| author | wenzelm | 
| Wed, 20 Oct 2021 17:11:46 +0200 | |
| changeset 74560 | 5c8177fd1295 | 
| parent 74362 | 0135a0c77b64 | 
| child 75462 | 7448423e5dba | 
| permissions | -rw-r--r-- | 
| 63627 | 1  | 
(* Title: HOL/Analysis/Interval_Integral.thy  | 
| 63329 | 2  | 
Author: Jeremy Avigad (CMU), Johannes Hölzl (TUM), Luke Serafin (CMU)  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
3  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
4  | 
Lebesgue integral over an interval (with endpoints possibly +-\<infinity>)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
5  | 
*)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
6  | 
|
| 
69681
 
689997a8a582
redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
 
immler 
parents: 
69680 
diff
changeset
 | 
7  | 
theory Interval_Integral (*FIX ME rename? Lebesgue *)  | 
| 
63941
 
f353674c2528
move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
 
hoelzl 
parents: 
63886 
diff
changeset
 | 
8  | 
imports Equivalence_Lebesgue_Henstock_Integration  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
9  | 
begin  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
10  | 
|
| 
69681
 
689997a8a582
redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
 
immler 
parents: 
69680 
diff
changeset
 | 
11  | 
definition "einterval a b = {x. a < ereal x \<and> ereal x < b}"
 | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
12  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
13  | 
lemma einterval_eq[simp]:  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
14  | 
  shows einterval_eq_Icc: "einterval (ereal a) (ereal b) = {a <..< b}"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
15  | 
    and einterval_eq_Ici: "einterval (ereal a) \<infinity> = {a <..}"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
16  | 
    and einterval_eq_Iic: "einterval (- \<infinity>) (ereal b) = {..< b}"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
17  | 
and einterval_eq_UNIV: "einterval (- \<infinity>) \<infinity> = UNIV"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
18  | 
by (auto simp: einterval_def)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
19  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
20  | 
lemma einterval_same: "einterval a a = {}"
 | 
| 68096 | 21  | 
by (auto simp: einterval_def)  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
22  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
23  | 
lemma einterval_iff: "x \<in> einterval a b \<longleftrightarrow> a < ereal x \<and> ereal x < b"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
24  | 
by (simp add: einterval_def)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
25  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
26  | 
lemma einterval_nonempty: "a < b \<Longrightarrow> \<exists>c. c \<in> einterval a b"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
27  | 
by (cases a b rule: ereal2_cases, auto simp: einterval_def intro!: dense gt_ex lt_ex)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
28  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
29  | 
lemma open_einterval[simp]: "open (einterval a b)"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
30  | 
by (cases a b rule: ereal2_cases)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
31  | 
(auto simp: einterval_def intro!: open_Collect_conj open_Collect_less continuous_intros)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
32  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
33  | 
lemma borel_einterval[measurable]: "einterval a b \<in> sets borel"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
34  | 
unfolding einterval_def by measurable  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
35  | 
|
| 69683 | 36  | 
subsection \<open>Approximating a (possibly infinite) interval\<close>  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
37  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
38  | 
lemma filterlim_sup1: "(LIM x F. f x :> G1) \<Longrightarrow> (LIM x F. f x :> (sup G1 G2))"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
39  | 
unfolding filterlim_def by (auto intro: le_supI1)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
40  | 
|
| 
69681
 
689997a8a582
redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
 
immler 
parents: 
69680 
diff
changeset
 | 
41  | 
lemma ereal_incseq_approx:  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
42  | 
fixes a b :: ereal  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
43  | 
assumes "a < b"  | 
| 
68095
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
44  | 
obtains X :: "nat \<Rightarrow> real" where "incseq X" "\<And>i. a < X i" "\<And>i. X i < b" "X \<longlonglongrightarrow> b"  | 
| 
69681
 
689997a8a582
redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
 
immler 
parents: 
69680 
diff
changeset
 | 
45  | 
proof (cases b)  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
46  | 
case PInf  | 
| 61808 | 47  | 
with \<open>a < b\<close> have "a = -\<infinity> \<or> (\<exists>r. a = ereal r)"  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
48  | 
by (cases a) auto  | 
| 61969 | 49  | 
moreover have "(\<lambda>x. ereal (real (Suc x))) \<longlonglongrightarrow> \<infinity>"  | 
| 71827 | 50  | 
by (simp add: Lim_PInfty filterlim_sequentially_Suc) (metis le_SucI of_nat_Suc of_nat_mono order_trans real_arch_simple)  | 
| 61969 | 51  | 
moreover have "\<And>r. (\<lambda>x. ereal (r + real (Suc x))) \<longlonglongrightarrow> \<infinity>"  | 
| 71827 | 52  | 
by (simp add: filterlim_sequentially_Suc Lim_PInfty) (metis add.commute diff_le_eq nat_ceiling_le_eq)  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
53  | 
ultimately show thesis  | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
59867 
diff
changeset
 | 
54  | 
by (intro that[of "\<lambda>i. real_of_ereal a + Suc i"])  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
55  | 
(auto simp: incseq_def PInf)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
56  | 
next  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
57  | 
case (real b')  | 
| 63040 | 58  | 
define d where "d = b' - (if a = -\<infinity> then b' - 1 else real_of_ereal a)"  | 
| 61808 | 59  | 
with \<open>a < b\<close> have a': "0 < d"  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
60  | 
by (cases a) (auto simp: real)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
61  | 
moreover  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
62  | 
have "\<And>i r. r < b' \<Longrightarrow> (b' - r) * 1 < (b' - r) * real (Suc (Suc i))"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
63  | 
by (intro mult_strict_left_mono) auto  | 
| 61808 | 64  | 
with \<open>a < b\<close> a' have "\<And>i. a < ereal (b' - d / real (Suc (Suc i)))"  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
65  | 
by (cases a) (auto simp: real d_def field_simps)  | 
| 
68095
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
66  | 
moreover  | 
| 
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
67  | 
have "(\<lambda>i. b' - d / real i) \<longlonglongrightarrow> b'"  | 
| 
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
68  | 
by (force intro: tendsto_eq_intros tendsto_divide_0[OF tendsto_const] filterlim_sup1  | 
| 
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
69  | 
simp: at_infinity_eq_at_top_bot filterlim_real_sequentially)  | 
| 
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
70  | 
then have "(\<lambda>i. b' - d / Suc (Suc i)) \<longlonglongrightarrow> b'"  | 
| 
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
71  | 
by (blast intro: dest: filterlim_sequentially_Suc [THEN iffD2])  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
72  | 
ultimately show thesis  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
73  | 
by (intro that[of "\<lambda>i. b' - d / Suc (Suc i)"])  | 
| 68096 | 74  | 
(auto simp: real incseq_def intro!: divide_left_mono)  | 
| 74362 | 75  | 
qed (use \<open>a < b\<close> in auto)  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
76  | 
|
| 
69681
 
689997a8a582
redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
 
immler 
parents: 
69680 
diff
changeset
 | 
77  | 
lemma ereal_decseq_approx:  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
78  | 
fixes a b :: ereal  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
79  | 
assumes "a < b"  | 
| 63329 | 80  | 
obtains X :: "nat \<Rightarrow> real" where  | 
| 61969 | 81  | 
"decseq X" "\<And>i. a < X i" "\<And>i. X i < b" "X \<longlonglongrightarrow> a"  | 
| 
69681
 
689997a8a582
redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
 
immler 
parents: 
69680 
diff
changeset
 | 
82  | 
proof -  | 
| 61808 | 83  | 
have "-b < -a" using \<open>a < b\<close> by simp  | 
| 74362 | 84  | 
from ereal_incseq_approx[OF this] obtain X where  | 
85  | 
"incseq X"  | 
|
86  | 
"\<And>i. - b < ereal (X i)"  | 
|
87  | 
"\<And>i. ereal (X i) < - a"  | 
|
88  | 
"(\<lambda>x. ereal (X x)) \<longlonglongrightarrow> - a"  | 
|
89  | 
by auto  | 
|
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
90  | 
then show thesis  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
91  | 
apply (intro that[of "\<lambda>i. - X i"])  | 
| 68403 | 92  | 
apply (auto simp: decseq_def incseq_def simp flip: uminus_ereal.simps)  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
93  | 
apply (metis ereal_minus_less_minus ereal_uminus_uminus ereal_Lim_uminus)+  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
94  | 
done  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
95  | 
qed  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
96  | 
|
| 
69681
 
689997a8a582
redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
 
immler 
parents: 
69680 
diff
changeset
 | 
97  | 
proposition einterval_Icc_approximation:  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
98  | 
fixes a b :: ereal  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
99  | 
assumes "a < b"  | 
| 63329 | 100  | 
obtains u l :: "nat \<Rightarrow> real" where  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
101  | 
    "einterval a b = (\<Union>i. {l i .. u i})"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
102  | 
"incseq u" "decseq l" "\<And>i. l i < u i" "\<And>i. a < l i" "\<And>i. u i < b"  | 
| 61969 | 103  | 
"l \<longlonglongrightarrow> a" "u \<longlonglongrightarrow> b"  | 
| 
69681
 
