| author | wenzelm | 
| Thu, 04 Jan 2007 19:27:08 +0100 | |
| changeset 22002 | 5c60e46a07c1 | 
| parent 16417 | 9bc16273c2d4 | 
| child 24893 | b8ef7afe3a6b | 
| permissions | -rw-r--r-- | 
| 1478 | 1 | (* Title: ZF/Finite.thy | 
| 516 | 2 | ID: $Id$ | 
| 1478 | 3 | Author: Lawrence C Paulson, Cambridge University Computer Laboratory | 
| 516 | 4 | Copyright 1994 University of Cambridge | 
| 5 | ||
| 13194 | 6 | prove: b: Fin(A) ==> inj(b,b) <= surj(b,b) | 
| 516 | 7 | *) | 
| 8 | ||
| 13328 | 9 | header{*Finite Powerset Operator and Finite Function Space*}
 | 
| 10 | ||
| 16417 | 11 | theory Finite imports Inductive Epsilon Nat begin | 
| 9491 
1a36151ee2fc
natify, a coercion to reduce the number of type constraints in arithmetic
 paulson parents: 
6053diff
changeset | 12 | |
| 
1a36151ee2fc
natify, a coercion to reduce the number of type constraints in arithmetic
 paulson parents: 
6053diff
changeset | 13 | (*The natural numbers as a datatype*) | 
| 13194 | 14 | rep_datatype | 
| 15 | elimination natE | |
| 16 | induction nat_induct | |
| 17 | case_eqns nat_case_0 nat_case_succ | |
| 18 | recursor_eqns recursor_0 recursor_succ | |
| 9491 
1a36151ee2fc
natify, a coercion to reduce the number of type constraints in arithmetic
 paulson parents: 
6053diff
changeset | 19 | |
| 
1a36151ee2fc
natify, a coercion to reduce the number of type constraints in arithmetic
 paulson parents: 
6053diff
changeset | 20 | |
| 534 | 21 | consts | 
| 13194 | 22 | Fin :: "i=>i" | 
| 23 |   FiniteFun :: "[i,i]=>i"         ("(_ -||>/ _)" [61, 60] 60)
 | |
| 534 | 24 | |
| 516 | 25 | inductive | 
| 26 | domains "Fin(A)" <= "Pow(A)" | |
| 13194 | 27 | intros | 
| 28 | emptyI: "0 : Fin(A)" | |
| 29 | consI: "[| a: A; b: Fin(A) |] ==> cons(a,b) : Fin(A)" | |
| 30 | type_intros empty_subsetI cons_subsetI PowI | |
| 31 | type_elims PowD [THEN revcut_rl] | |
| 534 | 32 | |
| 33 | inductive | |
| 34 | domains "FiniteFun(A,B)" <= "Fin(A*B)" | |
| 13194 | 35 | intros | 
| 36 | emptyI: "0 : A -||> B" | |
| 37 | consI: "[| a: A; b: B; h: A -||> B; a ~: domain(h) |] | |
| 38 | ==> cons(<a,b>,h) : A -||> B" | |
| 39 | type_intros Fin.intros | |
| 40 | ||
| 41 | ||
| 13356 | 42 | subsection {* Finite Powerset Operator *}
 | 
| 13194 | 43 | |
| 44 | lemma Fin_mono: "A<=B ==> Fin(A) <= Fin(B)" | |
| 45 | apply (unfold Fin.defs) | |
| 46 | apply (rule lfp_mono) | |
| 47 | apply (rule Fin.bnd_mono)+ | |
| 48 | apply blast | |
| 49 | done | |
| 50 | ||
| 51 | (* A : Fin(B) ==> A <= B *) | |
| 52 | lemmas FinD = Fin.dom_subset [THEN subsetD, THEN PowD, standard] | |
| 53 | ||
| 54 | (** Induction on finite sets **) | |
| 55 | ||
| 56 | (*Discharging x~:y entails extra work*) | |
| 13524 | 57 | lemma Fin_induct [case_names 0 cons, induct set: Fin]: | 
| 13194 | 58 | "[| b: Fin(A); | 
| 59 | P(0); | |
| 60 | !!x y. [| x: A; y: Fin(A); x~:y; P(y) |] ==> P(cons(x,y)) | |
| 61 | |] ==> P(b)" | |
| 62 | apply (erule Fin.induct, simp) | |
| 63 | apply (case_tac "a:b") | |
| 64 | apply (erule cons_absorb [THEN ssubst], assumption) (*backtracking!*) | |
| 65 | apply simp | |
| 66 | done | |
| 67 | ||
| 13203 
fac77a839aa2
Tidying up.  Mainly moving proofs from Main.thy to other (Isar) theory files.
