| author | wenzelm | 
| Thu, 04 Jan 2007 19:27:08 +0100 | |
| changeset 22002 | 5c60e46a07c1 | 
| parent 16417 | 9bc16273c2d4 | 
| child 27678 | 85ea2be46c71 | 
| permissions | -rw-r--r-- | 
| 12787 | 1 | (* Title: ZF/AC/AC7_AC9.thy | 
| 2 | ID: $Id$ | |
| 3 | Author: Krzysztof Grabczewski | |
| 4 | ||
| 5 | The proofs needed to state that AC7, AC8 and AC9 are equivalent to the previous | |
| 6 | instances of AC. | |
| 7 | *) | |
| 8 | ||
| 16417 | 9 | theory AC7_AC9 imports AC_Equiv begin | 
| 12787 | 10 | |
| 11 | (* ********************************************************************** *) | |
| 12 | (* Lemmas used in the proofs AC7 ==> AC6 and AC9 ==> AC1 *) | |
| 13 | (* - Sigma_fun_space_not0 *) | |
| 14 | (* - Sigma_fun_space_eqpoll *) | |
| 15 | (* ********************************************************************** *) | |
| 16 | ||
| 17 | lemma Sigma_fun_space_not0: "[| 0\<notin>A; B \<in> A |] ==> (nat->Union(A)) * B \<noteq> 0" | |
| 18 | by (blast dest!: Sigma_empty_iff [THEN iffD1] Union_empty_iff [THEN iffD1]) | |
| 19 | ||
| 20 | lemma inj_lemma: | |
| 21 | "C \<in> A ==> (\<lambda>g \<in> (nat->Union(A))*C. | |
| 22 | (\<lambda>n \<in> nat. if(n=0, snd(g), fst(g)`(n #- 1)))) | |
| 23 | \<in> inj((nat->Union(A))*C, (nat->Union(A)) ) " | |
| 24 | apply (unfold inj_def) | |
| 25 | apply (rule CollectI) | |
| 26 | apply (fast intro!: lam_type if_type apply_type fst_type snd_type, auto) | |
| 27 | apply (rule fun_extension, assumption+) | |
| 28 | apply (drule lam_eqE [OF _ nat_succI], assumption, simp) | |
| 29 | apply (drule lam_eqE [OF _ nat_0I], simp) | |
| 30 | done | |
| 31 | ||
| 32 | lemma Sigma_fun_space_eqpoll: | |
| 33 | "[| C \<in> A; 0\<notin>A |] ==> (nat->Union(A)) * C \<approx> (nat->Union(A))" | |
| 34 | apply (rule eqpollI) | |
| 35 | apply (simp add: lepoll_def) | |
| 36 | apply (fast intro!: inj_lemma) | |
| 37 | apply (fast elim!: prod_lepoll_self not_sym [THEN not_emptyE] subst_elem | |
| 38 | elim: swap) | |
| 39 | done | |
| 40 | ||
| 41 | ||
| 42 | (* ********************************************************************** *) | |
| 43 | (* AC6 ==> AC7 *) | |
| 44 | (* ********************************************************************** *) | |
| 45 | ||
| 46 | lemma AC6_AC7: "AC6 ==> AC7" | |
| 47 | by (unfold AC6_def AC7_def, blast) | |
| 48 | ||
| 49 | (* ********************************************************************** *) | |
| 50 | (* AC7 ==> AC6, Rubin & Rubin p. 12, Theorem 2.8 *) | |
| 51 | (* The case of the empty family of sets added in order to complete *) | |
| 52 | (* the proof. *) | |
| 53 | (* ********************************************************************** *) | |
| 54 | ||
| 14171 
0cab06e3bbd0
Extended the notion of letter and digit, such that now one may use greek,
 skalberg parents: 
12787diff
changeset | 55 | lemma lemma1_1: "y \<in> (\<Pi> B \<in> A. Y*B) ==> (\<lambda>B \<in> A. snd(y`B)) \<in> (\<Pi> B \<in> A. B)" | 