689997a8a582
redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
 
immler 
parents: 
69680 
diff
changeset
 | 
104  | 
proof -  | 
| 61808 | 105  | 
from dense[OF \<open>a < b\<close>] obtain c where "a < c" "c < b" by safe  | 
| 74362 | 106  | 
from ereal_incseq_approx[OF \<open>c < b\<close>] obtain u where u:  | 
107  | 
"incseq u"  | 
|
108  | 
"\<And>i. c < ereal (u i)"  | 
|
109  | 
"\<And>i. ereal (u i) < b"  | 
|
110  | 
"(\<lambda>x. ereal (u x)) \<longlonglongrightarrow> b"  | 
|
111  | 
by auto  | 
|
112  | 
from ereal_decseq_approx[OF \<open>a < c\<close>] obtain l where l:  | 
|
113  | 
"decseq l"  | 
|
114  | 
"\<And>i. a < ereal (l i)"  | 
|
115  | 
"\<And>i. ereal (l i) < c"  | 
|
116  | 
"(\<lambda>x. ereal (l x)) \<longlonglongrightarrow> a"  | 
|
117  | 
by auto  | 
|
| 61808 | 118  | 
  { fix i from less_trans[OF \<open>l i < c\<close> \<open>c < u i\<close>] have "l i < u i" by simp }
 | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
119  | 
  have "einterval a b = (\<Union>i. {l i .. u i})"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
120  | 
proof (auto simp: einterval_iff)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
121  | 
fix x assume "a < ereal x" "ereal x < b"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
122  | 
have "eventually (\<lambda>i. ereal (l i) < ereal x) sequentially"  | 
| 61808 | 123  | 
using l(4) \<open>a < ereal x\<close> by (rule order_tendstoD)  | 
| 63329 | 124  | 
moreover  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
125  | 
have "eventually (\<lambda>i. ereal x < ereal (u i)) sequentially"  | 
| 61808 | 126  | 
using u(4) \<open>ereal x< b\<close> by (rule order_tendstoD)  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
127  | 
ultimately have "eventually (\<lambda>i. l i < x \<and> x < u i) sequentially"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
128  | 
by eventually_elim auto  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
129  | 
then show "\<exists>i. l i \<le> x \<and> x \<le> u i"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
130  | 
by (auto intro: less_imp_le simp: eventually_sequentially)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
131  | 
next  | 
| 63329 | 132  | 
fix x i assume "l i \<le> x" "x \<le> u i"  | 
| 61808 | 133  | 
with \<open>a < ereal (l i)\<close> \<open>ereal (u i) < b\<close>  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
134  | 
show "a < ereal x" "ereal x < b"  | 
| 68403 | 135  | 
by (auto simp flip: ereal_less_eq(3))  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
136  | 
qed  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
137  | 
show thesis  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
138  | 
by (intro that) fact+  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
139  | 
qed  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
140  | 
|
| 63329 | 141  | 
(* TODO: in this definition, it would be more natural if einterval a b included a and b when  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
142  | 
they are real. *)  | 
| 70136 | 143  | 
definition\<^marker>\<open>tag important\<close> interval_lebesgue_integral :: "real measure \<Rightarrow> ereal \<Rightarrow> ereal \<Rightarrow> (real \<Rightarrow> 'a) \<Rightarrow> 'a::{banach, second_countable_topology}" where
 | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
144  | 
"interval_lebesgue_integral M a b f =  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
145  | 
(if a \<le> b then (LINT x:einterval a b|M. f x) else - (LINT x:einterval b a|M. f x))"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
146  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
147  | 
syntax  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
148  | 
"_ascii_interval_lebesgue_integral" :: "pttrn \<Rightarrow> real \<Rightarrow> real \<Rightarrow> real measure \<Rightarrow> real \<Rightarrow> real"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
149  | 
  ("(5LINT _=_.._|_. _)" [0,60,60,61,100] 60)
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
150  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
151  | 
translations  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
152  | 
"LINT x=a..b|M. f" == "CONST interval_lebesgue_integral M a b (\<lambda>x. f)"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
153  | 
|
| 70136 | 154  | 
definition\<^marker>\<open>tag important\<close> interval_lebesgue_integrable :: "real measure \<Rightarrow> ereal \<Rightarrow> ereal \<Rightarrow> (real \<Rightarrow> 'a::{banach, second_countable_topology}) \<Rightarrow> bool" where
 | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
155  | 
"interval_lebesgue_integrable M a b f =  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
156  | 
(if a \<le> b then set_integrable M (einterval a b) f else set_integrable M (einterval b a) f)"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
157  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
158  | 
syntax  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
159  | 
"_ascii_interval_lebesgue_borel_integral" :: "pttrn \<Rightarrow> real \<Rightarrow> real \<Rightarrow> real \<Rightarrow> real"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
160  | 
  ("(4LBINT _=_.._. _)" [0,60,60,61] 60)
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
161  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
162  | 
translations  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
163  | 
"LBINT x=a..b. f" == "CONST interval_lebesgue_integral CONST lborel a b (\<lambda>x. f)"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
164  | 
|
| 69683 | 165  | 
subsection\<open>Basic properties of integration over an interval\<close>  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
166  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
167  | 
lemma interval_lebesgue_integral_cong:  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
168  | 
"a \<le> b \<Longrightarrow> (\<And>x. x \<in> einterval a b \<Longrightarrow> f x = g x) \<Longrightarrow> einterval a b \<in> sets M \<Longrightarrow>  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
169  | 
interval_lebesgue_integral M a b f = interval_lebesgue_integral M a b g"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
170  | 
by (auto intro: set_lebesgue_integral_cong simp: interval_lebesgue_integral_def)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
171  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
172  | 
lemma interval_lebesgue_integral_cong_AE:  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
173  | 
"f \<in> borel_measurable M \<Longrightarrow> g \<in> borel_measurable M \<Longrightarrow>  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
174  | 
a \<le> b \<Longrightarrow> AE x \<in> einterval a b in M. f x = g x \<Longrightarrow> einterval a b \<in> sets M \<Longrightarrow>  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
175  | 
interval_lebesgue_integral M a b f = interval_lebesgue_integral M a b g"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
176  | 
by (auto intro: set_lebesgue_integral_cong_AE simp: interval_lebesgue_integral_def)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
177  | 
|
| 62083 | 178  | 
lemma interval_integrable_mirror:  | 
179  | 
shows "interval_lebesgue_integrable lborel a b (\<lambda>x. f (-x)) \<longleftrightarrow>  | 
|
180  | 
interval_lebesgue_integrable lborel (-b) (-a) f"  | 
|
181  | 
proof -  | 
|
182  | 
have *: "indicator (einterval a b) (- x) = (indicator (einterval (-b) (-a)) x :: real)"  | 
|
183  | 
for a b :: ereal and x :: real  | 
|
184  | 
by (cases a b rule: ereal2_cases) (auto simp: einterval_def split: split_indicator)  | 
|
185  | 
show ?thesis  | 
|
186  | 
unfolding interval_lebesgue_integrable_def  | 
|
187  | 
using lborel_integrable_real_affine_iff[symmetric, of "-1" "\<lambda>x. indicator (einterval _ _) x *\<^sub>R f x" 0]  | 
|
| 
67974
 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 
paulson <lp15@cam.ac.uk> 
parents: 
66164 
diff
changeset
 | 
188  | 
by (simp add: * set_integrable_def)  | 
| 62083 | 189  | 
qed  | 
190  | 
||
| 63329 | 191  | 
lemma interval_lebesgue_integral_add [intro, simp]:  | 
192  | 
fixes M a b f  | 
|
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
193  | 
assumes "interval_lebesgue_integrable M a b f" "interval_lebesgue_integrable M a b g"  | 
| 63329 | 194  | 
shows "interval_lebesgue_integrable M a b (\<lambda>x. f x + g x)" and  | 
195  | 
"interval_lebesgue_integral M a b (\<lambda>x. f x + g x) =  | 
|
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
196  | 
interval_lebesgue_integral M a b f + interval_lebesgue_integral M a b g"  | 
| 68096 | 197  | 
using assms by (auto simp: interval_lebesgue_integral_def interval_lebesgue_integrable_def  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
198  | 
field_simps)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
199  | 
|
| 63329 | 200  | 
lemma interval_lebesgue_integral_diff [intro, simp]:  | 
201  | 
fixes M a b f  | 
|
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
202  | 
assumes "interval_lebesgue_integrable M a b f"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
203  | 
"interval_lebesgue_integrable M a b g"  | 
| 63329 | 204  | 
shows "interval_lebesgue_integrable M a b (\<lambda>x. f x - g x)" and  | 
205  | 
"interval_lebesgue_integral M a b (\<lambda>x. f x - g x) =  | 
|
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
206  | 
interval_lebesgue_integral M a b f - interval_lebesgue_integral M a b g"  | 
| 68096 | 207  | 
using assms by (auto simp: interval_lebesgue_integral_def interval_lebesgue_integrable_def  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
208  | 
field_simps)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
209  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
210  | 
lemma interval_lebesgue_integrable_mult_right [intro, simp]:  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
211  | 
  fixes M a b c and f :: "real \<Rightarrow> 'a::{banach, real_normed_field, second_countable_topology}"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
212  | 
shows "(c \<noteq> 0 \<Longrightarrow> interval_lebesgue_integrable M a b f) \<Longrightarrow>  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
213  | 
interval_lebesgue_integrable M a b (\<lambda>x. c * f x)"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
214  | 
by (simp add: interval_lebesgue_integrable_def)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
215  | 
|
| 
69681
 
