| 
1048
 | 
     1  | 
(*  Title: 	Reduction.thy
  | 
| 
 | 
     2  | 
    ID:         $Id$
  | 
| 
 | 
     3  | 
    Author: 	Ole Rasmussen
  | 
| 
 | 
     4  | 
    Copyright   1995  University of Cambridge
  | 
| 
 | 
     5  | 
    Logic Image: ZF
  | 
| 
 | 
     6  | 
*)
  | 
| 
 | 
     7  | 
  | 
| 
 | 
     8  | 
Reduction = Terms+
  | 
| 
 | 
     9  | 
  | 
| 
 | 
    10  | 
consts
  | 
| 
 | 
    11  | 
  Sred1, Sred,  Spar_red1,Spar_red    :: "i"
  | 
| 
 | 
    12  | 
  "-1->","--->","=1=>",   "===>"      :: "[i,i]=>o" (infixl 50)
  | 
| 
 | 
    13  | 
  | 
| 
 | 
    14  | 
translations
  | 
| 
 | 
    15  | 
  "a -1-> b" == "<a,b>:Sred1"
  | 
| 
 | 
    16  | 
  "a ---> b" == "<a,b>:Sred"
  | 
| 
 | 
    17  | 
  "a =1=> b" == "<a,b>:Spar_red1"
  | 
| 
 | 
    18  | 
  "a ===> b" == "<a,b>:Spar_red"
  | 
| 
 | 
    19  | 
  
  | 
| 
 | 
    20  | 
  
  | 
| 
 | 
    21  | 
inductive
  | 
| 
 | 
    22  | 
  domains       "Sred1" <= "lambda*lambda"
  | 
| 
 | 
    23  | 
  intrs
  | 
| 
 | 
    24  | 
    beta	"[|m:lambda; n:lambda|] ==> Apl(Fun(m),n) -1-> n/m"
  | 
| 
 | 
    25  | 
    rfun  	"[|m -1-> n|] ==> Fun(m) -1-> Fun(n)"
  | 
| 
 | 
    26  | 
    apl_l	"[|m2:lambda; m1 -1-> n1|] ==>   \
  | 
| 
 | 
    27  | 
\		 	          Apl(m1,m2) -1-> Apl(n1,m2)"
  | 
| 
 | 
    28  | 
    apl_r	"[|m1:lambda; m2 -1-> n2|] ==>   \
  | 
| 
 | 
    29  | 
\		 	          Apl(m1,m2) -1-> Apl(m1,n2)"
  | 
| 
 | 
    30  | 
  type_intrs	"red_typechecks"
  | 
| 
 | 
    31  | 
  | 
| 
 | 
    32  | 
inductive
  | 
| 
 | 
    33  | 
  domains       "Sred" <= "lambda*lambda"
  | 
| 
 | 
    34  | 
  intrs
  | 
| 
 | 
    35  | 
    one_step	"[|m-1->n|] ==> m--->n"
  | 
| 
 | 
    36  | 
    refl  	"m:lambda==>m --->m"
  | 
| 
 | 
    37  | 
    trans	"[|m--->n; n--->p|]==>m--->p"
  | 
| 
 | 
    38  | 
  type_intrs	"[Sred1.dom_subset RS subsetD]@red_typechecks"
  | 
| 
 | 
    39  | 
  | 
| 
 | 
    40  | 
inductive
  | 
| 
 | 
    41  | 
  domains       "Spar_red1" <= "lambda*lambda"
  | 
| 
 | 
    42  | 
  intrs
  | 
| 
 | 
    43  | 
    beta	"[|m =1=> m';   \
  | 
| 
 | 
    44  | 
\		 n =1=> n'|] ==> Apl(Fun(m),n) =1=> n'/m'"
  | 
| 
 | 
    45  | 
    rvar	"n:nat==> Var(n) =1=> Var(n)"
  | 
| 
 | 
    46  | 
    rfun	"[|m =1=> m'|]==> Fun(m) =1=> Fun(m')"
  | 
| 
 | 
    47  | 
    rapl	"[|m =1=> m';   \
  | 
| 
 | 
    48  | 
\		 n =1=> n'|] ==> Apl(m,n) =1=> Apl(m',n')"
  | 
| 
 | 
    49  | 
  type_intrs	"red_typechecks"
  | 
| 
 | 
    50  | 
  | 
| 
 | 
    51  | 
  inductive
  | 
| 
 | 
    52  | 
  domains       "Spar_red" <= "lambda*lambda"
  | 
| 
 | 
    53  | 
  intrs
  | 
| 
 | 
    54  | 
    one_step	"[|m =1=> n|] ==> m ===> n"
  | 
| 
 | 
    55  | 
    trans	"[|m===>n; n===>p|]==>m===>p"
  | 
| 
 | 
    56  | 
  type_intrs	"[Spar_red1.dom_subset RS subsetD]@red_typechecks"
  | 
| 
 | 
    57  | 
  | 
| 
 | 
    58  | 
  | 
| 
 | 
    59  | 
end
  | 
| 
 | 
    60  | 
  |