| author | paulson | 
| Mon, 18 Dec 2000 12:21:54 +0100 | |
| changeset 10689 | 5c44de6aadf4 | 
| parent 9747 | 043098ba5098 | 
| child 10996 | 74e970389def | 
| permissions | -rw-r--r-- | 
| 4907 | 1 | (* Title: HOL/Lex/RegExp2NAe.ML | 
| 2 | ID: $Id$ | |
| 3 | Author: Tobias Nipkow | |
| 4 | Copyright 1998 TUM | |
| 5 | *) | |
| 6 | ||
| 7 | (******************************************************) | |
| 8 | (* atom *) | |
| 9 | (******************************************************) | |
| 10 | ||
| 5069 | 11 | Goalw [atom_def] "(fin (atom a) q) = (q = [False])"; | 
| 5132 | 12 | by (Simp_tac 1); | 
| 4907 | 13 | qed "fin_atom"; | 
| 14 | ||
| 5069 | 15 | Goalw [atom_def] "start (atom a) = [True]"; | 
| 5132 | 16 | by (Simp_tac 1); | 
| 4907 | 17 | qed "start_atom"; | 
| 18 | ||
| 19 | (* Use {x. False} = {}? *)
 | |
| 20 | ||
| 5069 | 21 | Goalw [atom_def,step_def] | 
| 4907 | 22 |  "eps(atom a) = {}";
 | 
| 5132 | 23 | by (Simp_tac 1); | 
| 4907 | 24 | qed "eps_atom"; | 
| 25 | Addsimps [eps_atom]; | |
| 26 | ||
| 5069 | 27 | Goalw [atom_def,step_def] | 
| 4907 | 28 | "(p,q) : step (atom a) (Some b) = (p=[True] & q=[False] & b=a)"; | 
| 5132 | 29 | by (Simp_tac 1); | 
| 4907 | 30 | qed "in_step_atom_Some"; | 
| 31 | Addsimps [in_step_atom_Some]; | |
| 32 | ||
| 5118 | 33 | Goal "([False],[False]) : steps (atom a) w = (w = [])"; | 
| 4907 | 34 | by (induct_tac "w" 1); | 
| 5132 | 35 | by (Simp_tac 1); | 
| 36 | by (asm_simp_tac (simpset() addsimps [comp_def]) 1); | |
| 4907 | 37 | qed "False_False_in_steps_atom"; | 
| 38 | ||
| 5118 | 39 | Goal "(start (atom a), [False]) : steps (atom a) w = (w = [a])"; | 
| 4907 | 40 | by (induct_tac "w" 1); | 
| 5132 | 41 | by (asm_simp_tac (simpset() addsimps [start_atom,rtrancl_empty]) 1); | 
| 42 | by (asm_full_simp_tac (simpset() | |
| 4907 | 43 | addsimps [False_False_in_steps_atom,comp_def,start_atom]) 1); | 
| 44 | qed "start_fin_in_steps_atom"; | |
| 45 | ||
| 5118 | 46 | Goal "accepts (atom a) w = (w = [a])"; | 
| 5132 | 47 | by (simp_tac(simpset() addsimps | 
| 4907 | 48 | [accepts_def,start_fin_in_steps_atom,fin_atom]) 1); | 
| 49 | qed "accepts_atom"; | |
| 50 | ||
| 51 | ||
| 52 | (******************************************************) | |
| 53 | (* union *) | |
| 54 | (******************************************************) | |
| 55 | ||
| 56 | (***** True/False ueber fin anheben *****) | |
| 57 | ||
| 5069 | 58 | Goalw [union_def] | 
| 4907 | 59 | "!L R. fin (union L R) (True#p) = fin L p"; | 
| 60 | by (Simp_tac 1); | |
| 61 | qed_spec_mp "fin_union_True"; | |
| 62 | ||
| 5069 | 63 | Goalw [union_def] | 
| 4907 | 64 | "!L R. fin (union L R) (False#p) = fin R p"; | 
| 65 | by (Simp_tac 1); | |
| 66 | qed_spec_mp "fin_union_False"; | |
| 67 | ||
| 68 | AddIffs [fin_union_True,fin_union_False]; | |
| 69 | ||
| 70 | (***** True/False ueber step anheben *****) | |
| 71 | ||
| 5069 | 72 | Goalw [union_def,step_def] | 
| 4907 | 73 | "!L R. (True#p,q) : step (union L R) a = (? r. q = True#r & (p,r) : step L a)"; | 
| 74 | by (Simp_tac 1); | |
| 5132 | 75 | by (Blast_tac 1); | 
| 4907 | 76 | qed_spec_mp "True_in_step_union"; | 
| 77 | ||
| 5069 | 78 | Goalw [union_def,step_def] | 
| 4907 | 79 | "!L R. (False#p,q) : step (union L R) a = (? r. q = False#r & (p,r) : step R a)"; | 
| 80 | by (Simp_tac 1); | |
| 5132 | 81 | by (Blast_tac 1); | 
| 4907 | 82 | qed_spec_mp "False_in_step_union"; | 
| 83 | ||
