| author | paulson | 
| Fri, 06 Oct 2006 11:17:53 +0200 | |
| changeset 20869 | 5abf3cd34a35 | 
| parent 16417 | 9bc16273c2d4 | 
| child 35762 | af3ff2ba4c54 | 
| permissions | -rw-r--r-- | 
| 1478 | 1  | 
(* Title: ZF/Cardinal_AC.thy  | 
| 484 | 2  | 
ID: $Id$  | 
| 1478 | 3  | 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory  | 
| 484 | 4  | 
Copyright 1994 University of Cambridge  | 
5  | 
||
| 13134 | 6  | 
These results help justify infinite-branching datatypes  | 
| 484 | 7  | 
*)  | 
8  | 
||
| 13328 | 9  | 
header{*Cardinal Arithmetic Using AC*}
 | 
10  | 
||
| 16417 | 11  | 
theory Cardinal_AC imports CardinalArith Zorn begin  | 
| 13134 | 12  | 
|
| 13356 | 13  | 
subsection{*Strengthened Forms of Existing Theorems on Cardinals*}
 | 
| 13134 | 14  | 
|
15  | 
lemma cardinal_eqpoll: "|A| eqpoll A"  | 
|
16  | 
apply (rule AC_well_ord [THEN exE])  | 
|
17  | 
apply (erule well_ord_cardinal_eqpoll)  | 
|
18  | 
done  | 
|
19  | 
||
| 14046 | 20  | 
text{*The theorem @{term "||A|| = |A|"} *}
 | 
21  | 
lemmas cardinal_idem = cardinal_eqpoll [THEN cardinal_cong, standard, simp]  | 
|
| 13134 | 22  | 
|
23  | 
lemma cardinal_eqE: "|X| = |Y| ==> X eqpoll Y"  | 
|
24  | 
apply (rule AC_well_ord [THEN exE])  | 
|
25  | 
apply (rule AC_well_ord [THEN exE])  | 
|
| 13269 | 26  | 
apply (rule well_ord_cardinal_eqE, assumption+)  | 
| 13134 | 27  | 
done  | 
28  | 
||
29  | 
lemma cardinal_eqpoll_iff: "|X| = |Y| <-> X eqpoll Y"  | 
|
| 13269 | 30  | 
by (blast intro: cardinal_cong cardinal_eqE)  | 
| 13134 | 31  | 
|
| 
13615
 
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
 
paulson 
parents: 
13356 
diff
changeset
 | 
32  | 
lemma cardinal_disjoint_Un:  | 
| 
 
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
 
paulson 
parents: 
13356 
diff
changeset
 | 
33  | 
"[| |A|=|B|; |C|=|D|; A Int C = 0; B Int D = 0 |]  | 
| 
 
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
 
paulson 
parents: 
13356 
diff
changeset
 | 
34  | 
==> |A Un C| = |B Un D|"  | 
| 
 