| 12787 | 56 | by (fast intro!: lam_type snd_type apply_type) | 
| 57 | ||
| 58 | lemma lemma1_2: | |
| 14171 
0cab06e3bbd0
Extended the notion of letter and digit, such that now one may use greek,
 skalberg parents: 
12787diff
changeset | 59 |      "y \<in> (\<Pi> B \<in> {Y*C. C \<in> A}. B) ==> (\<lambda>B \<in> A. y`(Y*B)) \<in> (\<Pi> B \<in> A. Y*B)"
 | 
| 12787 | 60 | apply (fast intro!: lam_type apply_type) | 
| 61 | done | |
| 62 | ||
| 63 | lemma AC7_AC6_lemma1: | |
| 14171 
0cab06e3bbd0
Extended the notion of letter and digit, such that now one may use greek,
 skalberg parents: 
12787diff
changeset | 64 |      "(\<Pi> B \<in> {(nat->Union(A))*C. C \<in> A}. B) \<noteq> 0 ==> (\<Pi> B \<in> A. B) \<noteq> 0"
 | 
| 12787 | 65 | by (fast intro!: equals0I lemma1_1 lemma1_2) | 
| 66 | ||
| 67 | lemma AC7_AC6_lemma2: "0 \<notin> A ==> 0 \<notin> {(nat -> Union(A)) * C. C \<in> A}"
 | |
| 68 | by (blast dest: Sigma_fun_space_not0) | |
| 69 | ||
| 70 | lemma AC7_AC6: "AC7 ==> AC6" | |
| 71 | apply (unfold AC6_def AC7_def) | |
| 72 | apply (rule allI) | |
| 73 | apply (rule impI) | |
| 74 | apply (case_tac "A=0", simp) | |
| 75 | apply (rule AC7_AC6_lemma1) | |
| 76 | apply (erule allE) | |
| 77 | apply (blast del: notI | |
| 78 | intro!: AC7_AC6_lemma2 intro: eqpoll_sym eqpoll_trans | |
| 79 | Sigma_fun_space_eqpoll) | |
| 80 | done | |
| 81 | ||
| 82 | ||
| 83 | (* ********************************************************************** *) | |
| 84 | (* AC1 ==> AC8 *) | |
| 85 | (* ********************************************************************** *) | |
| 86 | ||
| 87 | lemma AC1_AC8_lemma1: | |
| 88 | "\<forall>B \<in> A. \<exists>B1 B2. B=<B1,B2> & B1 \<approx> B2 | |
| 89 |         ==> 0 \<notin> { bij(fst(B),snd(B)). B \<in> A }"
 | |
| 90 | apply (unfold eqpoll_def, auto) | |
| 91 | done | |
| 92 | ||
| 93 | lemma AC1_AC8_lemma2: | |
| 14171 
0cab06e3bbd0
Extended the notion of letter and digit, such that now one may use greek,
 skalberg parents: 
12787diff
changeset | 94 | "[| f \<in> (\<Pi> X \<in> RepFun(A,p). X); D \<in> A |] ==> (\<lambda>x \<in> A. f`p(x))`D \<in> p(D)" | 
| 12787 | 95 | apply (simp, fast elim!: apply_type) | 
| 96 | done | |
| 97 | ||
| 98 | lemma AC1_AC8: "AC1 ==> AC8" | |
| 99 | apply (unfold AC1_def AC8_def) | |
| 100 | apply (fast dest: AC1_AC8_lemma1 AC1_AC8_lemma2) | |
| 101 | done | |
| 102 | ||
| 103 | ||
| 104 | (* ********************************************************************** *) | |
| 105 | (* AC8 ==> AC9 *) | |
| 106 | (* - this proof replaces the following two from Rubin & Rubin: *) | |
| 107 | (* AC8 ==> AC1 and AC1 ==> AC9 *) | |
| 108 | (* ********************************************************************** *) | |
| 109 | ||
| 110 | lemma AC8_AC9_lemma: | |
| 111 | "\<forall>B1 \<in> A. \<forall>B2 \<in> A. B1 \<approx> B2 | |