| 84 | AddIffs [True_in_step_union,False_in_step_union]; | |
| 85 | ||
| 86 | (***** True/False ueber epsclosure anheben *****) | |
| 87 | ||
| 5069 | 88 | Goal | 
| 5118 | 89 | "(tp,tq) : (eps(union L R))^* ==> \ | 
| 4907 | 90 | \ !p. tp = True#p --> (? q. (p,q) : (eps L)^* & tq = True#q)"; | 
| 5132 | 91 | by (etac rtrancl_induct 1); | 
| 92 | by (Blast_tac 1); | |
| 93 | by (Clarify_tac 1); | |
| 94 | by (Asm_full_simp_tac 1); | |
| 95 | by (blast_tac (claset() addIs [rtrancl_into_rtrancl]) 1); | |
| 4907 | 96 | val lemma1a = result(); | 
| 97 | ||
| 5069 | 98 | Goal | 
| 5118 | 99 | "(tp,tq) : (eps(union L R))^* ==> \ | 
| 4907 | 100 | \ !p. tp = False#p --> (? q. (p,q) : (eps R)^* & tq = False#q)"; | 
| 5132 | 101 | by (etac rtrancl_induct 1); | 
| 102 | by (Blast_tac 1); | |
| 103 | by (Clarify_tac 1); | |
| 104 | by (Asm_full_simp_tac 1); | |
| 105 | by (blast_tac (claset() addIs [rtrancl_into_rtrancl]) 1); | |
| 4907 | 106 | val lemma1b = result(); | 
| 107 | ||
| 5069 | 108 | Goal | 
| 5118 | 109 | "(p,q) : (eps L)^* ==> (True#p, True#q) : (eps(union L R))^*"; | 
| 5132 | 110 | by (etac rtrancl_induct 1); | 
| 111 | by (Blast_tac 1); | |
| 112 | by (blast_tac (claset() addIs [rtrancl_into_rtrancl]) 1); | |
| 4907 | 113 | val lemma2a = result(); | 
| 114 | ||
| 5069 | 115 | Goal | 
| 5118 | 116 | "(p,q) : (eps R)^* ==> (False#p, False#q) : (eps(union L R))^*"; | 
| 5132 | 117 | by (etac rtrancl_induct 1); | 
| 118 | by (Blast_tac 1); | |
| 119 | by (blast_tac (claset() addIs [rtrancl_into_rtrancl]) 1); | |
| 4907 | 120 | val lemma2b = result(); | 
| 121 | ||
| 5069 | 122 | Goal | 
| 4907 | 123 | "(True#p,q) : (eps(union L R))^* = (? r. q = True#r & (p,r) : (eps L)^*)"; | 
| 5132 | 124 | by (blast_tac (claset() addDs [lemma1a,lemma2a]) 1); | 
| 4907 | 125 | qed "True_epsclosure_union"; | 
| 126 | ||
| 5069 | 127 | Goal | 
| 4907 | 128 | "(False#p,q) : (eps(union L R))^* = (? r. q = False#r & (p,r) : (eps R)^*)"; | 
| 5132 | 129 | by (blast_tac (claset() addDs [lemma1b,lemma2b]) 1); | 
| 4907 | 130 | qed "False_epsclosure_union"; | 
| 131 | ||
| 132 | AddIffs [True_epsclosure_union,False_epsclosure_union]; | |
| 133 | ||
| 134 | (***** True/False ueber steps anheben *****) | |
| 135 | ||
| 5069 | 136 | Goal | 
| 4907 | 137 | "!p. (True#p,q):steps (union L R) w = (? r. q = True # r & (p,r):steps L w)"; | 
| 138 | by (induct_tac "w" 1); | |
| 5758 
27a2b36efd95
corrected auto_tac (applications of unsafe wrappers)
 oheimb parents: 
5608diff
changeset | 139 | by Auto_tac; | 
| 
27a2b36efd95
corrected auto_tac (applications of unsafe wrappers)
 oheimb parents: 
5608diff
changeset | 140 | by (Force_tac 1); | 
| 4907 | 141 | qed_spec_mp "lift_True_over_steps_union"; | 
| 142 | ||
| 5069 | 143 | Goal | 
| 4907 | 144 | "!p. (False#p,q):steps (union L R) w = (? r. q = False#r & (p,r):steps R w)"; | 
| 145 | by (induct_tac "w" 1); | |
| 5758 
27a2b36efd95
corrected auto_tac (applications of unsafe wrappers)
 oheimb parents: 
5608diff
changeset | 146 | by Auto_tac; | 
| 
27a2b36efd95
corrected auto_tac (applications of unsafe wrappers)
 oheimb parents: 
5608diff
changeset | 147 | by (Force_tac 1); | 
| 4907 | 148 | qed_spec_mp "lift_False_over_steps_union"; | 
| 149 | ||
| 150 | AddIffs [lift_True_over_steps_union,lift_False_over_steps_union]; | |
| 151 | ||
| 152 | ||
| 153 | (***** Epsilonhuelle des Startzustands *****) | |
| 154 | ||
| 5069 | 155 | Goal | 
| 5608 | 156 | "R^* = Id Un (R^* O R)"; | 