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
 
paulson 
parents: 
13356 
diff
changeset
 | 
35  | 
by (simp add: cardinal_eqpoll_iff eqpoll_disjoint_Un)  | 
| 13134 | 36  | 
|
37  | 
lemma lepoll_imp_Card_le: "A lepoll B ==> |A| le |B|"  | 
|
38  | 
apply (rule AC_well_ord [THEN exE])  | 
|
| 13269 | 39  | 
apply (erule well_ord_lepoll_imp_Card_le, assumption)  | 
| 13134 | 40  | 
done  | 
41  | 
||
42  | 
lemma cadd_assoc: "(i |+| j) |+| k = i |+| (j |+| k)"  | 
|
43  | 
apply (rule AC_well_ord [THEN exE])  | 
|
44  | 
apply (rule AC_well_ord [THEN exE])  | 
|
45  | 
apply (rule AC_well_ord [THEN exE])  | 
|
| 13269 | 46  | 
apply (rule well_ord_cadd_assoc, assumption+)  | 
| 13134 | 47  | 
done  | 
48  | 
||
49  | 
lemma cmult_assoc: "(i |*| j) |*| k = i |*| (j |*| k)"  | 
|
50  | 
apply (rule AC_well_ord [THEN exE])  | 
|
51  | 
apply (rule AC_well_ord [THEN exE])  | 
|
52  | 
apply (rule AC_well_ord [THEN exE])  | 
|
| 13269 | 53  | 
apply (rule well_ord_cmult_assoc, assumption+)  | 
| 13134 | 54  | 
done  | 
55  | 
||
56  | 
lemma cadd_cmult_distrib: "(i |+| j) |*| k = (i |*| k) |+| (j |*| k)"  | 
|
57  | 
apply (rule AC_well_ord [THEN exE])  | 
|
58  | 
apply (rule AC_well_ord [THEN exE])  | 
|
59  | 
apply (rule AC_well_ord [THEN exE])  | 
|
| 13269 | 60  | 
apply (rule well_ord_cadd_cmult_distrib, assumption+)  | 
| 13134 | 61  | 
done  | 
62  | 
||
63  | 
lemma InfCard_square_eq: "InfCard(|A|) ==> A*A eqpoll A"  | 
|
64  | 
apply (rule AC_well_ord [THEN exE])  | 
|
| 13269 | 65  | 
apply (erule well_ord_InfCard_square_eq, assumption)  | 
| 13134 | 66  | 
done  | 
67  | 
||
68  | 
||
| 14046 | 69  | 
subsection {*The relationship between cardinality and le-pollence*}
 | 
| 13134 | 70  | 
|
71  | 
lemma Card_le_imp_lepoll: "|A| le |B| ==> A lepoll B"  | 
|
72  | 
apply (rule cardinal_eqpoll  | 
|
73  | 
[THEN eqpoll_sym, THEN eqpoll_imp_lepoll, THEN lepoll_trans])  | 
|
74  | 
apply (erule le_imp_subset [THEN subset_imp_lepoll, THEN lepoll_trans])  | 
|
75  | 
apply (rule cardinal_eqpoll [THEN eqpoll_imp_lepoll])  | 
|
76  | 
done  | 
|
77  | 
||
78  | 
lemma le_Card_iff: "Card(K) ==> |A| le K <-> A lepoll K"  | 
|
79  | 
apply (erule Card_cardinal_eq [THEN subst], rule iffI,  | 
|
| 13269 | 80  | 
erule Card_le_imp_lepoll)  | 
| 13134 | 81  | 
apply (erule lepoll_imp_Card_le)  | 
82  | 
done  | 
|
83  | 
||
| 14046 | 84  | 
lemma cardinal_0_iff_0 [simp]: "|A| = 0 <-> A = 0";  | 
85  | 
apply auto  | 
|
86  | 
apply (drule cardinal_0 [THEN ssubst])  | 
|
87  | 
apply (blast intro: eqpoll_0_iff [THEN iffD1] cardinal_eqpoll_iff [THEN iffD1])  | 
|
88  | 
done  | 
|
89  | 
||
90  | 
lemma cardinal_lt_iff_lesspoll: "Ord(i) ==> i < |A| <-> i lesspoll A"  | 
|
91  | 
apply (cut_tac A = "A" in cardinal_eqpoll)  | 
|
92  | 
apply (auto simp add: eqpoll_iff)  | 
|
93  | 
apply (blast intro: lesspoll_trans2 lt_Card_imp_lesspoll Card_cardinal)  | 
|
94  | 
apply (force intro: cardinal_lt_imp_lt lesspoll_cardinal_lt lesspoll_trans2  | 
|
95  | 
simp add: cardinal_idem)  | 
|
96  | 
done  | 
|
97  | 
||
98  | 
lemma cardinal_le_imp_lepoll: " i \<le> |A| ==> i \<lesssim> A"  | 
|
99  | 
apply (blast intro: lt_Ord Card_le_imp_lepoll Ord_cardinal_le le_trans)  | 
|
100  | 
done  | 
|
101  | 
||
102  | 
||
103  | 
subsection{*Other Applications of AC*}
 | 
|
104  | 
||
| 13134 | 105  | 
lemma surj_implies_inj: "f: surj(X,Y) ==> EX g. g: inj(Y,X)"  | 
106  | 
apply (unfold surj_def)  | 
|
107  | 
apply (erule CollectE)  | 
|
| 13784 | 108  | 
apply (rule_tac A1 = Y and B1 = "%y. f-``{y}" in AC_Pi [THEN exE])
 | 
| 13134 | 109  | 
apply (fast elim!: apply_Pair)  | 
| 
13615
 
