tac prems 1),  | 
|
54  | 
(rtac (le_imp_less_or_eq RS disjE) 1),  | 
|
55  | 
(atac 1),  | 
|
56  | 
(etac (chain_mono RS mp) 1),  | 
|
57  | 
(atac 1),  | 
|
58  | 
(hyp_subst_tac 1),  | 
|
59  | 
(rtac refl_less 1)  | 
|
60  | 
]);  | 
|
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
61  | 
|
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
62  | 
|
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
63  | 
(* ------------------------------------------------------------------------ *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
64  | 
(* The range of a chain is a totaly ordered << *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
65  | 
(* ------------------------------------------------------------------------ *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
66  | 
|
| 
4721
 
c8a8482a8124
renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
 
oheimb 
parents: 
4098 
diff
changeset
 | 
67  | 
qed_goalw "chain_tord" thy [tord]  | 
| 
 
c8a8482a8124
renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
 
oheimb 
parents: 
4098 
diff
changeset
 | 
68  | 
"!!F. chain(F) ==> tord(range(F))"  | 
| 1886 | 69  | 
(fn _ =>  | 
| 1461 | 70  | 
[  | 
| 3724 | 71  | 
Safe_tac,  | 
| 1461 | 72  | 
(rtac nat_less_cases 1),  | 
| 4098 | 73  | 
(ALLGOALS (fast_tac (claset() addIs [refl_less, chain_mono RS mp])))]);  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
74  | 
|
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
75  | 
(* ------------------------------------------------------------------------ *)  | 
| 625 | 76  | 
(* technical lemmas about lub and is_lub *)  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
77  | 
(* ------------------------------------------------------------------------ *)  | 
| 2640 | 78  | 
bind_thm("lub",lub_def RS meta_eq_to_obj_eq);
 | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
79  | 
|
| 2640 | 80  | 
qed_goal "lubI" thy "? x. M <<| x ==> M <<| lub(M)"  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
81  | 
(fn prems =>  | 
| 1461 | 82  | 
[  | 
83  | 
(cut_facts_tac prems 1),  | 
|
| 2033 | 84  | 
(stac lub 1),  | 
| 1675 | 85  | 
(etac (select_eq_Ex RS iffD2) 1)  | 
| 1461 | 86  | 
]);  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
87  | 
|
| 2640 | 88  | 
qed_goal "lubE" thy "M <<| lub(M) ==> ? x. M <<| x"  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
89  | 
(fn prems =>  | 
| 1461 | 90  | 
[  | 
91  | 
(cut_facts_tac prems 1),  | 
|
92  | 
(etac exI 1)  | 
|
93  | 
]);  | 
|
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
94  | 
|
| 2640 | 95  | 
qed_goal "lub_eq" thy "(? x. M <<| x) = M <<| lub(M)"  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
96  | 
(fn prems =>  | 
| 1461 | 97  | 
[  | 
| 2033 | 98  | 
(stac lub 1),  | 
| 1461 | 99  | 
(rtac (select_eq_Ex RS subst) 1),  | 
100  | 
(rtac refl 1)  | 
|
101  | 
]);  | 
|
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
102  | 
|
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
103  | 
|
| 2640 | 104  | 
qed_goal "thelubI" thy "M <<| l ==> lub(M) = l"  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
105  | 
(fn prems =>  | 
| 1461 | 106  | 
[  | 
107  | 
(cut_facts_tac prems 1),  | 
|
108  | 
(rtac unique_lub 1),  | 
|
| 2033 | 109  | 
(stac lub 1),  | 
| 1461 | 110  | 
(etac selectI 1),  | 
111  | 
(atac 1)  | 
|
112  | 
]);  | 
|
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
113  | 
|
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
114  | 
|
| 5068 | 115  | 
Goal "lub{x} = x";
 | 
| 3018 | 116  | 
by (rtac thelubI 1);  | 
| 4098 | 117  | 
by (simp_tac (simpset() addsimps [is_lub,is_ub]) 1);  | 
| 
2841
 