| 5132 | 157 | by (rtac set_ext 1); | 
| 158 | by (split_all_tac 1); | |
| 159 | by (rtac iffI 1); | |
| 160 | by (etac rtrancl_induct 1); | |
| 161 | by (Blast_tac 1); | |
| 162 | by (blast_tac (claset() addIs [rtrancl_into_rtrancl]) 1); | |
| 163 | by (blast_tac (claset() addIs [rtrancl_into_rtrancl2]) 1); | |
| 4907 | 164 | qed "unfold_rtrancl2"; | 
| 165 | ||
| 5069 | 166 | Goal | 
| 4907 | 167 | "(p,q) : R^* = (q = p | (? r. (p,r) : R & (r,q) : R^*))"; | 
| 5132 | 168 | by (rtac (unfold_rtrancl2 RS equalityE) 1); | 
| 169 | by (Blast_tac 1); | |
| 4907 | 170 | qed "in_unfold_rtrancl2"; | 
| 171 | ||
| 172 | val epsclosure_start_step_union = | |
| 173 |   read_instantiate [("p","start(union L R)")] in_unfold_rtrancl2;
 | |
| 174 | AddIffs [epsclosure_start_step_union]; | |
| 175 | ||
| 5069 | 176 | Goalw [union_def,step_def] | 
| 4907 | 177 | "!L R. (start(union L R),q) : eps(union L R) = \ | 
| 178 | \ (q = True#start L | q = False#start R)"; | |
| 5132 | 179 | by (Simp_tac 1); | 
| 4907 | 180 | qed_spec_mp "start_eps_union"; | 
| 181 | AddIffs [start_eps_union]; | |
| 182 | ||
| 5069 | 183 | Goalw [union_def,step_def] | 
| 4907 | 184 | "!L R. (start(union L R),q) ~: step (union L R) (Some a)"; | 
| 5132 | 185 | by (Simp_tac 1); | 
| 4907 | 186 | qed_spec_mp "not_start_step_union_Some"; | 
| 187 | AddIffs [not_start_step_union_Some]; | |
| 188 | ||
| 5069 | 189 | Goal | 
| 4907 | 190 | "(start(union L R), q) : steps (union L R) w = \ | 
| 191 | \ ( (w = [] & q = start(union L R)) | \ | |
| 192 | \ (? p. q = True # p & (start L,p) : steps L w | \ | |
| 193 | \ q = False # p & (start R,p) : steps R w) )"; | |
| 8442 
96023903c2df
case_tac now subsumes both boolean and datatype cases;
 wenzelm parents: 
8423diff
changeset | 194 | by (case_tac "w" 1); | 
| 4907 | 195 | by (Asm_simp_tac 1); | 
| 5457 | 196 | by (Blast_tac 1); | 
| 4907 | 197 | by (Asm_simp_tac 1); | 
| 5457 | 198 | by (Blast_tac 1); | 
| 4907 | 199 | qed "steps_union"; | 
| 200 | ||
| 5069 | 201 | Goalw [union_def] | 
| 4907 | 202 | "!L R. ~ fin (union L R) (start(union L R))"; | 
| 5132 | 203 | by (Simp_tac 1); | 
| 4907 | 204 | qed_spec_mp "start_union_not_final"; | 
| 205 | AddIffs [start_union_not_final]; | |
| 206 | ||
| 5069 | 207 | Goalw [accepts_def] | 
| 4907 | 208 | "accepts (union L R) w = (accepts L w | accepts R w)"; | 
| 209 | by (simp_tac (simpset() addsimps [steps_union]) 1); | |
| 5132 | 210 | by Auto_tac; | 
| 4907 | 211 | qed "accepts_union"; | 
| 212 | ||
| 213 | ||
| 214 | (******************************************************) | |
| 215 | (* conc *) | |
| 216 | (******************************************************) | |
| 217 | ||
| 218 | (** True/False in fin **) | |
| 219 | ||
| 5069 | 220 | Goalw [conc_def] | 
| 4907 | 221 | "!L R. fin (conc L R) (True#p) = False"; | 
| 222 | by (Simp_tac 1); | |
| 223 | qed_spec_mp "fin_conc_True"; | |
| 224 | ||
| 5069 | 225 | Goalw [conc_def] | 
| 4907 | 226 | "!L R. fin (conc L R) (False#p) = fin R p"; | 
| 227 | by (Simp_tac 1); | |
| 228 | qed "fin_conc_False"; | |
| 229 | ||
| 230 | AddIffs [fin_conc_True,fin_conc_False]; | |
| 231 | ||
| 232 | (** True/False in step **) | |
| 233 | ||
| 5069 | 234 | Goalw [conc_def,step_def] | 
| 4907 | 235 | "!L R. (True#p,q) : step (conc L R) a = \ | 
| 236 | \ ((? r. q=True#r & (p,r): step L a) | \ | |
| 237 | \ (fin L p & a=None & q=False#start R))"; | |
| 238 | by (Simp_tac 1); | |