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
 
paulson 
parents: 
13356 
diff
changeset
 | 
110  | 
apply (blast dest: apply_type Pi_memberD  | 
| 
 
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
 
paulson 
parents: 
13356 
diff
changeset
 | 
111  | 
intro: apply_equality Pi_type f_imp_injective)  | 
| 13134 | 112  | 
done  | 
113  | 
||
114  | 
(*Kunen's Lemma 10.20*)  | 
|
115  | 
lemma surj_implies_cardinal_le: "f: surj(X,Y) ==> |Y| le |X|"  | 
|
116  | 
apply (rule lepoll_imp_Card_le)  | 
|
117  | 
apply (erule surj_implies_inj [THEN exE])  | 
|
118  | 
apply (unfold lepoll_def)  | 
|
119  | 
apply (erule exI)  | 
|
120  | 
done  | 
|
121  | 
||
122  | 
(*Kunen's Lemma 10.21*)  | 
|
| 
13615
 
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
 
paulson 
parents: 
13356 
diff
changeset
 | 
123  | 
lemma cardinal_UN_le:  | 
| 
 
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
 
paulson 
parents: 
13356 
diff
changeset
 | 
124  | 
"[| InfCard(K); ALL i:K. |X(i)| le K |] ==> |\<Union>i\<in>K. X(i)| le K"  | 
| 13134 | 125  | 
apply (simp add: InfCard_is_Card le_Card_iff)  | 
126  | 
apply (rule lepoll_trans)  | 
|
127  | 
prefer 2  | 
|
128  | 
apply (rule InfCard_square_eq [THEN eqpoll_imp_lepoll])  | 
|
129  | 
apply (simp add: InfCard_is_Card Card_cardinal_eq)  | 
|
130  | 
apply (unfold lepoll_def)  | 
|
131  | 
apply (frule InfCard_is_Card [THEN Card_is_Ord])  | 
|
132  | 
apply (erule AC_ball_Pi [THEN exE])  | 
|
133  | 
apply (rule exI)  | 
|
134  | 
(*Lemma needed in both subgoals, for a fixed z*)  | 
|
| 
13615
 
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
 
paulson 
parents: 
13356 
diff
changeset
 | 
135  | 
apply (subgoal_tac "ALL z: (\<Union>i\<in>K. X (i)). z: X (LEAST i. z:X (i)) &  | 
| 
 
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
 
paulson 
parents: 
13356 
diff
changeset
 | 
136  | 
(LEAST i. z:X (i)) : K")  | 
| 13134 | 137  | 
prefer 2  | 
138  | 
apply (fast intro!: Least_le [THEN lt_trans1, THEN ltD] ltI  | 
|
139  | 
elim!: LeastI Ord_in_Ord)  | 
|
| 13269 | 140  | 
apply (rule_tac c = "%z. <LEAST i. z:X (i), f ` (LEAST i. z:X (i)) ` z>"  | 
| 13134 | 141  | 
and d = "%<i,j>. converse (f`i) ` j" in lam_injective)  | 
142  | 
(*Instantiate the lemma proved above*)  | 
|
| 13269 | 143  | 
by (blast intro: inj_is_fun [THEN apply_type] dest: apply_type, force)  | 
| 13134 | 144  | 
|
145  | 
||
146  | 
(*The same again, using csucc*)  | 
|
147  | 
lemma cardinal_UN_lt_csucc:  | 
|
148  | 
"[| InfCard(K); ALL i:K. |X(i)| < csucc(K) |]  | 
|
| 
13615
 
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
 
paulson 
parents: 
13356 
diff
changeset
 | 
149  | 
==> |\<Union>i\<in>K. X(i)| < csucc(K)"  | 
| 
 