c2508f4ab739
Added "discrete" CPOs and modified IMP to use those rather than "lift"
 
nipkow 
parents: 
2640 
diff
changeset
 | 
118  | 
qed "lub_singleton";  | 
| 
 
c2508f4ab739
Added "discrete" CPOs and modified IMP to use those rather than "lift"
 
nipkow 
parents: 
2640 
diff
changeset
 | 
119  | 
Addsimps [lub_singleton];  | 
| 
 
c2508f4ab739
Added "discrete" CPOs and modified IMP to use those rather than "lift"
 
nipkow 
parents: 
2640 
diff
changeset
 | 
120  | 
|
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
121  | 
(* ------------------------------------------------------------------------ *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
122  | 
(* access to some definition as inference rule *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
123  | 
(* ------------------------------------------------------------------------ *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
124  | 
|
| 2640 | 125  | 
qed_goalw "is_lubE" thy [is_lub]  | 
| 1461 | 126  | 
"S <<| x ==> S <| x & (! u. S <| u --> x << u)"  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
127  | 
(fn prems =>  | 
| 1461 | 128  | 
[  | 
129  | 
(cut_facts_tac prems 1),  | 
|
130  | 
(atac 1)  | 
|
131  | 
]);  | 
|
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
132  | 
|
| 2640 | 133  | 
qed_goalw "is_lubI" thy [is_lub]  | 
| 1461 | 134  | 
"S <| x & (! u. S <| u --> x << u) ==> S <<| x"  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
135  | 
(fn prems =>  | 
| 1461 | 136  | 
[  | 
137  | 
(cut_facts_tac prems 1),  | 
|
138  | 
(atac 1)  | 
|
139  | 
]);  | 
|
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
140  | 
|
| 
4721
 
c8a8482a8124
renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
 
oheimb 
parents: 
4098 
diff
changeset
 | 
141  | 
qed_goalw "chainE" thy [chain] "chain F ==> !i. F(i) << F(Suc(i))"  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
142  | 
(fn prems =>  | 
| 1461 | 143  | 
[  | 
144  | 
(cut_facts_tac prems 1),  | 
|
145  | 
(atac 1)]);  | 
|
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
146  | 
|
| 
4721
 
c8a8482a8124
renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
 
oheimb 
parents: 
4098 
diff
changeset
 | 
147  | 
qed_goalw "chainI" thy [chain] "!i. F i << F(Suc i) ==> chain F"  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
148  | 
(fn prems =>  | 
| 1461 | 149  | 
[  | 
150  | 
(cut_facts_tac prems 1),  | 
|
151  | 
(atac 1)]);  | 
|
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
152  | 
|
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
153  | 
(* ------------------------------------------------------------------------ *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
154  | 
(* technical lemmas about (least) upper bounds of chains *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
155  | 
(* ------------------------------------------------------------------------ *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
156  | 
|
| 2640 | 157  | 
qed_goalw "ub_rangeE" thy [is_ub] "range S <| x ==> !i. S(i) << x"  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
158  | 
(fn prems =>  | 
| 1461 | 159  | 
[  | 
160  | 
(cut_facts_tac prems 1),  | 
|
161  | 
(strip_tac 1),  | 
|
162  | 
(rtac mp 1),  | 
|
163  | 
(etac spec 1),  | 
|
164  | 
(rtac rangeI 1)  | 
|
165  | 
]);  | 
|
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
166  | 
|
| 2640 | 167  | 
qed_goalw "ub_rangeI" thy [is_ub] "!i. S i << x ==> range S <| x"  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
168  | 
(fn prems =>  | 
| 1461 | 169  | 
[  | 
170  | 
(cut_facts_tac prems 1),  | 
|
171  | 
(strip_tac 1),  | 
|
172  | 
(etac rangeE 1),  | 
|
173  | 
(hyp_subst_tac 1),  | 
|
174  | 
(etac spec 1)  | 
|
175  | 
]);  | 
|
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
176  | 
|
| 1779 | 177  | 
bind_thm ("is_ub_lub", is_lubE RS conjunct1 RS ub_rangeE RS spec);
 | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
178  | 
(* range(?S1) <<| ?x1 ==> ?S1(?x) << ?x1 *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
179  | 
|
| 1779 | 180  | 
bind_thm ("is_lub_lub", is_lubE RS conjunct2 RS spec RS mp);
 | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
181  | 
(* [| ?S3 <<| ?x3; ?S3 <| ?x1 |] ==> ?x3 << ?x1 *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
182  | 
|
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
183  | 
(* ------------------------------------------------------------------------ *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
184  | 
(* results about finite chains *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
185  | 
(* ------------------------------------------------------------------------ *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
186  | 
|
| 2640 | 187  | 
qed_goalw "lub_finch1" thy [max_in_chain_def]  | 
| 
4721
 