 paulson parents: 
13194diff
changeset | 68 | |
| 13194 | 69 | (** Simplification for Fin **) | 
| 70 | declare Fin.intros [simp] | |
| 71 | ||
| 13203 
fac77a839aa2
Tidying up.  Mainly moving proofs from Main.thy to other (Isar) theory files.
 paulson parents: 
13194diff
changeset | 72 | lemma Fin_0: "Fin(0) = {0}"
 | 
| 
fac77a839aa2
Tidying up.  Mainly moving proofs from Main.thy to other (Isar) theory files.
 paulson parents: 
13194diff
changeset | 73 | by (blast intro: Fin.emptyI dest: FinD) | 
| 
fac77a839aa2
Tidying up.  Mainly moving proofs from Main.thy to other (Isar) theory files.
 paulson parents: 
13194diff
changeset | 74 | |
| 13194 | 75 | (*The union of two finite sets is finite.*) | 
| 13203 
fac77a839aa2
Tidying up.  Mainly moving proofs from Main.thy to other (Isar) theory files.
 paulson parents: 
13194diff
changeset | 76 | lemma Fin_UnI [simp]: "[| b: Fin(A); c: Fin(A) |] ==> b Un c : Fin(A)" | 
| 13194 | 77 | apply (erule Fin_induct) | 
| 78 | apply (simp_all add: Un_cons) | |
| 79 | done | |
| 80 | ||
| 81 | ||
| 82 | (*The union of a set of finite sets is finite.*) | |
| 83 | lemma Fin_UnionI: "C : Fin(Fin(A)) ==> Union(C) : Fin(A)" | |
| 84 | by (erule Fin_induct, simp_all) | |
| 85 | ||
| 86 | (*Every subset of a finite set is finite.*) | |
| 87 | lemma Fin_subset_lemma [rule_format]: "b: Fin(A) ==> \<forall>z. z<=b --> z: Fin(A)" | |
| 88 | apply (erule Fin_induct) | |
| 89 | apply (simp add: subset_empty_iff) | |
| 90 | apply (simp add: subset_cons_iff distrib_simps, safe) | |
| 13784 | 91 | apply (erule_tac b = z in cons_Diff [THEN subst], simp) | 
| 13194 | 92 | done | 
| 93 | ||
| 94 | lemma Fin_subset: "[| c<=b; b: Fin(A) |] ==> c: Fin(A)" | |
| 95 | by (blast intro: Fin_subset_lemma) | |
| 96 | ||
| 97 | lemma Fin_IntI1 [intro,simp]: "b: Fin(A) ==> b Int c : Fin(A)" | |
| 98 | by (blast intro: Fin_subset) | |
| 99 | ||
| 100 | lemma Fin_IntI2 [intro,simp]: "c: Fin(A) ==> b Int c : Fin(A)" | |
| 101 | by (blast intro: Fin_subset) | |
| 102 | ||
| 103 | lemma Fin_0_induct_lemma [rule_format]: | |
| 104 | "[| c: Fin(A); b: Fin(A); P(b); | |
| 105 |         !!x y. [| x: A;  y: Fin(A);  x:y;  P(y) |] ==> P(y-{x})
 | |
| 106 | |] ==> c<=b --> P(b-c)" | |
| 107 | apply (erule Fin_induct, simp) | |
| 108 | apply (subst Diff_cons) | |
| 109 | apply (simp add: cons_subset_iff Diff_subset [THEN Fin_subset]) | |
| 110 | done | |
| 111 | ||
| 112 | lemma Fin_0_induct: | |
| 113 | "[| b: Fin(A); | |
| 114 | P(b); | |
| 115 |         !!x y. [| x: A;  y: Fin(A);  x:y;  P(y) |] ==> P(y-{x})
 | |
| 116 | |] ==> P(0)" | |