689997a8a582
redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
 
immler 
parents: 
69680 
diff
changeset
 | 
216  | 
lemma interval_lebesgue_integrable_mult_left [intro, simp]:  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
217  | 
  fixes M a b c and f :: "real \<Rightarrow> 'a::{banach, real_normed_field, second_countable_topology}"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
218  | 
shows "(c \<noteq> 0 \<Longrightarrow> interval_lebesgue_integrable M a b f) \<Longrightarrow>  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
219  | 
interval_lebesgue_integrable M a b (\<lambda>x. f x * c)"  | 
| 
69681
 
689997a8a582
redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
 
immler 
parents: 
69680 
diff
changeset
 | 
220  | 
by (simp add: interval_lebesgue_integrable_def)  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
221  | 
|
| 
69681
 
689997a8a582
redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
 
immler 
parents: 
69680 
diff
changeset
 | 
222  | 
lemma interval_lebesgue_integrable_divide [intro, simp]:  | 
| 
59867
 
58043346ca64
given up separate type classes demanding `inverse 0 = 0`
 
haftmann 
parents: 
59587 
diff
changeset
 | 
223  | 
  fixes M a b c and f :: "real \<Rightarrow> 'a::{banach, real_normed_field, field, second_countable_topology}"
 | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
224  | 
shows "(c \<noteq> 0 \<Longrightarrow> interval_lebesgue_integrable M a b f) \<Longrightarrow>  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
225  | 
interval_lebesgue_integrable M a b (\<lambda>x. f x / c)"  | 
| 
69681
 
689997a8a582
redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
 
immler 
parents: 
69680 
diff
changeset
 | 
226  | 
by (simp add: interval_lebesgue_integrable_def)  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
227  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
228  | 
lemma interval_lebesgue_integral_mult_right [simp]:  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
229  | 
  fixes M a b c and f :: "real \<Rightarrow> 'a::{banach, real_normed_field, second_countable_topology}"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
230  | 
shows "interval_lebesgue_integral M a b (\<lambda>x. c * f x) =  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
231  | 
c * interval_lebesgue_integral M a b f"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
232  | 
by (simp add: interval_lebesgue_integral_def)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
233  | 
|
| 
69681
 
689997a8a582
redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
 
immler 
parents: 
69680 
diff
changeset
 | 
234  | 
lemma interval_lebesgue_integral_mult_left [simp]:  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
235  | 
  fixes M a b c and f :: "real \<Rightarrow> 'a::{banach, real_normed_field, second_countable_topology}"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
236  | 
shows "interval_lebesgue_integral M a b (\<lambda>x. f x * c) =  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
237  | 
interval_lebesgue_integral M a b f * c"  | 
| 
69681
 
689997a8a582
redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
 
immler 
parents: 
69680 
diff
changeset
 | 
238  | 
by (simp add: interval_lebesgue_integral_def)  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
239  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
240  | 
lemma interval_lebesgue_integral_divide [simp]:  | 
| 
59867
 
58043346ca64
given up separate type classes demanding `inverse 0 = 0`
 
haftmann 
parents: 
59587 
diff
changeset
 | 
241  | 
  fixes M a b c and f :: "real \<Rightarrow> 'a::{banach, real_normed_field, field, second_countable_topology}"
 | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
242  | 
shows "interval_lebesgue_integral M a b (\<lambda>x. f x / c) =  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
243  | 
interval_lebesgue_integral M a b f / c"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
244  | 
by (simp add: interval_lebesgue_integral_def)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
245  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
246  | 
lemma interval_lebesgue_integral_uminus:  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
247  | 
"interval_lebesgue_integral M a b (\<lambda>x. - f x) = - interval_lebesgue_integral M a b f"  | 
| 68096 | 248  | 
by (auto simp: interval_lebesgue_integral_def interval_lebesgue_integrable_def set_lebesgue_integral_def)  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
249  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
250  | 
lemma interval_lebesgue_integral_of_real:  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
251  | 
"interval_lebesgue_integral M a b (\<lambda>x. complex_of_real (f x)) =  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
252  | 
of_real (interval_lebesgue_integral M a b f)"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
253  | 
unfolding interval_lebesgue_integral_def  | 
| 68096 | 254  | 
by (auto simp: interval_lebesgue_integral_def set_integral_complex_of_real)  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
255  | 
|
| 
69681
 
689997a8a582
redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
 
immler 
parents: 
69680 
diff
changeset
 | 
256  | 
lemma interval_lebesgue_integral_le_eq:  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
257  | 
fixes a b f  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
258  | 
assumes "a \<le> b"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
259  | 
shows "interval_lebesgue_integral M a b f = (LINT x : einterval a b | M. f x)"  | 
| 
69681
 
689997a8a582
redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
 
immler 
parents: 
69680 
diff
changeset
 | 
260  | 
using assms by (auto simp: interval_lebesgue_integral_def)  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
261  | 
|
| 63329 | 262  | 
lemma interval_lebesgue_integral_gt_eq:  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
263  | 
fixes a b f  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
264  | 
assumes "a > b"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
265  | 
shows "interval_lebesgue_integral M a b f = -(LINT x : einterval b a | M. f x)"  | 
| 68096 | 266  | 
using assms by (auto simp: interval_lebesgue_integral_def less_imp_le einterval_def)  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
267  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
268  | 
lemma interval_lebesgue_integral_gt_eq':  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
269  | 
fixes a b f  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
270  | 
assumes "a > b"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
271  | 
shows "interval_lebesgue_integral M a b f = - interval_lebesgue_integral M b a f"  | 
| 68096 | 272  | 
using assms by (auto simp: interval_lebesgue_integral_def less_imp_le einterval_def)  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
273  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
274  | 
lemma interval_integral_endpoints_same [simp]: "(LBINT x=a..a. f x) = 0"  | 
| 
67974
 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 
paulson <lp15@cam.ac.uk> 
parents: 
66164 
diff
changeset
 | 
275  | 
by (simp add: interval_lebesgue_integral_def set_lebesgue_integral_def einterval_same)  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
276  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
277  | 
lemma interval_integral_endpoints_reverse: "(LBINT x=a..b. f x) = -(LBINT x=b..a. f x)"  | 
| 
67974
 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 
paulson <lp15@cam.ac.uk> 
parents: 
66164 
diff
changeset
 | 
278  | 
by (cases a b rule: linorder_cases) (auto simp: interval_lebesgue_integral_def set_lebesgue_integral_def einterval_same)  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
279  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
280  | 
lemma interval_integrable_endpoints_reverse:  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
281  | 
"interval_lebesgue_integrable lborel a b f \<longleftrightarrow>  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
282  | 
interval_lebesgue_integrable lborel b a f"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
283  | 
by (cases a b rule: linorder_cases) (auto simp: interval_lebesgue_integrable_def einterval_same)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
284  | 
|
| 
69681
 
689997a8a582
redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
 
immler 
parents: 
69680 
diff
changeset
 | 
285  | 
lemma interval_integral_reflect:  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
286  | 
"(LBINT x=a..b. f x) = (LBINT x=-b..-a. f (-x))"  | 
| 
69681
 
