| 
0
 | 
     1  | 
(*  Title: 	FOL/int-prover
  | 
| 
 | 
     2  | 
    ID:         $Id$
  | 
| 
 | 
     3  | 
    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
  | 
| 
 | 
     4  | 
    Copyright   1992  University of Cambridge
  | 
| 
 | 
     5  | 
  | 
| 
 | 
     6  | 
A naive prover for intuitionistic logic
  | 
| 
 | 
     7  | 
  | 
| 
 | 
     8  | 
BEWARE OF NAME CLASHES WITH CLASSICAL TACTICS -- use Int.fast_tac ...
  | 
| 
 | 
     9  | 
  | 
| 
 | 
    10  | 
Completeness (for propositional logic) is proved in 
  | 
| 
 | 
    11  | 
  | 
| 
 | 
    12  | 
Roy Dyckhoff.
  | 
| 
 | 
    13  | 
Contraction-Free Sequent Calculi for Intuitionistic Logic.
  | 
| 
 | 
    14  | 
J. Symbolic Logic (in press)
  | 
| 
 | 
    15  | 
*)
  | 
| 
 | 
    16  | 
  | 
| 
 | 
    17  | 
signature INT_PROVER = 
  | 
| 
 | 
    18  | 
  sig
  | 
| 
 | 
    19  | 
  val best_tac: int -> tactic
  | 
| 
 | 
    20  | 
  val fast_tac: int -> tactic
  | 
| 
 | 
    21  | 
  val inst_step_tac: int -> tactic
  | 
| 
 | 
    22  | 
  val safe_step_tac: int -> tactic
  | 
| 
 | 
    23  | 
  val safe_brls: (bool * thm) list
  | 
| 
 | 
    24  | 
  val safe_tac: tactic
  | 
| 
 | 
    25  | 
  val step_tac: int -> tactic
  | 
| 
 | 
    26  | 
  val haz_brls: (bool * thm) list
  | 
| 
 | 
    27  | 
  end;
  | 
| 
 | 
    28  | 
  | 
| 
 | 
    29  | 
  | 
| 
 | 
    30  | 
structure Int : INT_PROVER   = 
  | 
| 
 | 
    31  | 
struct
  | 
| 
 | 
    32  | 
  | 
| 
 | 
    33  | 
(*Negation is treated as a primitive symbol, with rules notI (introduction),
  | 
| 
 | 
    34  | 
  not_to_imp (converts the assumption ~P to P-->False), and not_impE
  | 
| 
 | 
    35  | 
  (handles double negations).  Could instead rewrite by not_def as the first
  | 
| 
 | 
    36  | 
  step of an intuitionistic proof.
  | 
| 
 | 
    37  | 
*)
  | 
| 
 | 
    38  | 
val safe_brls = sort lessb 
  | 
| 
 | 
    39  | 
    [ (true,FalseE), (false,TrueI), (false,refl),
  | 
| 
 | 
    40  | 
      (false,impI), (false,notI), (false,allI),
  | 
| 
 | 
    41  | 
      (true,conjE), (true,exE),
  | 
| 
 | 
    42  | 
      (false,conjI), (true,conj_impE),
  | 
| 
 | 
    43  | 
      (true,disj_impE), (true,ex_impE),
  | 
| 
 | 
    44  | 
      (true,disjE), (false,iffI), (true,iffE), (true,not_to_imp) ];
  | 
| 
 | 
    45  | 
  | 
| 
 | 
    46  | 
val haz_brls =
  | 
| 
 | 
    47  | 
    [ (false,disjI1), (false,disjI2), (false,exI), 
  | 
| 
 | 
    48  | 
      (true,allE), (true,not_impE), (true,imp_impE), (true,iff_impE),
  | 
| 
 | 
    49  | 
      (true,all_impE), (true,impE) ];
  | 
| 
 | 
    50  | 
  | 
| 
 | 
    51  | 
(*0 subgoals vs 1 or more: the p in safep is for positive*)
  | 
| 
 | 
    52  | 
val (safe0_brls, safep_brls) =
  | 
| 
 | 
    53  | 
    partition (apl(0,op=) o subgoals_of_brl) safe_brls;
  | 
| 
 | 
    54  | 
  | 
| 
 | 
    55  | 
(*Attack subgoals using safe inferences*)
  | 
| 
 | 
    56  | 
val safe_step_tac = FIRST' [uniq_assume_tac,
  | 
| 
 | 
    57  | 
			    IFOLP_Lemmas.uniq_mp_tac,
  | 
| 
 | 
    58  | 
			    biresolve_tac safe0_brls,
  | 
| 
 | 
    59  | 
			    hyp_subst_tac,
  | 
| 
 | 
    60  | 
			    biresolve_tac safep_brls] ;
  | 
| 
 | 
    61  | 
  | 
| 
 | 
    62  | 
(*Repeatedly attack subgoals using safe inferences*)
  | 
| 
 | 
    63  | 
val safe_tac = DETERM (REPEAT_FIRST safe_step_tac);
  | 
| 
 | 
    64  | 
  | 
| 
 | 
    65  | 
(*These steps could instantiate variables and are therefore unsafe.*)
  | 
| 
 | 
    66  | 
val inst_step_tac = assume_tac APPEND' mp_tac;
  | 
| 
 | 
    67  | 
  | 
| 
 | 
    68  | 
(*One safe or unsafe step. *)
  | 
| 
 | 
    69  | 
fun step_tac i = FIRST [safe_tac, inst_step_tac i, biresolve_tac haz_brls i];
  | 
| 
 | 
    70  | 
  | 
| 
 | 
    71  | 
(*Dumb but fast*)
  | 
| 
 | 
    72  | 
val fast_tac = SELECT_GOAL (DEPTH_SOLVE (step_tac 1));
  | 
| 
 | 
    73  | 
  | 
| 
 | 
    74  | 
(*Slower but smarter than fast_tac*)
  | 
| 
 | 
    75  | 
val best_tac = 
  | 
| 
 | 
    76  | 
  SELECT_GOAL (BEST_FIRST (has_fewer_prems 1, size_of_thm) (step_tac 1));
  | 
| 
 | 
    77  | 
  | 
| 
 | 
    78  | 
end;
  | 
| 
 | 
    79  | 
  |