| 117 | apply (rule Diff_cancel [THEN subst]) | |
| 118 | apply (blast intro: Fin_0_induct_lemma) | |
| 119 | done | |
| 120 | ||
| 121 | (*Functions from a finite ordinal*) | |
| 122 | lemma nat_fun_subset_Fin: "n: nat ==> n->A <= Fin(nat*A)" | |
| 123 | apply (induct_tac "n") | |
| 124 | apply (simp add: subset_iff) | |
| 125 | apply (simp add: succ_def mem_not_refl [THEN cons_fun_eq]) | |
| 126 | apply (fast intro!: Fin.consI) | |
| 127 | done | |
| 128 | ||
| 129 | ||
| 13356 | 130 | subsection{*Finite Function Space*}
 | 
| 13194 | 131 | |
| 132 | lemma FiniteFun_mono: | |
| 133 | "[| A<=C; B<=D |] ==> A -||> B <= C -||> D" | |
| 134 | apply (unfold FiniteFun.defs) | |
| 135 | apply (rule lfp_mono) | |
| 136 | apply (rule FiniteFun.bnd_mono)+ | |
| 137 | apply (intro Fin_mono Sigma_mono basic_monos, assumption+) | |
| 138 | done | |
| 139 | ||
| 140 | lemma FiniteFun_mono1: "A<=B ==> A -||> A <= B -||> B" | |
| 141 | by (blast dest: FiniteFun_mono) | |
| 142 | ||
| 143 | lemma FiniteFun_is_fun: "h: A -||>B ==> h: domain(h) -> B" | |
| 144 | apply (erule FiniteFun.induct, simp) | |
| 145 | apply (simp add: fun_extend3) | |
| 146 | done | |
| 147 | ||
| 148 | lemma FiniteFun_domain_Fin: "h: A -||>B ==> domain(h) : Fin(A)" | |
| 13269 | 149 | by (erule FiniteFun.induct, simp, simp) | 
| 13194 | 150 | |
| 151 | lemmas FiniteFun_apply_type = FiniteFun_is_fun [THEN apply_type, standard] | |
| 152 | ||
| 153 | (*Every subset of a finite function is a finite function.*) | |
| 154 | lemma FiniteFun_subset_lemma [rule_format]: | |
| 155 | "b: A-||>B ==> ALL z. z<=b --> z: A-||>B" | |
| 156 | apply (erule FiniteFun.induct) | |
| 157 | apply (simp add: subset_empty_iff FiniteFun.intros) | |
| 158 | apply (simp add: subset_cons_iff distrib_simps, safe) | |
| 13784 | 159 | apply (erule_tac b = z in cons_Diff [THEN subst]) | 
| 13194 | 160 | apply (drule spec [THEN mp], assumption) | 
| 161 | apply (fast intro!: FiniteFun.intros) | |
| 162 | done | |
| 163 | ||
| 164 | lemma FiniteFun_subset: "[| c<=b; b: A-||>B |] ==> c: A-||>B" | |
| 165 | by (blast intro: FiniteFun_subset_lemma) | |
| 166 | ||
| 167 | (** Some further results by Sidi O. Ehmety **) | |
| 168 | ||
| 169 | lemma fun_FiniteFunI [rule_format]: "A:Fin(X) ==> ALL f. f:A->B --> f:A-||>B" | |
| 170 | apply (erule Fin.induct) | |
| 13269 | 171 | apply (simp add: FiniteFun.intros, clarify) | 
| 13194 | 172 | apply (case_tac "a:b") | 
| 173 | apply (simp add: cons_absorb) | |
| 174 | apply (subgoal_tac "restrict (f,b) : b -||> B") | |
| 175 | prefer 2 apply (blast intro: restrict_type2) | |
| 176 | apply (subst fun_cons_restrict_eq, assumption) | |
