| author | wenzelm | 
| Fri, 16 Mar 2012 18:20:12 +0100 | |
| changeset 46961 | 5c6955f487e5 | 
| parent 46822 | 95f1e700b712 | 
| child 58871 | c399ae4b836f | 
| permissions | -rw-r--r-- | 
| 12173 | 1  | 
(* Title: ZF/Induct/Mutil.thy  | 
| 12088 | 2  | 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory  | 
3  | 
Copyright 1996 University of Cambridge  | 
|
4  | 
*)  | 
|
5  | 
||
| 12173 | 6  | 
header {* The Mutilated Chess Board Problem, formalized inductively *}
 | 
7  | 
||
| 16417 | 8  | 
theory Mutil imports Main begin  | 
| 12173 | 9  | 
|
10  | 
text {*
 | 
|
11  | 
Originator is Max Black, according to J A Robinson. Popularized as  | 
|
12  | 
the Mutilated Checkerboard Problem by J McCarthy.  | 
|
13  | 
*}  | 
|
14  | 
||
| 12088 | 15  | 
consts  | 
| 12173 | 16  | 
domino :: i  | 
17  | 
tiling :: "i => i"  | 
|
18  | 
||
19  | 
inductive  | 
|
20  | 
domains "domino" \<subseteq> "Pow(nat \<times> nat)"  | 
|
21  | 
intros  | 
|
22  | 
    horiz: "[| i \<in> nat;  j \<in> nat |] ==> {<i,j>, <i,succ(j)>} \<in> domino"
 | 
|
23  | 
    vertl: "[| i \<in> nat;  j \<in> nat |] ==> {<i,j>, <succ(i),j>} \<in> domino"
 | 
|
24  | 
type_intros empty_subsetI cons_subsetI PowI SigmaI nat_succI  | 
|
| 12088 | 25  | 
|
26  | 
inductive  | 
|
| 
46822
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
35762 
diff
changeset
 | 
27  | 
domains "tiling(A)" \<subseteq> "Pow(\<Union>(A))"  | 
| 12173 | 28  | 
intros  | 
29  | 
empty: "0 \<in> tiling(A)"  | 
|
| 
46822
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
35762 
diff
changeset
 | 
30  | 
Un: "[| a \<in> A; t \<in> tiling(A); a \<inter> t = 0 |] ==> a \<union> t \<in> tiling(A)"  | 
| 12173 | 31  | 
type_intros empty_subsetI Union_upper Un_least PowI  | 
32  | 
type_elims PowD [elim_format]  | 
|
33  | 
||
| 24893 | 34  | 
definition  | 
35  | 
evnodd :: "[i, i] => i" where  | 
|
| 12173 | 36  | 
  "evnodd(A,b) == {z \<in> A. \<exists>i j. z = <i,j> \<and> (i #+ j) mod 2 = b}"
 | 
37  | 
||
38  | 
||
| 12185 | 39  | 
subsection {* Basic properties of evnodd *}
 | 
| 12173 | 40  | 
|
| 
46822
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
35762 
diff
changeset
 | 
41  | 
lemma evnodd_iff: "<i,j>: evnodd(A,b) \<longleftrightarrow> <i,j>: A & (i#+j) mod 2 = b"  | 
| 12173 | 42  | 
by (unfold evnodd_def) blast  | 
43  | 
||
44  | 
lemma evnodd_subset: "evnodd(A, b) \<subseteq> A"  | 
|
45  | 
by (unfold evnodd_def) blast  | 
|
46  | 
||
47  | 
lemma Finite_evnodd: "Finite(X) ==> Finite(evnodd(X,b))"  | 
|
48  | 
by (rule lepoll_Finite, rule subset_imp_lepoll, rule evnodd_subset)  | 
|
49  | 
||
| 
46822
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
35762 
diff
changeset
 | 
50  | 
lemma evnodd_Un: "evnodd(A \<union> B, b) = evnodd(A,b) \<union> evnodd(B,b)"  | 
