923
|
1 |
(* Title: HOL/Set.thy
|
|
2 |
ID: $Id$
|
|
3 |
Author: Tobias Nipkow
|
|
4 |
Copyright 1993 University of Cambridge
|
|
5 |
*)
|
|
6 |
|
|
7 |
Set = Ord +
|
|
8 |
|
|
9 |
types
|
|
10 |
'a set
|
|
11 |
|
|
12 |
arities
|
|
13 |
set :: (term) term
|
|
14 |
|
|
15 |
instance
|
|
16 |
set :: (term) {ord, minus}
|
|
17 |
|
|
18 |
consts
|
|
19 |
"{}" :: "'a set" ("{}")
|
|
20 |
insert :: "['a, 'a set] => 'a set"
|
|
21 |
Collect :: "('a => bool) => 'a set" (*comprehension*)
|
|
22 |
Compl :: "('a set) => 'a set" (*complement*)
|
|
23 |
Int :: "['a set, 'a set] => 'a set" (infixl 70)
|
|
24 |
Un :: "['a set, 'a set] => 'a set" (infixl 65)
|
|
25 |
UNION, INTER :: "['a set, 'a => 'b set] => 'b set" (*general*)
|
|
26 |
UNION1 :: "['a => 'b set] => 'b set" (binder "UN " 10)
|
|
27 |
INTER1 :: "['a => 'b set] => 'b set" (binder "INT " 10)
|
|
28 |
Union, Inter :: "(('a set)set) => 'a set" (*of a set*)
|
|
29 |
Pow :: "'a set => 'a set set" (*powerset*)
|
|
30 |
range :: "('a => 'b) => 'b set" (*of function*)
|
|
31 |
Ball, Bex :: "['a set, 'a => bool] => bool" (*bounded quantifiers*)
|
|
32 |
inj, surj :: "('a => 'b) => bool" (*inj/surjective*)
|
|
33 |
inj_onto :: "['a => 'b, 'a set] => bool"
|
|
34 |
"``" :: "['a => 'b, 'a set] => ('b set)" (infixl 90)
|
|
35 |
":" :: "['a, 'a set] => bool" (infixl 50) (*membership*)
|
|
36 |
|
|
37 |
|
|
38 |
syntax
|
|
39 |
|
|
40 |
"~:" :: "['a, 'a set] => bool" (infixl 50)
|
|
41 |
|
|
42 |
"@Finset" :: "args => 'a set" ("{(_)}")
|
|
43 |
|
1068
|
44 |
"@Coll" :: "[pttrn, bool] => 'a set" ("(1{_./ _})")
|
923
|
45 |
"@SetCompr" :: "['a, idts, bool] => 'a set" ("(1{_ |/_./ _})")
|
|
46 |
|
|
47 |
(* Big Intersection / Union *)
|
|
48 |
|
1068
|
49 |
"@INTER" :: "[pttrn, 'a set, 'b set] => 'b set" ("(3INT _:_./ _)" 10)
|
|
50 |
"@UNION" :: "[pttrn, 'a set, 'b set] => 'b set" ("(3UN _:_./ _)" 10)
|
923
|
51 |
|
|
52 |
(* Bounded Quantifiers *)
|
|
53 |
|
1068
|
54 |
"@Ball" :: "[pttrn, 'a set, bool] => bool" ("(3! _:_./ _)" 10)
|
|
55 |
"@Bex" :: "[pttrn, 'a set, bool] => bool" ("(3? _:_./ _)" 10)
|
|
56 |
"*Ball" :: "[pttrn, 'a set, bool] => bool" ("(3ALL _:_./ _)" 10)
|
|
57 |
"*Bex" :: "[pttrn, 'a set, bool] => bool" ("(3EX _:_./ _)" 10)
|
923
|
58 |
|
|
59 |
translations
|
|
60 |
"x ~: y" == "~ (x : y)"
|
|
61 |
"{x, xs}" == "insert x {xs}"
|
|
62 |
"{x}" == "insert x {}"
|
|
63 |
"{x. P}" == "Collect (%x. P)"
|
|
64 |
"INT x:A. B" == "INTER A (%x. B)"
|
|
65 |
"UN x:A. B" == "UNION A (%x. B)"
|
|
66 |
"! x:A. P" == "Ball A (%x. P)"
|
|
67 |
"? x:A. P" == "Bex A (%x. P)"
|
|
68 |
"ALL x:A. P" => "Ball A (%x. P)"
|
|
69 |
"EX x:A. P" => "Bex A (%x. P)"
|
|
70 |
|
|
71 |
|
|
72 |
rules
|
|
73 |
|
|
74 |
(* Isomorphisms between Predicates and Sets *)
|
|
75 |
|
|
76 |