689997a8a582
redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
 
immler 
parents: 
69680 
diff
changeset
 | 
287  | 
proof (induct a b rule: linorder_wlog)  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
288  | 
case (sym a b) then show ?case  | 
| 68096 | 289  | 
by (auto simp: interval_lebesgue_integral_def interval_integrable_endpoints_reverse  | 
| 62390 | 290  | 
split: if_split_asm)  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
291  | 
next  | 
| 
67974
 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 
paulson <lp15@cam.ac.uk> 
parents: 
66164 
diff
changeset
 | 
292  | 
case (le a b)  | 
| 
 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 
paulson <lp15@cam.ac.uk> 
parents: 
66164 
diff
changeset
 | 
293  | 
  have "LBINT x:{x. - x \<in> einterval a b}. f (- x) = LBINT x:einterval (- b) (- a). f (- x)"
 | 
| 
 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 
paulson <lp15@cam.ac.uk> 
parents: 
66164 
diff
changeset
 | 
294  | 
unfolding interval_lebesgue_integrable_def set_lebesgue_integral_def  | 
| 
 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 
paulson <lp15@cam.ac.uk> 
parents: 
66164 
diff
changeset
 | 
295  | 
apply (rule Bochner_Integration.integral_cong [OF refl])  | 
| 68046 | 296  | 
by (auto simp: einterval_iff ereal_uminus_le_reorder ereal_uminus_less_reorder not_less  | 
| 68403 | 297  | 
simp flip: uminus_ereal.simps  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
298  | 
split: split_indicator)  | 
| 
67974
 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 
paulson <lp15@cam.ac.uk> 
parents: 
66164 
diff
changeset
 | 
299  | 
then show ?case  | 
| 
 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 
paulson <lp15@cam.ac.uk> 
parents: 
66164 
diff
changeset
 | 
300  | 
unfolding interval_lebesgue_integral_def  | 
| 
 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 
paulson <lp15@cam.ac.uk> 
parents: 
66164 
diff
changeset
 | 
301  | 
by (subst set_integral_reflect) (simp add: le)  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
302  | 
qed  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
303  | 
|
| 
61897
 
bc0fc5499085
Bochner integral: prove dominated convergence at_top
 
hoelzl 
parents: 
61882 
diff
changeset
 | 
304  | 
lemma interval_lebesgue_integral_0_infty:  | 
| 
 
bc0fc5499085
Bochner integral: prove dominated convergence at_top
 
hoelzl 
parents: 
61882 
diff
changeset
 | 
305  | 
  "interval_lebesgue_integrable M 0 \<infinity> f \<longleftrightarrow> set_integrable M {0<..} f"
 | 
| 
 
bc0fc5499085
Bochner integral: prove dominated convergence at_top
 
hoelzl 
parents: 
61882 
diff
changeset
 | 
306  | 
  "interval_lebesgue_integral M 0 \<infinity> f = (LINT x:{0<..}|M. f x)"
 | 
| 63329 | 307  | 
unfolding zero_ereal_def  | 
| 
61897
 
bc0fc5499085
Bochner integral: prove dominated convergence at_top
 
hoelzl 
parents: 
61882 
diff
changeset
 | 
308  | 
by (auto simp: interval_lebesgue_integral_le_eq interval_lebesgue_integrable_def)  | 
| 
 
bc0fc5499085
Bochner integral: prove dominated convergence at_top
 
hoelzl 
parents: 
61882 
diff
changeset
 | 
309  | 
|
| 
 
bc0fc5499085
Bochner integral: prove dominated convergence at_top
 
hoelzl 
parents: 
61882 
diff
changeset
 | 
310  | 
lemma interval_integral_to_infinity_eq: "(LINT x=ereal a..\<infinity> | M. f x) = (LINT x : {a<..} | M. f x)"
 | 
| 
 
bc0fc5499085
Bochner integral: prove dominated convergence at_top
 
hoelzl 
parents: 
61882 
diff
changeset
 | 
311  | 
unfolding interval_lebesgue_integral_def by auto  | 
| 
 
bc0fc5499085
Bochner integral: prove dominated convergence at_top
 
hoelzl 
parents: 
61882 
diff
changeset
 | 
312  | 
|
| 
69681
 
689997a8a582
redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
 
immler 
parents: 
69680 
diff
changeset
 | 
313  | 
proposition interval_integrable_to_infinity_eq: "(interval_lebesgue_integrable M a \<infinity> f) =  | 
| 
61897
 
bc0fc5499085
Bochner integral: prove dominated convergence at_top
 
hoelzl 
parents: 
61882 
diff
changeset
 | 
314  | 
  (set_integrable M {a<..} f)"
 | 
| 70136 | 315  | 
unfolding interval_lebesgue_integrable_def by auto  | 
| 
61897
 
bc0fc5499085
Bochner integral: prove dominated convergence at_top
 
hoelzl 
parents: 
61882 
diff
changeset
 | 
316  | 
|
| 69683 | 317  | 
subsection\<open>Basic properties of integration over an interval wrt lebesgue measure\<close>  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
318  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
319  | 
lemma interval_integral_zero [simp]:  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
320  | 
fixes a b :: ereal  | 
| 68096 | 321  | 
shows "LBINT x=a..b. 0 = 0"  | 
| 
67974
 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 
paulson <lp15@cam.ac.uk> 
parents: 
66164 
diff
changeset
 | 
322  | 
unfolding interval_lebesgue_integral_def set_lebesgue_integral_def einterval_eq  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
323  | 
by simp  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
324  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
325  | 
lemma interval_integral_const [intro, simp]:  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
326  | 
fixes a b c :: real  | 
| 63329 | 327  | 
shows "interval_lebesgue_integrable lborel a b (\<lambda>x. c)" and "LBINT x=a..b. c = c * (b - a)"  | 
| 
67974
 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 
paulson <lp15@cam.ac.uk> 
parents: 
66164 
diff
changeset
 | 
328  | 
unfolding interval_lebesgue_integral_def interval_lebesgue_integrable_def einterval_eq  | 
| 68096 | 329  | 
by (auto simp: less_imp_le field_simps measure_def set_integrable_def set_lebesgue_integral_def)  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
330  | 
|
| 
69681
 
689997a8a582
redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
 
immler 
parents: 
69680 
diff
changeset
 | 
331  | 
lemma interval_integral_cong_AE:  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
332  | 
assumes [measurable]: "f \<in> borel_measurable borel" "g \<in> borel_measurable borel"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
333  | 
assumes "AE x \<in> einterval (min a b) (max a b) in lborel. f x = g x"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
334  | 
shows "interval_lebesgue_integral lborel a b f = interval_lebesgue_integral lborel a b g"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
335  | 
using assms  | 
| 
69681
 
689997a8a582
redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
 
immler 
parents: 
69680 
diff
changeset
 | 
336  | 
proof (induct a b rule: linorder_wlog)  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
337  | 
case (sym a b) then show ?case  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
338  | 
by (simp add: min.commute max.commute interval_integral_endpoints_reverse[of a b])  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
339  | 
next  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
340  | 
case (le a b) then show ?case  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
341  | 
by (auto simp: interval_lebesgue_integral_def max_def min_def  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
342  | 
intro!: set_lebesgue_integral_cong_AE)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
343  | 
qed  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
344  | 
|
| 
69681
 
689997a8a582
redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
 
immler 
parents: 
69680 
diff
changeset
 | 
345  | 
lemma interval_integral_cong:  | 
| 63329 | 346  | 
assumes "\<And>x. x \<in> einterval (min a b) (max a b) \<Longrightarrow> f x = g x"  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
347  | 
shows "interval_lebesgue_integral lborel a b f = interval_lebesgue_integral lborel a b g"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
348  | 
using assms  | 
| 
69681
 