| 12173 | 51  | 
by (simp add: evnodd_def Collect_Un)  | 
52  | 
||
53  | 
lemma evnodd_Diff: "evnodd(A - B, b) = evnodd(A,b) - evnodd(B,b)"  | 
|
54  | 
by (simp add: evnodd_def Collect_Diff)  | 
|
55  | 
||
56  | 
lemma evnodd_cons [simp]:  | 
|
57  | 
"evnodd(cons(<i,j>,C), b) =  | 
|
58  | 
(if (i#+j) mod 2 = b then cons(<i,j>, evnodd(C,b)) else evnodd(C,b))"  | 
|
59  | 
by (simp add: evnodd_def Collect_cons)  | 
|
60  | 
||
61  | 
lemma evnodd_0 [simp]: "evnodd(0, b) = 0"  | 
|
62  | 
by (simp add: evnodd_def)  | 
|
63  | 
||
64  | 
||
| 12185 | 65  | 
subsection {* Dominoes *}
 | 
| 12173 | 66  | 
|
67  | 
lemma domino_Finite: "d \<in> domino ==> Finite(d)"  | 
|
68  | 
by (blast intro!: Finite_cons Finite_0 elim: domino.cases)  | 
|
69  | 
||
| 12185 | 70  | 
lemma domino_singleton:  | 
71  | 
    "[| d \<in> domino; b<2 |] ==> \<exists>i' j'. evnodd(d,b) = {<i',j'>}"
 | 
|
| 12173 | 72  | 
apply (erule domino.cases)  | 
73  | 
apply (rule_tac [2] k1 = "i#+j" in mod2_cases [THEN disjE])  | 
|
74  | 
apply (rule_tac k1 = "i#+j" in mod2_cases [THEN disjE])  | 
|
75  | 
apply (rule add_type | assumption)+  | 
|
76  | 
(*Four similar cases: case (i#+j) mod 2 = b, 2#-b, ...*)  | 
|
77  | 
apply (auto simp add: mod_succ succ_neq_self dest: ltD)  | 
|
78  | 
done  | 
|
| 12088 | 79  | 
|
80  | 
||
| 12185 | 81  | 
subsection {* Tilings *}
 | 
| 12173 | 82  | 
|
83  | 
text {* The union of two disjoint tilings is a tiling *}
 | 
|
84  | 
||
85  | 
lemma tiling_UnI:  | 
|
| 
46822
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
35762 
diff
changeset
 | 
86  | 
"t \<in> tiling(A) ==> u \<in> tiling(A) ==> t \<inter> u = 0 ==> t \<union> u \<in> tiling(A)"  | 
| 12173 | 87  | 
apply (induct set: tiling)  | 
88  | 
apply (simp add: tiling.intros)  | 
|
89  | 
apply (simp add: Un_assoc subset_empty_iff [THEN iff_sym])  | 
|
90  | 
apply (blast intro: tiling.intros)  | 
|
91  | 
done  | 
|
92  | 
||
93  | 
lemma tiling_domino_Finite: "t \<in> tiling(domino) ==> Finite(t)"  | 
|
| 18415 | 94  | 
apply (induct set: tiling)  | 
| 12173 | 95  | 
apply (rule Finite_0)  | 
96  | 
apply (blast intro!: Finite_Un intro: domino_Finite)  | 
|
97  | 
done  | 
|
98  | 
||
99  | 
lemma tiling_domino_0_1: "t \<in> tiling(domino) ==> |evnodd(t,0)| = |evnodd(t,1)|"  | 
|
| 18415 | 100  | 
apply (induct set: tiling)  | 
| 12173 | 101  | 
apply (simp add: evnodd_def)  | 
102  | 
apply (rule_tac b1 = 0 in domino_singleton [THEN exE])  | 
|
103  | 
prefer 2  | 
|
104  | 
apply simp  | 
|
105  | 
apply assumption  | 
|
106  | 
apply (rule_tac b1 = 1 in domino_singleton [THEN exE])  | 
|
107  | 
prefer 2  | 
|
108  | 
apply simp  | 
|
109  | 
apply assumption  | 
|
110  | 
apply safe  | 
|
| 
46822
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