| 5132 | 239 | by (Blast_tac 1); | 
| 4907 | 240 | qed_spec_mp "True_step_conc"; | 
| 241 | ||
| 5069 | 242 | Goalw [conc_def,step_def] | 
| 4907 | 243 | "!L R. (False#p,q) : step (conc L R) a = \ | 
| 244 | \ (? r. q = False#r & (p,r) : step R a)"; | |
| 245 | by (Simp_tac 1); | |
| 5132 | 246 | by (Blast_tac 1); | 
| 4907 | 247 | qed_spec_mp "False_step_conc"; | 
| 248 | ||
| 249 | AddIffs [True_step_conc, False_step_conc]; | |
| 250 | ||
| 251 | (** False in epsclosure **) | |
| 252 | ||
| 5069 | 253 | Goal | 
| 5118 | 254 | "(tp,tq) : (eps(conc L R))^* ==> \ | 
| 4907 | 255 | \ !p. tp = False#p --> (? q. (p,q) : (eps R)^* & tq = False#q)"; | 
| 5132 | 256 | by (etac rtrancl_induct 1); | 
| 257 | by (Blast_tac 1); | |
| 258 | by (blast_tac (claset() addIs [rtrancl_into_rtrancl]) 1); | |
| 4907 | 259 | qed "lemma1b"; | 
| 260 | ||
| 5069 | 261 | Goal | 
| 5118 | 262 | "(p,q) : (eps R)^* ==> (False#p, False#q) : (eps(conc L R))^*"; | 
| 5132 | 263 | by (etac rtrancl_induct 1); | 
| 264 | by (Blast_tac 1); | |
| 265 | by (blast_tac (claset() addIs [rtrancl_into_rtrancl]) 1); | |
| 4907 | 266 | val lemma2b = result(); | 
| 267 | ||
| 5069 | 268 | Goal | 
| 4907 | 269 | "((False # p, q) : (eps (conc L R))^*) = \ | 
| 270 | \ (? r. q = False # r & (p, r) : (eps R)^*)"; | |
| 271 | by (rtac iffI 1); | |
| 5132 | 272 | by (blast_tac (claset() addDs [lemma1b]) 1); | 
| 273 | by (blast_tac (claset() addDs [lemma2b]) 1); | |
| 4907 | 274 | qed "False_epsclosure_conc"; | 
| 275 | AddIffs [False_epsclosure_conc]; | |
| 276 | ||
| 277 | (** False in steps **) | |
| 278 | ||
| 5069 | 279 | Goal | 
| 4907 | 280 | "!p. (False#p,q): steps (conc L R) w = (? r. q=False#r & (p,r): steps R w)"; | 
| 281 | by (induct_tac "w" 1); | |
| 282 | by (Simp_tac 1); | |
| 283 | by (Simp_tac 1); | |
| 5457 | 284 | by (Fast_tac 1); (*MUCH faster than Blast_tac*) | 
| 4907 | 285 | qed_spec_mp "False_steps_conc"; | 
| 286 | AddIffs [False_steps_conc]; | |
| 287 | ||
| 288 | (** True in epsclosure **) | |
| 289 | ||
| 5069 | 290 | Goal | 
| 5118 | 291 | "(p,q): (eps L)^* ==> (True#p,True#q) : (eps(conc L R))^*"; | 
| 5132 | 292 | by (etac rtrancl_induct 1); | 
| 293 | by (Blast_tac 1); | |
| 294 | by (blast_tac (claset() addIs [rtrancl_into_rtrancl]) 1); | |
| 4907 | 295 | qed "True_True_eps_concI"; | 
| 296 | ||
| 5069 | 297 | Goal | 
| 5118 | 298 | "!p. (p,q) : steps L w --> (True#p,True#q) : steps (conc L R) w"; | 
| 5132 | 299 | by (induct_tac "w" 1); | 
| 4907 | 300 | by (simp_tac (simpset() addsimps [True_True_eps_concI]) 1); | 
| 301 | by (Simp_tac 1); | |
| 5132 | 302 | by (blast_tac (claset() addIs [True_True_eps_concI]) 1); | 
| 4907 | 303 | qed_spec_mp "True_True_steps_concI"; | 
| 304 | ||
| 5069 | 305 | Goal | 
| 5118 | 306 | "(tp,tq) : (eps(conc L R))^* ==> \ | 
| 4907 | 307 | \ !p. tp = True#p --> \ | 
| 308 | \ (? q. tq = True#q & (p,q) : (eps L)^*) | \ | |
| 309 | \ (? q r. tq = False#q & (p,r):(eps L)^* & fin L r & (start R,q) : (eps R)^*)"; | |
| 5132 | 310 | by (etac rtrancl_induct 1); | 
| 311 | by (Blast_tac 1); | |
| 312 | by (blast_tac (claset() addIs [rtrancl_into_rtrancl]) 1); | |
| 4907 | 313 | val lemma1a = result(); | 
| 314 | ||
| 5069 | 315 | Goal | 
| 5118 | 316 | "(p, q) : (eps L)^* ==> (True#p, True#q) : (eps(conc L R))^*"; | 
| 5132 | 317 | by (etac rtrancl_induct 1); | 
| 318 | by (Blast_tac 1); | |
| 319 | by (blast_tac (claset() addIs [rtrancl_into_rtrancl]) 1); | |