689997a8a582
redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
 
immler 
parents: 
69680 
diff
changeset
 | 
349  | 
proof (induct a b rule: linorder_wlog)  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
350  | 
case (sym a b) then show ?case  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
351  | 
by (simp add: min.commute max.commute interval_integral_endpoints_reverse[of a b])  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
352  | 
next  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
353  | 
case (le a b) then show ?case  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
354  | 
by (auto simp: interval_lebesgue_integral_def max_def min_def  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
355  | 
intro!: set_lebesgue_integral_cong)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
356  | 
qed  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
357  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
358  | 
lemma interval_lebesgue_integrable_cong_AE:  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
359  | 
"f \<in> borel_measurable lborel \<Longrightarrow> g \<in> borel_measurable lborel \<Longrightarrow>  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
360  | 
AE x \<in> einterval (min a b) (max a b) in lborel. f x = g x \<Longrightarrow>  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
361  | 
interval_lebesgue_integrable lborel a b f = interval_lebesgue_integrable lborel a b g"  | 
| 68096 | 362  | 
apply (simp add: interval_lebesgue_integrable_def)  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
363  | 
apply (intro conjI impI set_integrable_cong_AE)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
364  | 
apply (auto simp: min_def max_def)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
365  | 
done  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
366  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
367  | 
lemma interval_integrable_abs_iff:  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
368  | 
fixes f :: "real \<Rightarrow> real"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
369  | 
shows "f \<in> borel_measurable lborel \<Longrightarrow>  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
370  | 
interval_lebesgue_integrable lborel a b (\<lambda>x. \<bar>f x\<bar>) = interval_lebesgue_integrable lborel a b f"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
371  | 
unfolding interval_lebesgue_integrable_def  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
372  | 
by (subst (1 2) set_integrable_abs_iff') simp_all  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
373  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
374  | 
lemma interval_integral_Icc:  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
375  | 
fixes a b :: real  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
376  | 
  shows "a \<le> b \<Longrightarrow> (LBINT x=a..b. f x) = (LBINT x : {a..b}. f x)"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
377  | 
  by (auto intro!: set_integral_discrete_difference[where X="{a, b}"]
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
378  | 
simp add: interval_lebesgue_integral_def)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
379  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
380  | 
lemma interval_integral_Icc':  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
381  | 
  "a \<le> b \<Longrightarrow> (LBINT x=a..b. f x) = (LBINT x : {x. a \<le> ereal x \<and> ereal x \<le> b}. f x)"
 | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
59867 
diff
changeset
 | 
382  | 
  by (auto intro!: set_integral_discrete_difference[where X="{real_of_ereal a, real_of_ereal b}"]
 | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
383  | 
simp add: interval_lebesgue_integral_def einterval_iff)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
384  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
385  | 
lemma interval_integral_Ioc:  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
386  | 
  "a \<le> b \<Longrightarrow> (LBINT x=a..b. f x) = (LBINT x : {a<..b}. f x)"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
387  | 
  by (auto intro!: set_integral_discrete_difference[where X="{a, b}"]
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
388  | 
simp add: interval_lebesgue_integral_def einterval_iff)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
389  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
390  | 
(* TODO: other versions as well? *) (* Yes: I need the Icc' version. *)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
391  | 
lemma interval_integral_Ioc':  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
392  | 
  "a \<le> b \<Longrightarrow> (LBINT x=a..b. f x) = (LBINT x : {x. a < ereal x \<and> ereal x \<le> b}. f x)"
 | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
59867 
diff
changeset
 | 
393  | 
  by (auto intro!: set_integral_discrete_difference[where X="{real_of_ereal a, real_of_ereal b}"]
 | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
394  | 
simp add: interval_lebesgue_integral_def einterval_iff)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
395  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
396  | 
lemma interval_integral_Ico:  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
397  | 
  "a \<le> b \<Longrightarrow> (LBINT x=a..b. f x) = (LBINT x : {a..<b}. f x)"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
398  | 
  by (auto intro!: set_integral_discrete_difference[where X="{a, b}"]
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
399  | 
simp add: interval_lebesgue_integral_def einterval_iff)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
400  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
401  | 
lemma interval_integral_Ioi:  | 
| 61882 | 402  | 
  "\<bar>a\<bar> < \<infinity> \<Longrightarrow> (LBINT x=a..\<infinity>. f x) = (LBINT x : {real_of_ereal a <..}. f x)"
 | 
| 68096 | 403  | 
by (auto simp: interval_lebesgue_integral_def einterval_iff)  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
404  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
405  | 
lemma interval_integral_Ioo:  | 
| 61882 | 406  | 
  "a \<le> b \<Longrightarrow> \<bar>a\<bar> < \<infinity> ==> \<bar>b\<bar> < \<infinity> \<Longrightarrow> (LBINT x=a..b. f x) = (LBINT x : {real_of_ereal a <..< real_of_ereal b}. f x)"
 | 
| 68096 | 407  | 
by (auto simp: interval_lebesgue_integral_def einterval_iff)  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
408  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
409  | 
lemma interval_integral_discrete_difference:  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
410  | 
  fixes f :: "real \<Rightarrow> 'b::{banach, second_countable_topology}" and a b :: ereal
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
411  | 
assumes "countable X"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
412  | 
and eq: "\<And>x. a \<le> b \<Longrightarrow> a < x \<Longrightarrow> x < b \<Longrightarrow> x \<notin> X \<Longrightarrow> f x = g x"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
413  | 
and anti_eq: "\<And>x. b \<le> a \<Longrightarrow> b < x \<Longrightarrow> x < a \<Longrightarrow> x \<notin> X \<Longrightarrow> f x = g x"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
414  | 
  assumes "\<And>x. x \<in> X \<Longrightarrow> emeasure M {x} = 0" "\<And>x. x \<in> X \<Longrightarrow> {x} \<in> sets M"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
415  | 
shows "interval_lebesgue_integral M a b f = interval_lebesgue_integral M a b g"  | 
| 
67974
 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 
paulson <lp15@cam.ac.uk> 
parents: 
66164 
diff
changeset
 | 
416  | 
unfolding interval_lebesgue_integral_def set_lebesgue_integral_def  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
417  | 
apply (intro if_cong refl arg_cong[where f="\<lambda>x. - x"] integral_discrete_difference[of X] assms)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
418  | 
apply (auto simp: eq anti_eq einterval_iff split: split_indicator)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
419  | 
done  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
420  | 
|
| 
69681
 
689997a8a582
redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
 
immler 
parents: 
69680 
diff
changeset
 | 
421  | 
lemma interval_integral_sum:  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
422  | 
fixes a b c :: ereal  | 
| 63329 | 423  | 
assumes integrable: "interval_lebesgue_integrable lborel (min a (min b c)) (max a (max b c)) f"  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
424  | 
shows "(LBINT x=a..b. f x) + (LBINT x=b..c. f x) = (LBINT x=a..c. f x)"  | 
| 
69681
 
689997a8a582
redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
 
immler 
parents: 
69680 
diff
changeset
 | 
425  | 
proof -  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
426  | 
let ?I = "\<lambda>a b. LBINT x=a..b. f x"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
427  | 
  { fix a b c :: ereal assume "interval_lebesgue_integrable lborel a c f" "a \<le> b" "b \<le> c"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
428  | 
then have ord: "a \<le> b" "b \<le> c" "a \<le> c" and f': "set_integrable lborel (einterval a c) f"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
429  | 
by (auto simp: interval_lebesgue_integrable_def)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
430  | 
then have f: "set_borel_measurable borel (einterval a c) f"  | 
| 
67974
 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 
paulson <lp15@cam.ac.uk> 
parents: 
66164 
diff
changeset
 | 
431  | 
unfolding set_integrable_def set_borel_measurable_def  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
432  | 
by (drule_tac borel_measurable_integrable) simp  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
433  | 
have "(LBINT x:einterval a c. f x) = (LBINT x:einterval a b \<union> einterval b c. f x)"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
434  | 
proof (rule set_integral_cong_set)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
435  | 
show "AE x in lborel. (x \<in> einterval a b \<union> einterval b c) = (x \<in> einterval a c)"  | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
59867 
diff
changeset
 | 
436  | 
using AE_lborel_singleton[of "real_of_ereal b"] ord  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
437  | 
by (cases a b c rule: ereal3_cases) (auto simp: einterval_iff)  | 
| 
67974
 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 
paulson <lp15@cam.ac.uk> 
parents: 
66164 
diff
changeset
 | 
438  | 
show "set_borel_measurable lborel (einterval a c) f" "set_borel_measurable lborel (einterval a b \<union> einterval b c) f"  | 
| 
 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 
paulson <lp15@cam.ac.uk> 
parents: 
66164 
diff
changeset
 | 
439  | 
unfolding set_borel_measurable_def  | 
| 
 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 
paulson <lp15@cam.ac.uk> 
parents: 
66164 
diff
changeset
 | 
440  | 
using ord by (auto simp: einterval_iff intro!: set_borel_measurable_subset[OF f, unfolded set_borel_measurable_def])  | 
| 
 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 
paulson <lp15@cam.ac.uk> 
parents: 
66164 
diff
changeset
 | 
441  | 
qed  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
442  | 
also have "\<dots> = (LBINT x:einterval a b. f x) + (LBINT x:einterval b c. f x)"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
443  | 
using ord  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
444  | 
by (intro set_integral_Un_AE) (auto intro!: set_integrable_subset[OF f'] simp: einterval_iff not_less)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
445  | 
finally have "?I a b + ?I b c = ?I a c"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
446  | 
using ord by (simp add: interval_lebesgue_integral_def)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
447  | 
} note 1 = this  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
448  | 
  { fix a b c :: ereal assume "interval_lebesgue_integrable lborel a c f" "a \<le> b" "b \<le> c"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
449  | 
from 1[OF this] have "?I b c + ?I a b = ?I a c"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
450  | 
by (metis add.commute)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
451  | 
} note 2 = this  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
452  | 
have 3: "\<And>a b. b \<le> a \<Longrightarrow> (LBINT x=a..b. f x) = - (LBINT x=b..a. f x)"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
453  | 
by (rule interval_integral_endpoints_reverse)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
454  | 
show ?thesis  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
455  | 
using integrable  | 
| 
73526
 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 
nipkow 
parents: 
71827 
diff
changeset
 | 
456  | 
apply (cases a b b c a c rule: linorder_le_cases[case_product linorder_le_cases linorder_cases])  | 
| 
 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 
nipkow 
parents: 
71827 
diff
changeset
 | 
457  | 
apply simp_all (* remove some looping cases *)  | 
| 
 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 
nipkow 
parents: 
71827 
diff
changeset
 | 
458  | 
by (simp_all add: min_absorb1 min_absorb2 max_absorb1 max_absorb2 field_simps 1 2 3)  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
459  | 
qed  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
460  | 
|
| 
69681
 
689997a8a582
redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
 
immler 
parents: 
69680 
diff
changeset
 | 
461  | 
lemma interval_integrable_isCont:  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
462  | 
  fixes a b and f :: "real \<Rightarrow> 'a::{banach, second_countable_topology}"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
463  | 
shows "(\<And>x. min a b \<le> x \<Longrightarrow> x \<le> max a b \<Longrightarrow> isCont f x) \<Longrightarrow>  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
464  | 
interval_lebesgue_integrable lborel a b f"  | 
| 
69681
 