c8a8482a8124
renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
 
oheimb 
parents: 
4098 
diff
changeset
 | 
188  | 
"[| chain C; max_in_chain i C|] ==> range C <<| C i"  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
189  | 
(fn prems =>  | 
| 1461 | 190  | 
[  | 
191  | 
(cut_facts_tac prems 1),  | 
|
192  | 
(rtac is_lubI 1),  | 
|
193  | 
(rtac conjI 1),  | 
|
194  | 
(rtac ub_rangeI 1),  | 
|
195  | 
(rtac allI 1),  | 
|
196  | 
        (res_inst_tac [("m","i")] nat_less_cases 1),
 | 
|
197  | 
(rtac (antisym_less_inverse RS conjunct2) 1),  | 
|
198  | 
(etac (disjI1 RS less_or_eq_imp_le RS rev_mp) 1),  | 
|
199  | 
(etac spec 1),  | 
|
200  | 
(rtac (antisym_less_inverse RS conjunct2) 1),  | 
|
201  | 
(etac (disjI2 RS less_or_eq_imp_le RS rev_mp) 1),  | 
|
202  | 
(etac spec 1),  | 
|
203  | 
(etac (chain_mono RS mp) 1),  | 
|
204  | 
(atac 1),  | 
|
205  | 
(strip_tac 1),  | 
|
206  | 
(etac (ub_rangeE RS spec) 1)  | 
|
207  | 
]);  | 
|
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
208  | 
|
| 2640 | 209  | 
qed_goalw "lub_finch2" thy [finite_chain_def]  | 
| 1461 | 210  | 
"finite_chain(C) ==> range(C) <<| C(@ i. max_in_chain i C)"  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
211  | 
(fn prems=>  | 
| 1461 | 212  | 
[  | 
213  | 
(cut_facts_tac prems 1),  | 
|
214  | 
(rtac lub_finch1 1),  | 
|
215  | 
(etac conjunct1 1),  | 
|
| 1675 | 216  | 
(rtac (select_eq_Ex RS iffD2) 1),  | 
| 1461 | 217  | 
(etac conjunct2 1)  | 
218  | 
]);  | 
|
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
219  | 
|
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
220  | 
|
| 
4721
 
c8a8482a8124
renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
 
oheimb 
parents: 
4098 
diff
changeset
 | 
221  | 
qed_goal "bin_chain" thy "x<<y ==> chain (%i. if i=0 then x else y)"  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
222  | 
(fn prems =>  | 
| 1461 | 223  | 
[  | 
224  | 
(cut_facts_tac prems 1),  | 
|
| 
4721
 
c8a8482a8124
renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
 
oheimb 
parents: 
4098 
diff
changeset
 | 
225  | 
(rtac chainI 1),  | 
| 1461 | 226  | 
(rtac allI 1),  | 
| 5192 | 227  | 
(induct_tac "i" 1),  | 
| 1461 | 228  | 
(Asm_simp_tac 1),  | 
| 
2841
 