| 177 | apply (simp add: restrict_def lam_def) | |
| 178 | apply (blast intro: apply_funtype FiniteFun.intros | |
| 179 | FiniteFun_mono [THEN [2] rev_subsetD]) | |
| 180 | done | |
| 181 | ||
| 182 | lemma lam_FiniteFun: "A: Fin(X) ==> (lam x:A. b(x)) : A -||> {b(x). x:A}"
 | |
| 183 | by (blast intro: fun_FiniteFunI lam_funtype) | |
| 184 | ||
| 185 | lemma FiniteFun_Collect_iff: | |
| 186 |      "f : FiniteFun(A, {y:B. P(y)})
 | |
| 187 | <-> f : FiniteFun(A,B) & (ALL x:domain(f). P(f`x))" | |
| 188 | apply auto | |
| 189 | apply (blast intro: FiniteFun_mono [THEN [2] rev_subsetD]) | |
| 190 | apply (blast dest: Pair_mem_PiD FiniteFun_is_fun) | |
| 191 | apply (rule_tac A1="domain(f)" in | |
| 192 | subset_refl [THEN [2] FiniteFun_mono, THEN subsetD]) | |
| 193 | apply (fast dest: FiniteFun_domain_Fin Fin.dom_subset [THEN subsetD]) | |
| 194 | apply (rule fun_FiniteFunI) | |
| 195 | apply (erule FiniteFun_domain_Fin) | |
| 196 | apply (rule_tac B = "range (f) " in fun_weaken_type) | |
| 197 | apply (blast dest: FiniteFun_is_fun range_of_fun range_type apply_equality)+ | |
| 198 | done | |
| 199 | ||
| 14883 | 200 | |
| 201 | subsection{*The Contents of a Singleton Set*}
 | |
| 202 | ||
| 203 | constdefs | |
| 204 | contents :: "i=>i" | |
| 205 |    "contents(X) == THE x. X = {x}"
 | |
| 206 | ||
| 207 | lemma contents_eq [simp]: "contents ({x}) = x"
 | |
| 208 | by (simp add: contents_def) | |
| 209 | ||
| 210 | ||
| 13194 | 211 | ML | 
| 212 | {*
 | |
| 213 | val Fin_intros = thms "Fin.intros"; | |
| 214 | ||
| 215 | val Fin_mono = thm "Fin_mono"; | |
| 216 | val FinD = thm "FinD"; | |
| 217 | val Fin_induct = thm "Fin_induct"; | |
| 218 | val Fin_UnI = thm "Fin_UnI"; | |
| 219 | val Fin_UnionI = thm "Fin_UnionI"; | |
| 220 | val Fin_subset = thm "Fin_subset"; | |
| 221 | val Fin_IntI1 = thm "Fin_IntI1"; | |
| 222 | val Fin_IntI2 = thm "Fin_IntI2"; | |
| 223 | val Fin_0_induct = thm "Fin_0_induct"; | |
| 224 | val nat_fun_subset_Fin = thm "nat_fun_subset_Fin"; | |
| 225 | val FiniteFun_mono = thm "FiniteFun_mono"; | |
| 226 | val FiniteFun_mono1 = thm "FiniteFun_mono1"; | |
| 227 | val FiniteFun_is_fun = thm "FiniteFun_is_fun"; | |
| 228 | val FiniteFun_domain_Fin = thm "FiniteFun_domain_Fin"; | |
| 229 | val FiniteFun_apply_type = thm "FiniteFun_apply_type"; | |
| 230 | val FiniteFun_subset = thm "FiniteFun_subset"; | |
| 231 | val fun_FiniteFunI = thm "fun_FiniteFunI"; | |
| 232 | val lam_FiniteFun = thm "lam_FiniteFun"; | |
| 233 | val FiniteFun_Collect_iff = thm "FiniteFun_Collect_iff"; | |
| 234 | *} | |
| 235 | ||
| 516 | 236 | end |