689997a8a582
redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
 
immler 
parents: 
69680 
diff
changeset
 | 
465  | 
proof (induct a b rule: linorder_wlog)  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
466  | 
case (le a b) then show ?case  | 
| 
67974
 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 
paulson <lp15@cam.ac.uk> 
parents: 
66164 
diff
changeset
 | 
467  | 
unfolding interval_lebesgue_integrable_def set_integrable_def  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
468  | 
by (auto simp: interval_lebesgue_integrable_def  | 
| 
67974
 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 
paulson <lp15@cam.ac.uk> 
parents: 
66164 
diff
changeset
 | 
469  | 
        intro!: set_integrable_subset[unfolded set_integrable_def, OF borel_integrable_compact[of "{a .. b}"]]
 | 
| 
 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 
paulson <lp15@cam.ac.uk> 
parents: 
66164 
diff
changeset
 | 
470  | 
continuous_at_imp_continuous_on)  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
471  | 
qed (auto intro: interval_integrable_endpoints_reverse[THEN iffD1])  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
472  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
473  | 
lemma interval_integrable_continuous_on:  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
474  | 
fixes a b :: real and f  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
475  | 
  assumes "a \<le> b" and "continuous_on {a..b} f"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
476  | 
shows "interval_lebesgue_integrable lborel a b f"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
477  | 
using assms unfolding interval_lebesgue_integrable_def apply simp  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
478  | 
by (rule set_integrable_subset, rule borel_integrable_atLeastAtMost' [of a b], auto)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
479  | 
|
| 63329 | 480  | 
lemma interval_integral_eq_integral:  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
481  | 
fixes f :: "real \<Rightarrow> 'a::euclidean_space"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
482  | 
  shows "a \<le> b \<Longrightarrow> set_integrable lborel {a..b} f \<Longrightarrow> LBINT x=a..b. f x = integral {a..b} f"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
483  | 
by (subst interval_integral_Icc, simp) (rule set_borel_integral_eq_integral)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
484  | 
|
| 63329 | 485  | 
lemma interval_integral_eq_integral':  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
486  | 
fixes f :: "real \<Rightarrow> 'a::euclidean_space"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
487  | 
shows "a \<le> b \<Longrightarrow> set_integrable lborel (einterval a b) f \<Longrightarrow> LBINT x=a..b. f x = integral (einterval a b) f"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
488  | 
by (subst interval_lebesgue_integral_le_eq, simp) (rule set_borel_integral_eq_integral)  | 
| 63329 | 489  | 
|
| 
67974
 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 
paulson <lp15@cam.ac.uk> 
parents: 
66164 
diff
changeset
 | 
490  | 
|
| 69683 | 491  | 
subsection\<open>General limit approximation arguments\<close>  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
492  | 
|
| 
69681
 
689997a8a582
redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
 
immler 
parents: 
69680 
diff
changeset
 | 
493  | 
proposition interval_integral_Icc_approx_nonneg:  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
494  | 
fixes a b :: ereal  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
495  | 
assumes "a < b"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
496  | 
fixes u l :: "nat \<Rightarrow> real"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
497  | 
  assumes  approx: "einterval a b = (\<Union>i. {l i .. u i})"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
498  | 
"incseq u" "decseq l" "\<And>i. l i < u i" "\<And>i. a < l i" "\<And>i. u i < b"  | 
| 61969 | 499  | 
"l \<longlonglongrightarrow> a" "u \<longlonglongrightarrow> b"  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
500  | 
fixes f :: "real \<Rightarrow> real"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
501  | 
  assumes f_integrable: "\<And>i. set_integrable lborel {l i..u i} f"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
502  | 
assumes f_nonneg: "AE x in lborel. a < ereal x \<longrightarrow> ereal x < b \<longrightarrow> 0 \<le> f x"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
503  | 
assumes f_measurable: "set_borel_measurable lborel (einterval a b) f"  | 
| 61969 | 504  | 
assumes lbint_lim: "(\<lambda>i. LBINT x=l i.. u i. f x) \<longlonglongrightarrow> C"  | 
| 63329 | 505  | 
shows  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
506  | 
"set_integrable lborel (einterval a b) f"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
507  | 
"(LBINT x=a..b. f x) = C"  | 
| 
69681
 
689997a8a582
redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
 
immler 
parents: 
69680 
diff
changeset
 | 
508  | 
proof -  | 
| 
67974
 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 
paulson <lp15@cam.ac.uk> 
parents: 
66164 
diff
changeset
 | 
509  | 
  have 1 [unfolded set_integrable_def]: "\<And>i. set_integrable lborel {l i..u i} f" by (rule f_integrable)
 | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
510  | 
  have 2: "AE x in lborel. mono (\<lambda>n. indicator {l n..u n} x *\<^sub>R f x)"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
511  | 
proof -  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
512  | 
from f_nonneg have "AE x in lborel. \<forall>i. l i \<le> x \<longrightarrow> x \<le> u i \<longrightarrow> 0 \<le> f x"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
513  | 
by eventually_elim  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
514  | 
(metis approx(5) approx(6) dual_order.strict_trans1 ereal_less_eq(3) le_less_trans)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
515  | 
then show ?thesis  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
516  | 
apply eventually_elim  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
517  | 
apply (auto simp: mono_def split: split_indicator)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
518  | 
apply (metis approx(3) decseqD order_trans)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
519  | 
apply (metis approx(2) incseqD order_trans)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
520  | 
done  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
521  | 
qed  | 
| 61969 | 522  | 
  have 3: "AE x in lborel. (\<lambda>i. indicator {l i..u i} x *\<^sub>R f x) \<longlonglongrightarrow> indicator (einterval a b) x *\<^sub>R f x"
 | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
523  | 
proof -  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
524  | 
    { fix x i assume "l i \<le> x" "x \<le> u i"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
525  | 
then have "eventually (\<lambda>i. l i \<le> x \<and> x \<le> u i) sequentially"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
526  | 
apply (auto simp: eventually_sequentially intro!: exI[of _ i])  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
527  | 
apply (metis approx(3) decseqD order_trans)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
528  | 
apply (metis approx(2) incseqD order_trans)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
529  | 
done  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
530  | 
      then have "eventually (\<lambda>i. f x * indicator {l i..u i} x = f x) sequentially"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
531  | 
by eventually_elim auto }  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
532  | 
then show ?thesis  | 
| 
70365
 
4df0628e8545
a few new lemmas and a bit of tidying
 
paulson <lp15@cam.ac.uk> 
parents: 
70136 
diff
changeset
 | 
533  | 
unfolding approx(1) by (auto intro!: AE_I2 tendsto_eventually split: split_indicator)  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
534  | 
qed  | 
| 61969 | 535  | 
  have 4: "(\<lambda>i. \<integral> x. indicator {l i..u i} x *\<^sub>R f x \<partial>lborel) \<longlonglongrightarrow> C"
 | 
| 
67974
 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 
paulson <lp15@cam.ac.uk> 
parents: 
66164 
diff
changeset
 | 
536  | 
using lbint_lim by (simp add: interval_integral_Icc [unfolded set_lebesgue_integral_def] approx less_imp_le)  | 
| 
 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 
paulson <lp15@cam.ac.uk> 
parents: 
66164 
diff
changeset
 | 
537  | 
have 5: "(\<lambda>x. indicat_real (einterval a b) x *\<^sub>R f x) \<in> borel_measurable lborel"  | 
| 
 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 
paulson <lp15@cam.ac.uk> 
parents: 
66164 
diff
changeset
 | 
538  | 
using f_measurable set_borel_measurable_def by blast  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
539  | 
have "(LBINT x=a..b. f x) = lebesgue_integral lborel (\<lambda>x. indicator (einterval a b) x *\<^sub>R f x)"  | 
| 
67974
 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 
paulson <lp15@cam.ac.uk> 
parents: 
66164 
diff
changeset
 | 
540  | 
using assms by (simp add: interval_lebesgue_integral_def set_lebesgue_integral_def less_imp_le)  | 
| 68096 | 541  | 
also have "\<dots> = C"  | 
| 
67974
 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 
paulson <lp15@cam.ac.uk> 
parents: 
66164 
diff
changeset
 | 
542  | 
by (rule integral_monotone_convergence [OF 1 2 3 4 5])  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
543  | 
finally show "(LBINT x=a..b. f x) = C" .  | 
| 63329 | 544  | 
show "set_integrable lborel (einterval a b) f"  | 
| 
67974
 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 
paulson <lp15@cam.ac.uk> 
parents: 
66164 
diff
changeset
 | 
545  | 
unfolding set_integrable_def  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
546  | 
by (rule integrable_monotone_convergence[OF 1 2 3 4 5])  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
547  | 
qed  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
548  | 
|
| 
69681
 