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
 
paulson 
parents: 
13356 
diff
changeset
 | 
150  | 
by (simp add: Card_lt_csucc_iff cardinal_UN_le InfCard_is_Card Card_cardinal)  | 
| 13134 | 151  | 
|
152  | 
(*The same again, for a union of ordinals. In use, j(i) is a bit like rank(i),  | 
|
153  | 
the least ordinal j such that i:Vfrom(A,j). *)  | 
|
154  | 
lemma cardinal_UN_Ord_lt_csucc:  | 
|
155  | 
"[| InfCard(K); ALL i:K. j(i) < csucc(K) |]  | 
|
| 
13615
 
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
 
paulson 
parents: 
13356 
diff
changeset
 | 
156  | 
==> (\<Union>i\<in>K. j(i)) < csucc(K)"  | 
| 13269 | 157  | 
apply (rule cardinal_UN_lt_csucc [THEN Card_lt_imp_lt], assumption)  | 
| 13134 | 158  | 
apply (blast intro: Ord_cardinal_le [THEN lt_trans1] elim: ltE)  | 
159  | 
apply (blast intro!: Ord_UN elim: ltE)  | 
|
160  | 
apply (erule InfCard_is_Card [THEN Card_is_Ord, THEN Card_csucc])  | 
|
161  | 
done  | 
|
162  | 
||
163  | 
||
164  | 
(** Main result for infinite-branching datatypes. As above, but the index  | 
|
165  | 
set need not be a cardinal. Surprisingly complicated proof!  | 
|
166  | 
**)  | 
|
167  | 
||
168  | 
(*Work backwards along the injection from W into K, given that W~=0.*)  | 
|
169  | 
lemma inj_UN_subset:  | 
|
170  | 
"[| f: inj(A,B); a:A |] ==>  | 
|
| 
13615
 
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
 
paulson 
parents: 
13356 
diff
changeset
 | 
171  | 
(\<Union>x\<in>A. C(x)) <= (\<Union>y\<in>B. C(if y: range(f) then converse(f)`y else a))"  | 
| 13134 | 172  | 
apply (rule UN_least)  | 
173  | 
apply (rule_tac x1= "f`x" in subset_trans [OF _ UN_upper])  | 
|
174  | 
apply (simp add: inj_is_fun [THEN apply_rangeI])  | 
|
175  | 
apply (blast intro: inj_is_fun [THEN apply_type])  | 
|
176  | 
done  | 
|
177  | 
||
178  | 
(*Simpler to require |W|=K; we'd have a bijection; but the theorem would  | 
|
179  | 
be weaker.*)  | 
|
180  | 
lemma le_UN_Ord_lt_csucc:  | 
|
181  | 
"[| InfCard(K); |W| le K; ALL w:W. j(w) < csucc(K) |]  | 
|
| 
13615
 
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
 
paulson 
parents: 
13356 
diff
changeset
 | 
182  | 
==> (\<Union>w\<in>W. j(w)) < csucc(K)"  | 
| 13134 | 183  | 
apply (case_tac "W=0")  | 
184  | 
(*solve the easy 0 case*)  | 
|
185  | 
apply (simp add: InfCard_is_Card Card_is_Ord [THEN Card_csucc]  | 
|
186  | 
Card_is_Ord Ord_0_lt_csucc)  | 
|
187  | 
apply (simp add: InfCard_is_Card le_Card_iff lepoll_def)  | 
|
188  | 
apply (safe intro!: equalityI)  | 
|
| 13269 | 189  | 
apply (erule swap)  | 
190  | 
apply (rule lt_subset_trans [OF inj_UN_subset cardinal_UN_Ord_lt_csucc], assumption+)  | 
|
| 13134 | 191  | 
apply (simp add: inj_converse_fun [THEN apply_type])  | 
192  | 
apply (blast intro!: Ord_UN elim: ltE)  | 
|
193  | 
done  | 
|
194  | 
||
| 14046 | 195  | 
ML  | 
196  | 
{*
 | 
|
197  | 
val cardinal_0_iff_0 = thm "cardinal_0_iff_0";  | 
|
198  | 
val cardinal_lt_iff_lesspoll = thm "cardinal_lt_iff_lesspoll";  | 
|
199  | 
*}  | 
|
200  | 
||
| 13134 | 201  | 
end  |