| 4907 | 320 | val lemma2a = result(); | 
| 321 | ||
| 5069 | 322 | Goalw [conc_def,step_def] | 
| 4907 | 323 | "!!L R. (p,q) : step R None ==> (False#p, False#q) : step (conc L R) None"; | 
| 5132 | 324 | by (split_all_tac 1); | 
| 4907 | 325 | by (Asm_full_simp_tac 1); | 
| 326 | val lemma = result(); | |
| 327 | ||
| 5069 | 328 | Goal | 
| 5118 | 329 | "(p,q) : (eps R)^* ==> (False#p, False#q) : (eps(conc L R))^*"; | 
| 5132 | 330 | by (etac rtrancl_induct 1); | 
| 331 | by (Blast_tac 1); | |
| 4907 | 332 | by (dtac lemma 1); | 
| 5132 | 333 | by (blast_tac (claset() addIs [rtrancl_into_rtrancl]) 1); | 
| 4907 | 334 | val lemma2b = result(); | 
| 335 | ||
| 5069 | 336 | Goalw [conc_def,step_def] | 
| 4907 | 337 | "!!L R. fin L p ==> (True#p, False#start R) : eps(conc L R)"; | 
| 5132 | 338 | by (split_all_tac 1); | 
| 339 | by (Asm_full_simp_tac 1); | |
| 4907 | 340 | qed "True_False_eps_concI"; | 
| 341 | ||
| 5069 | 342 | Goal | 
| 4907 | 343 | "((True#p,q) : (eps(conc L R))^*) = \ | 
| 344 | \ ((? r. (p,r) : (eps L)^* & q = True#r) | \ | |
| 345 | \ (? r. (p,r) : (eps L)^* & fin L r & \ | |
| 346 | \ (? s. (start R, s) : (eps R)^* & q = False#s)))"; | |
| 5132 | 347 | by (rtac iffI 1); | 
| 348 | by (blast_tac (claset() addDs [lemma1a]) 1); | |
| 349 | by (etac disjE 1); | |
| 350 | by (blast_tac (claset() addIs [lemma2a]) 1); | |
| 351 | by (Clarify_tac 1); | |
| 352 | by (rtac (rtrancl_trans) 1); | |
| 353 | by (etac lemma2a 1); | |
| 354 | by (rtac (rtrancl_into_rtrancl2) 1); | |
| 355 | by (etac True_False_eps_concI 1); | |
| 356 | by (etac lemma2b 1); | |
| 4907 | 357 | qed "True_epsclosure_conc"; | 
| 358 | AddIffs [True_epsclosure_conc]; | |
| 359 | ||
| 360 | (** True in steps **) | |
| 361 | ||
| 5069 | 362 | Goal | 
| 4907 | 363 | "!p. (True#p,q) : steps (conc L R) w --> \ | 
| 364 | \ ((? r. (p,r) : steps L w & q = True#r) | \ | |
| 365 | \ (? u v. w = u@v & (? r. (p,r) : steps L u & fin L r & \ | |
| 366 | \ (? s. (start R,s) : steps R v & q = False#s))))"; | |
| 5132 | 367 | by (induct_tac "w" 1); | 
| 368 | by (Simp_tac 1); | |
| 369 | by (Simp_tac 1); | |
| 370 | by (clarify_tac (claset() delrules [disjCI]) 1); | |
| 371 | by (etac disjE 1); | |
| 372 | by (clarify_tac (claset() delrules [disjCI]) 1); | |
| 373 | by (etac disjE 1); | |
| 374 | by (clarify_tac (claset() delrules [disjCI]) 1); | |
| 375 | by (etac allE 1 THEN mp_tac 1); | |
| 376 | by (etac disjE 1); | |
| 4907 | 377 | by (Blast_tac 1); | 
| 5132 | 378 | by (rtac disjI2 1); | 
| 4907 | 379 | by (Clarify_tac 1); | 
| 5132 | 380 | by (Simp_tac 1); | 
| 381 |   by (res_inst_tac[("x","a#u")] exI 1);
 | |
| 382 | by (Simp_tac 1); | |
| 4907 | 383 | by (Blast_tac 1); | 
| 384 | by (Blast_tac 1); | |
| 5132 | 385 | by (rtac disjI2 1); | 
| 4907 | 386 | by (Clarify_tac 1); | 
| 5132 | 387 | by (Simp_tac 1); | 
| 388 | by (res_inst_tac[("x","[]")] exI 1);
 | |
| 389 | by (Simp_tac 1); | |
| 4907 | 390 | by (Blast_tac 1); | 
| 391 | qed_spec_mp "True_steps_concD"; | |
| 392 | ||
| 5069 | 393 | Goal | 
| 4907 | 394 | "(True#p,q) : steps (conc L R) w = \ | 
| 395 | \ ((? r. (p,r) : steps L w & q = True#r) | \ | |
| 396 | \ (? u v. w = u@v & (? r. (p,r) : steps L u & fin L r & \ | |
| 397 | \ (? s. (start R,s) : steps R v & q = False#s))))"; | |
| 5132 | 398 | by (blast_tac (claset() addDs [True_steps_concD] | 
| 4907 | 399 | addIs [True_True_steps_concI,in_steps_epsclosure,r_into_rtrancl]) 1); | 