| 112 | ==> \<forall>B \<in> A*A. \<exists>B1 B2. B=<B1,B2> & B1 \<approx> B2" | |
| 113 | by fast | |
| 114 | ||
| 115 | lemma AC8_AC9: "AC8 ==> AC9" | |
| 116 | apply (unfold AC8_def AC9_def) | |
| 117 | apply (intro allI impI) | |
| 118 | apply (erule allE) | |
| 119 | apply (erule impE, erule AC8_AC9_lemma, force) | |
| 120 | done | |
| 121 | ||
| 122 | ||
| 123 | (* ********************************************************************** *) | |
| 124 | (* AC9 ==> AC1 *) | |
| 125 | (* The idea of this proof comes from "Equivalents of the Axiom of Choice" *) | |
| 126 | (* by Rubin & Rubin. But (x * y) is not necessarily equipollent to *) | |
| 127 | (* (x * y) Un {0} when y is a set of total functions acting from nat to   *)
 | |
| 128 | (* Union(A) -- therefore we have used the set (y * nat) instead of y. *) | |
| 129 | (* ********************************************************************** *) | |
| 130 | ||
| 131 | lemma snd_lepoll_SigmaI: "b \<in> B \<Longrightarrow> X \<lesssim> B \<times> X" | |
| 132 | by (blast intro: lepoll_trans prod_lepoll_self eqpoll_imp_lepoll | |
| 133 | prod_commute_eqpoll) | |
| 134 | ||
| 135 | lemma nat_lepoll_lemma: | |
| 136 | "[|0 \<notin> A; B \<in> A|] ==> nat \<lesssim> ((nat \<rightarrow> Union(A)) \<times> B) \<times> nat" | |
| 137 | by (blast dest: Sigma_fun_space_not0 intro: snd_lepoll_SigmaI) | |
| 138 | ||
| 139 | lemma AC9_AC1_lemma1: | |
| 140 | "[| 0\<notin>A; A\<noteq>0; | |
| 141 |          C = {((nat->Union(A))*B)*nat. B \<in> A}  Un  
 | |
| 142 |              {cons(0,((nat->Union(A))*B)*nat). B \<in> A};  
 | |
| 143 | B1 \<in> C; B2 \<in> C |] | |
| 144 | ==> B1 \<approx> B2" | |
| 145 | by (blast intro!: nat_lepoll_lemma Sigma_fun_space_eqpoll | |
| 146 | nat_cons_eqpoll [THEN eqpoll_trans] | |
| 147 | prod_eqpoll_cong [OF _ eqpoll_refl] | |
| 148 | intro: eqpoll_trans eqpoll_sym ) | |
| 149 | ||
| 150 | lemma AC9_AC1_lemma2: | |
| 151 |      "\<forall>B1 \<in> {(F*B)*N. B \<in> A} Un {cons(0,(F*B)*N). B \<in> A}.   
 | |
| 152 |       \<forall>B2 \<in> {(F*B)*N. B \<in> A} Un {cons(0,(F*B)*N). B \<in> A}.   
 | |
| 153 | f`<B1,B2> \<in> bij(B1, B2) | |
| 14171 
0cab06e3bbd0
Extended the notion of letter and digit, such that now one may use greek,
 skalberg parents: 
12787diff
changeset | 154 | ==> (\<lambda>B \<in> A. snd(fst((f`<cons(0,(F*B)*N),(F*B)*N>)`0))) \<in> (\<Pi> X \<in> A. X)" | 
| 12787 | 155 | apply (intro lam_type snd_type fst_type) | 
| 156 | apply (rule apply_type [OF _ consI1]) | |
| 157 | apply (fast intro!: fun_weaken_type bij_is_fun) | |
| 158 | done | |
| 159 | ||
| 160 | lemma AC9_AC1: "AC9 ==> AC1" | |
| 161 | apply (unfold AC1_def AC9_def) | |
| 162 | apply (intro allI impI) | |
| 163 | apply (erule allE) | |
| 164 | apply (case_tac "A~=0") | |
| 165 | apply (blast dest: AC9_AC1_lemma1 AC9_AC1_lemma2, force) | |
| 166 | done | |
| 167 | ||
| 168 | end |