35762 
diff
changeset
 | 
111  | 
apply (subgoal_tac "\<forall>p b. p \<in> evnodd (a,b) \<longrightarrow> p\<notin>evnodd (t,b)")  | 
| 12173 | 112  | 
apply (simp add: evnodd_Un Un_cons tiling_domino_Finite  | 
113  | 
evnodd_subset [THEN subset_Finite] Finite_imp_cardinal_cons)  | 
|
114  | 
apply (blast dest!: evnodd_subset [THEN subsetD] elim: equalityE)  | 
|
115  | 
done  | 
|
| 12088 | 116  | 
|
| 12185 | 117  | 
lemma dominoes_tile_row:  | 
118  | 
    "[| i \<in> nat;  n \<in> nat |] ==> {i} * (n #+ n) \<in> tiling(domino)"
 | 
|
| 12173 | 119  | 
apply (induct_tac n)  | 
120  | 
apply (simp add: tiling.intros)  | 
|
121  | 
apply (simp add: Un_assoc [symmetric] Sigma_succ2)  | 
|
122  | 
apply (rule tiling.intros)  | 
|
123  | 
prefer 2 apply assumption  | 
|
124  | 
apply (rename_tac n')  | 
|
125  | 
apply (subgoal_tac (*seems the easiest way of turning one to the other*)  | 
|
| 
46822
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
35762 
diff
changeset
 | 
126  | 
     "{i}*{succ (n'#+n') } \<union> {i}*{n'#+n'} =
 | 
| 12185 | 127  | 
       {<i,n'#+n'>, <i,succ (n'#+n') >}")
 | 
| 12173 | 128  | 
prefer 2 apply blast  | 
129  | 
apply (simp add: domino.horiz)  | 
|
130  | 
apply (blast elim: mem_irrefl mem_asym)  | 
|
131  | 
done  | 
|
132  | 
||
| 12185 | 133  | 
lemma dominoes_tile_matrix:  | 
134  | 
"[| m \<in> nat; n \<in> nat |] ==> m * (n #+ n) \<in> tiling(domino)"  | 
|
| 12173 | 135  | 
apply (induct_tac m)  | 
136  | 
apply (simp add: tiling.intros)  | 
|
137  | 
apply (simp add: Sigma_succ1)  | 
|
138  | 
apply (blast intro: tiling_UnI dominoes_tile_row elim: mem_irrefl)  | 
|
139  | 
done  | 
|
140  | 
||
141  | 
lemma eq_lt_E: "[| x=y; x<y |] ==> P"  | 
|
142  | 
by auto  | 
|
143  | 
||
144  | 
theorem mutil_not_tiling: "[| m \<in> nat; n \<in> nat;  | 
|
145  | 
t = (succ(m)#+succ(m))*(succ(n)#+succ(n));  | 
|
146  | 
         t' = t - {<0,0>} - {<succ(m#+m), succ(n#+n)>} |]
 | 
|
147  | 
==> t' \<notin> tiling(domino)"  | 
|
148  | 
apply (rule notI)  | 
|
149  | 
apply (drule tiling_domino_0_1)  | 
|
150  | 
apply (erule_tac x = "|?A|" in eq_lt_E)  | 
|
151  | 
apply (subgoal_tac "t \<in> tiling (domino)")  | 
|
152  | 
prefer 2 (*Requires a small simpset that won't move the succ applications*)  | 
|
153  | 
apply (simp only: nat_succI add_type dominoes_tile_matrix)  | 
|
| 12185 | 154  | 
apply (simp add: evnodd_Diff mod2_add_self mod2_succ_succ  | 
155  | 
tiling_domino_0_1 [symmetric])  | 
|
| 12173 | 156  | 
apply (rule lt_trans)  | 
157  | 
apply (rule Finite_imp_cardinal_Diff,  | 
|
158  | 
simp add: tiling_domino_Finite Finite_evnodd Finite_Diff,  | 
|
159  | 
simp add: evnodd_iff nat_0_le [THEN ltD] mod2_add_self)+  | 
|
160  | 
done  | 
|
| 12088 | 161  | 
|
162  | 
end  |