| 400 | qed "True_steps_conc"; | |
| 401 | ||
| 402 | (** starting from the start **) | |
| 403 | ||
| 5069 | 404 | Goalw [conc_def] | 
| 4907 | 405 | "!L R. start(conc L R) = True#start L"; | 
| 5132 | 406 | by (Simp_tac 1); | 
| 4907 | 407 | qed_spec_mp "start_conc"; | 
| 408 | ||
| 5069 | 409 | Goalw [conc_def] | 
| 4907 | 410 | "!L R. fin(conc L R) p = (? s. p = False#s & fin R s)"; | 
| 5184 | 411 | by (simp_tac (simpset() addsplits [list.split]) 1); | 
| 4907 | 412 | qed_spec_mp "final_conc"; | 
| 413 | ||
| 5069 | 414 | Goal | 
| 4907 | 415 | "accepts (conc L R) w = (? u v. w = u@v & accepts L u & accepts R v)"; | 
| 416 | by (simp_tac (simpset() addsimps | |
| 417 | [accepts_def,True_steps_conc,final_conc,start_conc]) 1); | |
| 5132 | 418 | by (Blast_tac 1); | 
| 4907 | 419 | qed "accepts_conc"; | 
| 420 | ||
| 421 | (******************************************************) | |
| 422 | (* star *) | |
| 423 | (******************************************************) | |
| 424 | ||
| 5069 | 425 | Goalw [star_def,step_def] | 
| 4907 | 426 | "!A. (True#p,q) : eps(star A) = \ | 
| 427 | \ ( (? r. q = True#r & (p,r) : eps A) | (fin A p & q = True#start A) )"; | |
| 5132 | 428 | by (Simp_tac 1); | 
| 429 | by (Blast_tac 1); | |
| 4907 | 430 | qed_spec_mp "True_in_eps_star"; | 
| 431 | AddIffs [True_in_eps_star]; | |
| 432 | ||
| 5069 | 433 | Goalw [star_def,step_def] | 
| 4907 | 434 | "!A. (p,q) : step A a --> (True#p, True#q) : step (star A) a"; | 
| 5132 | 435 | by (Simp_tac 1); | 
| 4907 | 436 | qed_spec_mp "True_True_step_starI"; | 
| 437 | ||
| 5069 | 438 | Goal | 
| 5118 | 439 | "(p,r) : (eps A)^* ==> (True#p, True#r) : (eps(star A))^*"; | 
| 5132 | 440 | by (etac rtrancl_induct 1); | 
| 441 | by (Blast_tac 1); | |
| 442 | by (blast_tac (claset() addIs [True_True_step_starI,rtrancl_into_rtrancl]) 1); | |
| 4907 | 443 | qed_spec_mp "True_True_eps_starI"; | 
| 444 | ||
| 5069 | 445 | Goalw [star_def,step_def] | 
| 4907 | 446 | "!A. fin A p --> (True#p,True#start A) : eps(star A)"; | 
| 5132 | 447 | by (Simp_tac 1); | 
| 4907 | 448 | qed_spec_mp "True_start_eps_starI"; | 
| 449 | ||
| 5069 | 450 | Goal | 
| 5118 | 451 | "(tp,s) : (eps(star A))^* ==> (! p. tp = True#p --> \ | 
| 4907 | 452 | \ (? r. ((p,r) : (eps A)^* | \ | 
| 453 | \ (? q. (p,q) : (eps A)^* & fin A q & (start A,r) : (eps A)^*)) & \ | |
| 454 | \ s = True#r))"; | |
| 5132 | 455 | by (etac rtrancl_induct 1); | 
| 456 | by (Simp_tac 1); | |
| 4907 | 457 | by (Clarify_tac 1); | 
| 458 | by (Asm_full_simp_tac 1); | |
| 5132 | 459 | by (blast_tac (claset() addIs [rtrancl_into_rtrancl]) 1); | 
| 4907 | 460 | val lemma = result(); | 
| 461 | ||
| 5069 | 462 | Goal | 
| 4907 | 463 | "((True#p,s) : (eps(star A))^*) = \ | 
| 464 | \ (? r. ((p,r) : (eps A)^* | \ | |
| 465 | \ (? q. (p,q) : (eps A)^* & fin A q & (start A,r) : (eps A)^*)) & \ | |
| 466 | \ s = True#r)"; | |
| 5132 | 467 | by (rtac iffI 1); | 
| 468 | by (dtac lemma 1); | |
| 469 | by (Blast_tac 1); | |
| 4907 | 470 | (* Why can't blast_tac do the rest? *) | 
| 471 | by (Clarify_tac 1); | |
| 5132 | 472 | by (etac disjE 1); | 
| 473 | by (etac True_True_eps_starI 1); | |
| 4907 | 474 | by (Clarify_tac 1); | 
| 5132 | 475 | by (rtac rtrancl_trans 1); | 
| 476 | by (etac True_True_eps_starI 1); | |
| 477 | by (rtac rtrancl_trans 1); | |
| 478 | by (rtac r_into_rtrancl 1); | |
| 479 | by (etac True_start_eps_starI 1); | |
| 480 | by (etac True_True_eps_starI 1); | |