689997a8a582
redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
 
immler 
parents: 
69680 
diff
changeset
 | 
549  | 
proposition interval_integral_Icc_approx_integrable:  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
550  | 
fixes u l :: "nat \<Rightarrow> real" and a b :: ereal  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
551  | 
  fixes f :: "real \<Rightarrow> 'a::{banach, second_countable_topology}"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
552  | 
assumes "a < b"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
553  | 
  assumes  approx: "einterval a b = (\<Union>i. {l i .. u i})"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
554  | 
"incseq u" "decseq l" "\<And>i. l i < u i" "\<And>i. a < l i" "\<And>i. u i < b"  | 
| 61969 | 555  | 
"l \<longlonglongrightarrow> a" "u \<longlonglongrightarrow> b"  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
556  | 
assumes f_integrable: "set_integrable lborel (einterval a b) f"  | 
| 61969 | 557  | 
shows "(\<lambda>i. LBINT x=l i.. u i. f x) \<longlonglongrightarrow> (LBINT x=a..b. f x)"  | 
| 
69681
 
689997a8a582
redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
 
immler 
parents: 
69680 
diff
changeset
 | 
558  | 
proof -  | 
| 61969 | 559  | 
  have "(\<lambda>i. LBINT x:{l i.. u i}. f x) \<longlonglongrightarrow> (LBINT x:einterval a b. f x)"
 | 
| 
67974
 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 
paulson <lp15@cam.ac.uk> 
parents: 
66164 
diff
changeset
 | 
560  | 
unfolding set_lebesgue_integral_def  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
561  | 
proof (rule integral_dominated_convergence)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
562  | 
show "integrable lborel (\<lambda>x. norm (indicator (einterval a b) x *\<^sub>R f x))"  | 
| 
67974
 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 
paulson <lp15@cam.ac.uk> 
parents: 
66164 
diff
changeset
 | 
563  | 
using f_integrable integrable_norm set_integrable_def by blast  | 
| 
 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 
paulson <lp15@cam.ac.uk> 
parents: 
66164 
diff
changeset
 | 
564  | 
show "(\<lambda>x. indicat_real (einterval a b) x *\<^sub>R f x) \<in> borel_measurable lborel"  | 
| 
 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 
paulson <lp15@cam.ac.uk> 
parents: 
66164 
diff
changeset
 | 
565  | 
using f_integrable by (simp add: set_integrable_def)  | 
| 
 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 
paulson <lp15@cam.ac.uk> 
parents: 
66164 
diff
changeset
 | 
566  | 
    then show "\<And>i. (\<lambda>x. indicat_real {l i..u i} x *\<^sub>R f x) \<in> borel_measurable lborel"
 | 
| 
 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 
paulson <lp15@cam.ac.uk> 
parents: 
66164 
diff
changeset
 | 
567  | 
by (rule set_borel_measurable_subset [unfolded set_borel_measurable_def]) (auto simp: approx)  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
568  | 
    show "\<And>i. AE x in lborel. norm (indicator {l i..u i} x *\<^sub>R f x) \<le> norm (indicator (einterval a b) x *\<^sub>R f x)"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
569  | 
by (intro AE_I2) (auto simp: approx split: split_indicator)  | 
| 61969 | 570  | 
    show "AE x in lborel. (\<lambda>i. indicator {l i..u i} x *\<^sub>R f x) \<longlonglongrightarrow> indicator (einterval a b) x *\<^sub>R f x"
 | 
| 
70365
 
4df0628e8545
a few new lemmas and a bit of tidying
 
paulson <lp15@cam.ac.uk> 
parents: 
70136 
diff
changeset
 | 
571  | 
proof (intro AE_I2 tendsto_intros tendsto_eventually)  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
572  | 
fix x  | 
| 63329 | 573  | 
      { fix i assume "l i \<le> x" "x \<le> u i"
 | 
| 61808 | 574  | 
with \<open>incseq u\<close>[THEN incseqD, of i] \<open>decseq l\<close>[THEN decseqD, of i]  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
575  | 
have "eventually (\<lambda>i. l i \<le> x \<and> x \<le> u i) sequentially"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
576  | 
by (auto simp: eventually_sequentially decseq_def incseq_def intro: order_trans) }  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
577  | 
      then show "eventually (\<lambda>xa. indicator {l xa..u xa} x = (indicator (einterval a b) x::real)) sequentially"
 | 
| 61969 | 578  | 
using approx order_tendstoD(2)[OF \<open>l \<longlonglongrightarrow> a\<close>, of x] order_tendstoD(1)[OF \<open>u \<longlonglongrightarrow> b\<close>, of x]  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
579  | 
by (auto split: split_indicator)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
580  | 
qed  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
581  | 
qed  | 
| 61808 | 582  | 
with \<open>a < b\<close> \<open>\<And>i. l i < u i\<close> show ?thesis  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
583  | 
by (simp add: interval_lebesgue_integral_le_eq[symmetric] interval_integral_Icc less_imp_le)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
584  | 
qed  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
585  | 
|
| 69683 | 586  | 
subsection\<open>A slightly stronger Fundamental Theorem of Calculus\<close>  | 
| 
67974
 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 
paulson <lp15@cam.ac.uk> 
parents: 
66164 
diff
changeset
 | 
587  | 
|
| 
 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 
paulson <lp15@cam.ac.uk> 
parents: 
66164 
diff
changeset
 | 
588  | 
text\<open>Three versions: first, for finite intervals, and then two versions for  | 
| 
 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 
paulson <lp15@cam.ac.uk> 
parents: 
66164 
diff
changeset
 | 
589  | 
arbitrary intervals.\<close>  | 
| 
 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 
paulson <lp15@cam.ac.uk> 
parents: 
66164 
diff
changeset
 | 
590  | 
|
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
591  | 
(*  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
592  | 
TODO: make the older versions corollaries of these (using continuous_at_imp_continuous_on, etc.)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
593  | 
*)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
594  | 
|
| 
69681
 
689997a8a582
redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
 
immler 
parents: 
69680 
diff
changeset
 | 
595  | 
lemma interval_integral_FTC_finite:  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
596  | 
fixes f F :: "real \<Rightarrow> 'a::euclidean_space" and a b :: real  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
597  | 
  assumes f: "continuous_on {min a b..max a b} f"
 | 
| 63329 | 598  | 
assumes F: "\<And>x. min a b \<le> x \<Longrightarrow> x \<le> max a b \<Longrightarrow> (F has_vector_derivative (f x)) (at x within  | 
599  | 
    {min a b..max a b})"
 | 
|
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
600  | 
shows "(LBINT x=a..b. f x) = F b - F a"  | 
| 
69681
 
689997a8a582
redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
 
immler 
parents: 
69680 
diff
changeset
 | 
601  | 
proof (cases "a \<le> b")  | 
| 
67974
 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 
paulson <lp15@cam.ac.uk> 
parents: 
66164 
diff
changeset
 | 
602  | 
case True  | 
| 
 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 
paulson <lp15@cam.ac.uk> 
parents: 
66164 
diff
changeset
 | 
603  | 
  have "(LBINT x=a..b. f x) = (LBINT x. indicat_real {a..b} x *\<^sub>R f x)"
 | 
| 
 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 
paulson <lp15@cam.ac.uk> 
parents: 
66164 
diff
changeset
 | 
604  | 
by (simp add: True interval_integral_Icc set_lebesgue_integral_def)  | 
| 68096 | 605  | 
also have "\<dots> = F b - F a"  | 
| 
67974
 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 
paulson <lp15@cam.ac.uk> 
parents: 
66164 
diff
changeset
 | 
606  | 
proof (rule integral_FTC_atLeastAtMost [OF True])  | 
| 
 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 
paulson <lp15@cam.ac.uk> 
parents: 
66164 
diff
changeset
 | 
607  | 
    show "continuous_on {a..b} f"
 | 
| 
 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 
paulson <lp15@cam.ac.uk> 
parents: 
66164 
diff
changeset
 | 
608  | 
using True f by linarith  | 
| 
 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 
paulson <lp15@cam.ac.uk> 
parents: 
66164 
diff
changeset
 | 
609  | 
    show "\<And>x. \<lbrakk>a \<le> x; x \<le> b\<rbrakk> \<Longrightarrow> (F has_vector_derivative f x) (at x within {a..b})"
 | 
| 
 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 
paulson <lp15@cam.ac.uk> 
parents: 
66164 
diff
changeset
 | 
610  | 
by (metis F True max.commute max_absorb1 min_def)  | 
| 
 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 
paulson <lp15@cam.ac.uk> 
parents: 
66164 
diff
changeset
 | 
611  | 
qed  | 
| 
 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 
paulson <lp15@cam.ac.uk> 
parents: 
66164 
diff
changeset
 | 
612  | 
finally show ?thesis .  | 
| 
 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 
paulson <lp15@cam.ac.uk> 
parents: 
66164 
diff
changeset
 | 
613  | 
next  | 
| 
 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 
paulson <lp15@cam.ac.uk> 
parents: 
66164 
diff
changeset
 | 
614  | 
case False  | 
| 
 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 
paulson <lp15@cam.ac.uk> 
parents: 
66164 
diff
changeset
 | 
615  | 
then have "b \<le> a"  | 
| 
 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 
paulson <lp15@cam.ac.uk> 
parents: 
66164 
diff
changeset
 | 
616  | 
by simp  | 
| 
 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 
paulson <lp15@cam.ac.uk> 
parents: 
66164 
diff
changeset
 | 
617  | 
  have "- interval_lebesgue_integral lborel (ereal b) (ereal a) f = - (LBINT x. indicat_real {b..a} x *\<^sub>R f x)"
 | 
| 
 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 
paulson <lp15@cam.ac.uk> 
parents: 
66164 
diff
changeset
 | 
618  | 
by (simp add: \<open>b \<le> a\<close> interval_integral_Icc set_lebesgue_integral_def)  | 
| 68096 | 619  | 
also have "\<dots> = F b - F a"  | 
| 
67974
 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 
paulson <lp15@cam.ac.uk> 
parents: 
66164 
diff
changeset
 | 
620  | 
proof (subst integral_FTC_atLeastAtMost [OF \<open>b \<le> a\<close>])  | 
| 
 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 
paulson <lp15@cam.ac.uk> 
parents: 
66164 
diff
changeset
 | 
621  | 
    show "continuous_on {b..a} f"
 | 
| 
 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 
paulson <lp15@cam.ac.uk> 
parents: 
66164 
diff
changeset
 | 
622  | 
using False f by linarith  | 
| 
 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 
paulson <lp15@cam.ac.uk> 
parents: 
66164 
diff
changeset
 | 
623  | 
show "\<And>x. \<lbrakk>b \<le> x; x \<le> a\<rbrakk>  | 
| 
 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 
paulson <lp15@cam.ac.uk> 
parents: 
66164 
diff
changeset
 | 
624  | 
         \<Longrightarrow> (F has_vector_derivative f x) (at x within {b..a})"
 | 
| 
 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 
paulson <lp15@cam.ac.uk> 
parents: 
66164 
diff
changeset
 | 
625  | 
by (metis F False max_def min_def)  | 
| 
 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 
paulson <lp15@cam.ac.uk> 
parents: 
66164 
diff
changeset
 | 
626  | 
qed auto  | 
| 
 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 
paulson <lp15@cam.ac.uk> 
parents: 
66164 
diff
changeset
 | 
627  | 
finally show ?thesis  | 
| 
 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 
paulson <lp15@cam.ac.uk> 
parents: 
66164 
diff
changeset
 | 
628  | 
by (metis interval_integral_endpoints_reverse)  | 
| 
 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 
paulson <lp15@cam.ac.uk> 
parents: 
66164 
diff
changeset
 | 
629  | 
qed  | 
| 
 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 
paulson <lp15@cam.ac.uk> 
parents: 
66164 
diff
changeset
 | 
630  | 
|
| 
 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 
paulson <lp15@cam.ac.uk> 
parents: 
66164 
diff
changeset
 | 
631  | 
|
| 
69681
 