c2508f4ab739
Added "discrete" CPOs and modified IMP to use those rather than "lift"
 
nipkow 
parents: 
2640 
diff
changeset
 | 
229  | 
(Asm_simp_tac 1)  | 
| 1461 | 230  | 
]);  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
231  | 
|
| 2640 | 232  | 
qed_goalw "bin_chainmax" thy [max_in_chain_def,le_def]  | 
| 1461 | 233  | 
"x<<y ==> max_in_chain (Suc 0) (%i. if (i=0) then x else y)"  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
234  | 
(fn prems =>  | 
| 1461 | 235  | 
[  | 
236  | 
(cut_facts_tac prems 1),  | 
|
237  | 
(rtac allI 1),  | 
|
| 5192 | 238  | 
(induct_tac "j" 1),  | 
| 1461 | 239  | 
(Asm_simp_tac 1),  | 
240  | 
(Asm_simp_tac 1)  | 
|
241  | 
]);  | 
|
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
242  | 
|
| 2640 | 243  | 
qed_goal "lub_bin_chain" thy  | 
| 1461 | 244  | 
"x << y ==> range(%i. if (i=0) then x else y) <<| y"  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
245  | 
(fn prems=>  | 
| 1461 | 246  | 
[ (cut_facts_tac prems 1),  | 
247  | 
        (res_inst_tac [("s","if (Suc 0) = 0 then x else y")] subst 1),
 | 
|
248  | 
(rtac lub_finch1 2),  | 
|
249  | 
(etac bin_chain 2),  | 
|
250  | 
(etac bin_chainmax 2),  | 
|
251  | 
(Simp_tac 1)  | 
|
252  | 
]);  | 
|
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
253  | 
|
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
254  | 
(* ------------------------------------------------------------------------ *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
255  | 
(* the maximal element in a chain is its lub *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
256  | 
(* ------------------------------------------------------------------------ *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
257  | 
|
| 2640 | 258  | 
qed_goal "lub_chain_maxelem" thy  | 
| 3842 | 259  | 
"[|? i. Y i=c;!i. Y i<<c|] ==> lub(range Y) = c"  | 
| 1043 | 260  | 
(fn prems =>  | 
| 1461 | 261  | 
[  | 
262  | 
(cut_facts_tac prems 1),  | 
|
263  | 
(rtac thelubI 1),  | 
|
264  | 
(rtac is_lubI 1),  | 
|
265  | 
(rtac conjI 1),  | 
|
266  | 
(etac ub_rangeI 1),  | 
|
267  | 
(strip_tac 1),  | 
|
268  | 
(etac exE 1),  | 
|
269  | 
(hyp_subst_tac 1),  | 
|
270  | 
(etac (ub_rangeE RS spec) 1)  | 
|
271  | 
]);  | 
|
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
272  | 
|
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
273  | 
(* ------------------------------------------------------------------------ *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
274  | 
(* the lub of a constant chain is the constant *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
275  | 
(* ------------------------------------------------------------------------ *)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
276  | 
|
| 3842 | 277  | 
qed_goal "lub_const" thy "range(%x. c) <<| c"  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
278  | 
(fn prems =>  | 
| 1461 | 279  | 
[  | 
280  | 
(rtac is_lubI 1),  | 
|
281  | 
(rtac conjI 1),  | 
|
282  | 
(rtac ub_rangeI 1),  | 
|
283  | 
(strip_tac 1),  | 
|
284  | 
(rtac refl_less 1),  | 
|
285  | 
(strip_tac 1),  | 
|
286  | 
(etac (ub_rangeE RS spec) 1)  | 
|
287  | 
]);  | 
|
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
288  | 
|
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
289  | 
|
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
290  |