| 4907 | 481 | qed "True_eps_star"; | 
| 482 | AddIffs [True_eps_star]; | |
| 483 | ||
| 484 | (** True in step Some **) | |
| 485 | ||
| 5069 | 486 | Goalw [star_def,step_def] | 
| 4907 | 487 | "!A. (True#p,r): step (star A) (Some a) = \ | 
| 488 | \ (? q. (p,q): step A (Some a) & r=True#q)"; | |
| 5132 | 489 | by (Simp_tac 1); | 
| 490 | by (Blast_tac 1); | |
| 4907 | 491 | qed_spec_mp "True_step_star"; | 
| 492 | AddIffs [True_step_star]; | |
| 493 | ||
| 494 | ||
| 495 | (** True in steps **) | |
| 496 | ||
| 497 | (* reverse list induction! Complicates matters for conc? *) | |
| 5069 | 498 | Goal | 
| 4907 | 499 | "!rr. (True#start A,rr) : steps (star A) w --> \ | 
| 500 | \ (? us v. w = concat us @ v & \ | |
| 501 | \ (!u:set us. accepts A u) & \ | |
| 502 | \ (? r. (start A,r) : steps A v & rr = True#r))"; | |
| 9747 | 503 | by (rev_induct_tac "w" 1); | 
| 4907 | 504 | by (Asm_full_simp_tac 1); | 
| 505 | by (Clarify_tac 1); | |
| 5132 | 506 |  by (res_inst_tac [("x","[]")] exI 1);
 | 
| 507 | by (etac disjE 1); | |
| 4907 | 508 | by (Asm_simp_tac 1); | 
| 509 | by (Clarify_tac 1); | |
| 510 | by (Asm_simp_tac 1); | |
| 5132 | 511 | by (simp_tac (simpset() addsimps [O_assoc,epsclosure_steps]) 1); | 
| 4907 | 512 | by (Clarify_tac 1); | 
| 5132 | 513 | by (etac allE 1 THEN mp_tac 1); | 
| 4907 | 514 | by (Clarify_tac 1); | 
| 5132 | 515 | by (etac disjE 1); | 
| 516 |  by (res_inst_tac [("x","us")] exI 1);
 | |
| 517 |  by (res_inst_tac [("x","v@[x]")] exI 1);
 | |
| 518 | by (asm_simp_tac (simpset() addsimps [O_assoc,epsclosure_steps]) 1); | |
| 519 | by (Blast_tac 1); | |
| 4907 | 520 | by (Clarify_tac 1); | 
| 5132 | 521 | by (res_inst_tac [("x","us@[v@[x]]")] exI 1);
 | 
| 522 | by (res_inst_tac [("x","[]")] exI 1);
 | |
| 523 | by (asm_full_simp_tac (simpset() addsimps [accepts_def]) 1); | |
| 524 | by (Blast_tac 1); | |
| 4907 | 525 | qed_spec_mp "True_start_steps_starD"; | 
| 526 | ||
| 5069 | 527 | Goal "!p. (p,q) : steps A w --> (True#p,True#q) : steps (star A) w"; | 
| 5132 | 528 | by (induct_tac "w" 1); | 
| 529 | by (Simp_tac 1); | |
| 530 | by (Simp_tac 1); | |
| 531 | by (blast_tac (claset() addIs [True_True_eps_starI,True_True_step_starI]) 1); | |
| 4907 | 532 | qed_spec_mp "True_True_steps_starI"; | 
| 533 | ||
| 5069 | 534 | Goalw [accepts_def] | 
| 4907 | 535 | "(!u : set us. accepts A u) --> \ | 
| 536 | \ (True#start A,True#start A) : steps (star A) (concat us)"; | |
| 5132 | 537 | by (induct_tac "us" 1); | 
| 538 | by (Simp_tac 1); | |
| 539 | by (Simp_tac 1); | |
| 540 | by (blast_tac (claset() addIs [True_True_steps_starI,True_start_eps_starI,r_into_rtrancl,in_epsclosure_steps]) 1); | |
| 4907 | 541 | qed_spec_mp "steps_star_cycle"; | 
| 542 | ||
| 543 | (* Better stated directly with start(star A)? Loop in star A back to start(star A)?*) | |
| 5069 | 544 | Goal | 
| 4907 | 545 | "(True#start A,rr) : steps (star A) w = \ | 
| 546 | \ (? us v. w = concat us @ v & \ | |
| 547 | \ (!u:set us. accepts A u) & \ | |
| 548 | \ (? r. (start A,r) : steps A v & rr = True#r))"; | |
| 5132 | 549 | by (rtac iffI 1); | 
| 550 | by (etac True_start_steps_starD 1); | |
| 4907 | 551 | by (Clarify_tac 1); | 
| 5132 | 552 | by (Asm_simp_tac 1); | 
| 553 | by (blast_tac (claset() addIs [True_True_steps_starI,steps_star_cycle]) 1); | |
| 4907 | 554 | qed "True_start_steps_star"; | 
| 555 | ||
| 556 | (** the start state **) | |
| 557 | ||