mem_Collect_eq "(a : {x.P(x)}) = P(a)"
|
|
77 |
Collect_mem_eq "{x.x:A} = A"
|
|
78 |
|
|
79 |
|
|
80 |
defs
|
|
81 |
Ball_def "Ball A P == ! x. x:A --> P(x)"
|
|
82 |
Bex_def "Bex A P == ? x. x:A & P(x)"
|
|
83 |
subset_def "A <= B == ! x:A. x:B"
|
|
84 |
Compl_def "Compl(A) == {x. ~x:A}"
|
|
85 |
Un_def "A Un B == {x.x:A | x:B}"
|
|
86 |
Int_def "A Int B == {x.x:A & x:B}"
|
|
87 |
set_diff_def "A - B == {x. x:A & ~x:B}"
|
|
88 |
INTER_def "INTER A B == {y. ! x:A. y: B(x)}"
|
|
89 |
UNION_def "UNION A B == {y. ? x:A. y: B(x)}"
|
|
90 |
INTER1_def "INTER1(B) == INTER {x.True} B"
|
|
91 |
UNION1_def "UNION1(B) == UNION {x.True} B"
|
|
92 |
Inter_def "Inter(S) == (INT x:S. x)"
|
|
93 |
Union_def "Union(S) == (UN x:S. x)"
|
|
94 |
Pow_def "Pow(A) == {B. B <= A}"
|
|
95 |
empty_def "{} == {x. False}"
|
|
96 |
insert_def "insert a B == {x.x=a} Un B"
|
|
97 |
range_def "range(f) == {y. ? x. y=f(x)}"
|
|
98 |
image_def "f``A == {y. ? x:A. y=f(x)}"
|
|
99 |
inj_def "inj(f) == ! x y. f(x)=f(y) --> x=y"
|
|
100 |
inj_onto_def "inj_onto f A == ! x:A. ! y:A. f(x)=f(y) --> x=y"
|
|
101 |
surj_def "surj(f) == ! y. ? x. y=f(x)"
|
|
102 |
|
1273
|
103 |
(* start 8bit 1 *)
|
|
104 |
(* end 8bit 1 *)
|
|
105 |
|
923
|
106 |
end
|
|
107 |
|
|
108 |
ML
|
|
109 |
|
|
110 |
local
|
|
111 |
|
|
112 |
(* Translates between { e | x1..xn. P} and {u. ? x1..xn. u=e & P} *)
|
|
113 |
(* {y. ? x1..xn. y = e & P} is only translated if [0..n] subset bvs(e) *)
|
|
114 |
|
|
115 |
val ex_tr = snd(mk_binder_tr("? ","Ex"));
|
|
116 |
|
|
117 |
fun nvars(Const("_idts",_) $ _ $ idts) = nvars(idts)+1
|
|
118 |
| nvars(_) = 1;
|
|
119 |
|
|
120 |
fun setcompr_tr[e,idts,b] =
|
|
121 |
let val eq = Syntax.const("op =") $ Bound(nvars(idts)) $ e
|
|
122 |
val P = Syntax.const("op &") $ eq $ b
|
|
123 |
val exP = ex_tr [idts,P]
|
|
124 |
in Syntax.const("Collect") $ Abs("",dummyT,exP) end;
|
|
125 |
|
|
126 |
val ex_tr' = snd(mk_binder_tr' ("Ex","DUMMY"));
|
|
127 |
|
|
128 |
fun setcompr_tr'[Abs(_,_,P)] =
|
|
129 |
let fun ok(Const("Ex",_)$Abs(_,_,P),n) = ok(P,n+1)
|
|
130 |
| ok(Const("op &",_) $ (Const("op =",_) $ Bound(m) $ e) $ _, n) =
|
|
131 |
if n>0 andalso m=n andalso
|
|
132 |
((0 upto (n-1)) subset add_loose_bnos(e,0,[]))
|
|
133 |
then () else raise Match
|
|
134 |
|
|
135 |
fun tr'(_ $ abs) =
|
|
136 |
let val _ $ idts $ (_ $ (_ $ _ $ e) $ Q) = ex_tr'[abs]
|
|
137 |
in Syntax.const("@SetCompr") $ e $ idts $ Q end
|
|
138 |
in ok(P,0); tr'(P) end;
|
|
139 |
|
|
140 |
in
|
|
141 |
|
|
142 |
val parse_translation = [("@SetCompr", setcompr_tr)];
|
|
143 |
val print_translation = [("Collect", setcompr_tr')];
|
|
144 |
val print_ast_translation =
|
|
145 |
map HOL.alt_ast_tr' [("@Ball", "*Ball"), ("@Bex", "*Bex")];
|
|
146 |
|
|
147 |
end;
|
|
148 |
|