| 5069 | 558 | Goalw [star_def,step_def] | 
| 4907 | 559 | "!A. (start(star A),r) : step (star A) a = (a=None & r = True#start A)"; | 
| 5132 | 560 | by (Simp_tac 1); | 
| 4907 | 561 | qed_spec_mp "start_step_star"; | 
| 562 | AddIffs [start_step_star]; | |
| 563 | ||
| 564 | val epsclosure_start_step_star = | |
| 565 |   read_instantiate [("p","start(star A)")] in_unfold_rtrancl2;
 | |
| 566 | ||
| 5069 | 567 | Goal | 
| 4907 | 568 | "(start(star A),r) : steps (star A) w = \ | 
| 569 | \ ((w=[] & r= start(star A)) | (True#start A,r) : steps (star A) w)"; | |
| 5132 | 570 | by (rtac iffI 1); | 
| 8442 
96023903c2df
case_tac now subsumes both boolean and datatype cases;
 wenzelm parents: 
8423diff
changeset | 571 | by (case_tac "w" 1); | 
| 5132 | 572 | by (asm_full_simp_tac (simpset() addsimps | 
| 4907 | 573 | [epsclosure_start_step_star]) 1); | 
| 5132 | 574 | by (Asm_full_simp_tac 1); | 
| 4907 | 575 | by (Clarify_tac 1); | 
| 5132 | 576 | by (asm_full_simp_tac (simpset() addsimps | 
| 4907 | 577 | [epsclosure_start_step_star]) 1); | 
| 5132 | 578 | by (Blast_tac 1); | 
| 579 | by (etac disjE 1); | |
| 580 | by (Asm_simp_tac 1); | |
| 581 | by (blast_tac (claset() addIs [in_steps_epsclosure,r_into_rtrancl]) 1); | |
| 4907 | 582 | qed "start_steps_star"; | 
| 583 | ||
| 5069 | 584 | Goalw [star_def] "!A. fin (star A) (True#p) = fin A p"; | 
| 5132 | 585 | by (Simp_tac 1); | 
| 4907 | 586 | qed_spec_mp "fin_star_True"; | 
| 587 | AddIffs [fin_star_True]; | |
| 588 | ||
| 5069 | 589 | Goalw [star_def] "!A. fin (star A) (start(star A))"; | 
| 5132 | 590 | by (Simp_tac 1); | 
| 4907 | 591 | qed_spec_mp "fin_star_start"; | 
| 592 | AddIffs [fin_star_start]; | |
| 593 | ||
| 594 | (* too complex! Simpler if loop back to start(star A)? *) | |
| 5069 | 595 | Goalw [accepts_def] | 
| 4907 | 596 | "accepts (star A) w = \ | 
| 597 | \ (? us. (!u : set(us). accepts A u) & (w = concat us) )"; | |
| 5132 | 598 | by (simp_tac (simpset() addsimps [start_steps_star,True_start_steps_star]) 1); | 
| 599 | by (rtac iffI 1); | |
| 4907 | 600 | by (Clarify_tac 1); | 
| 5132 | 601 | by (etac disjE 1); | 
| 4907 | 602 | by (Clarify_tac 1); | 
| 5132 | 603 | by (Simp_tac 1); | 
| 604 |   by (res_inst_tac [("x","[]")] exI 1);
 | |
| 605 | by (Simp_tac 1); | |
| 4907 | 606 | by (Clarify_tac 1); | 
| 5132 | 607 |  by (res_inst_tac [("x","us@[v]")] exI 1);
 | 
| 608 | by (asm_full_simp_tac (simpset() addsimps [accepts_def]) 1); | |
| 609 | by (Blast_tac 1); | |
| 4907 | 610 | by (Clarify_tac 1); | 
| 5132 | 611 | by (res_inst_tac [("xs","us")] rev_exhaust 1);
 | 
| 612 | by (Asm_simp_tac 1); | |
| 613 | by (Blast_tac 1); | |
| 4907 | 614 | by (Clarify_tac 1); | 
| 5132 | 615 | by (asm_full_simp_tac (simpset() addsimps [accepts_def]) 1); | 
| 616 | by (Blast_tac 1); | |
| 4907 | 617 | qed "accepts_star"; | 
| 618 | ||
| 619 | ||
| 620 | (***** Correctness of r2n *****) | |
| 621 | ||
| 5069 | 622 | Goal | 
| 4907 | 623 | "!w. accepts (rexp2nae r) w = (w : lang r)"; | 
| 5132 | 624 | by (induct_tac "r" 1); | 
| 625 | by (simp_tac (simpset() addsimps [accepts_def]) 1); | |
| 626 | by (simp_tac(simpset() addsimps [accepts_atom]) 1); | |
| 627 | by (asm_simp_tac (simpset() addsimps [accepts_union]) 1); | |
| 628 | by (asm_simp_tac (simpset() addsimps [accepts_conc,RegSet.conc_def]) 1); | |
| 629 | by (asm_simp_tac (simpset() addsimps [accepts_star,in_star]) 1); | |
| 4907 | 630 | qed "accepts_rexp2nae"; |