689997a8a582
redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
 
immler 
parents: 
69680 
diff
changeset
 | 
632  | 
lemma interval_integral_FTC_nonneg:  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
633  | 
fixes f F :: "real \<Rightarrow> real" and a b :: ereal  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
634  | 
assumes "a < b"  | 
| 63329 | 635  | 
assumes F: "\<And>x. a < ereal x \<Longrightarrow> ereal x < b \<Longrightarrow> DERIV F x :> f x"  | 
636  | 
assumes f: "\<And>x. a < ereal x \<Longrightarrow> ereal x < b \<Longrightarrow> isCont f x"  | 
|
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
637  | 
assumes f_nonneg: "AE x in lborel. a < ereal x \<longrightarrow> ereal x < b \<longrightarrow> 0 \<le> f x"  | 
| 61973 | 638  | 
assumes A: "((F \<circ> real_of_ereal) \<longlongrightarrow> A) (at_right a)"  | 
639  | 
assumes B: "((F \<circ> real_of_ereal) \<longlongrightarrow> B) (at_left b)"  | 
|
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
640  | 
shows  | 
| 63329 | 641  | 
"set_integrable lborel (einterval a b) f"  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
642  | 
"(LBINT x=a..b. f x) = B - A"  | 
| 
69681
 
689997a8a582
redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
 
immler 
parents: 
69680 
diff
changeset
 | 
643  | 
proof -  | 
| 
68095
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
644  | 
obtain u l where approx:  | 
| 
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
645  | 
    "einterval a b = (\<Union>i. {l i .. u i})"
 | 
| 
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
646  | 
"incseq u" "decseq l" "\<And>i. l i < u i" "\<And>i. a < l i" "\<And>i. u i < b"  | 
| 
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
647  | 
"l \<longlonglongrightarrow> a" "u \<longlonglongrightarrow> b"  | 
| 
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
648  | 
by (blast intro: einterval_Icc_approximation[OF \<open>a < b\<close>])  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
649  | 
have [simp]: "\<And>x i. l i \<le> x \<Longrightarrow> a < ereal x"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
650  | 
by (rule order_less_le_trans, rule approx, force)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
651  | 
have [simp]: "\<And>x i. x \<le> u i \<Longrightarrow> ereal x < b"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
652  | 
by (rule order_le_less_trans, subst ereal_less_eq(3), assumption, rule approx)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
653  | 
have FTCi: "\<And>i. (LBINT x=l i..u i. f x) = F (u i) - F (l i)"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
654  | 
using assms approx apply (intro interval_integral_FTC_finite)  | 
| 68096 | 655  | 
apply (auto simp: less_imp_le min_def max_def  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
656  | 
has_field_derivative_iff_has_vector_derivative[symmetric])  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
657  | 
apply (rule continuous_at_imp_continuous_on, auto intro!: f)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
658  | 
by (rule DERIV_subset [OF F], auto)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
659  | 
  have 1: "\<And>i. set_integrable lborel {l i..u i} f"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
660  | 
proof -  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
661  | 
    fix i show "set_integrable lborel {l i .. u i} f"
 | 
| 
67974
 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 
paulson <lp15@cam.ac.uk> 
parents: 
66164 
diff
changeset
 | 
662  | 
using \<open>a < l i\<close> \<open>u i < b\<close> unfolding set_integrable_def  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
663  | 
by (intro borel_integrable_compact f continuous_at_imp_continuous_on compact_Icc ballI)  | 
| 68403 | 664  | 
(auto simp flip: ereal_less_eq)  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
665  | 
qed  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
666  | 
have 2: "set_borel_measurable lborel (einterval a b) f"  | 
| 
67974
 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 
paulson <lp15@cam.ac.uk> 
parents: 
66164 
diff
changeset
 | 
667  | 
unfolding set_borel_measurable_def  | 
| 
66164
 
2d79288b042c
New theorems and much tidying up of the old ones
 
paulson <lp15@cam.ac.uk> 
parents: 
63941 
diff
changeset
 | 
668  | 
by (auto simp del: real_scaleR_def intro!: borel_measurable_continuous_on_indicator  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
669  | 
simp: continuous_on_eq_continuous_at einterval_iff f)  | 
| 61969 | 670  | 
have 3: "(\<lambda>i. LBINT x=l i..u i. f x) \<longlonglongrightarrow> B - A"  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
671  | 
apply (subst FTCi)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
672  | 
apply (intro tendsto_intros)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
673  | 
using B approx unfolding tendsto_at_iff_sequentially comp_def  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
674  | 
using tendsto_at_iff_sequentially[where 'a=real]  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
675  | 
apply (elim allE[of _ "\<lambda>i. ereal (u i)"], auto)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
676  | 
using A approx unfolding tendsto_at_iff_sequentially comp_def  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
677  | 
by (elim allE[of _ "\<lambda>i. ereal (l i)"], auto)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
678  | 
show "(LBINT x=a..b. f x) = B - A"  | 
| 61808 | 679  | 
by (rule interval_integral_Icc_approx_nonneg [OF \<open>a < b\<close> approx 1 f_nonneg 2 3])  | 
| 63329 | 680  | 
show "set_integrable lborel (einterval a b) f"  | 
| 61808 | 681  | 
by (rule interval_integral_Icc_approx_nonneg [OF \<open>a < b\<close> approx 1 f_nonneg 2 3])  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
682  | 
qed  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
683  | 
|
| 
69681
 
689997a8a582
redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
 
immler 
parents: 
69680 
diff
changeset
 | 
684  | 
theorem interval_integral_FTC_integrable:  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
685  | 
fixes f F :: "real \<Rightarrow> 'a::euclidean_space" and a b :: ereal  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
686  | 
assumes "a < b"  | 
| 63329 | 687  | 
assumes F: "\<And>x. a < ereal x \<Longrightarrow> ereal x < b \<Longrightarrow> (F has_vector_derivative f x) (at x)"  | 
688  | 
assumes f: "\<And>x. a < ereal x \<Longrightarrow> ereal x < b \<Longrightarrow> isCont f x"  | 
|
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
689  | 
assumes f_integrable: "set_integrable lborel (einterval a b) f"  | 
| 61973 | 690  | 
assumes A: "((F \<circ> real_of_ereal) \<longlongrightarrow> A) (at_right a)"  | 
691  | 
assumes B: "((F \<circ> real_of_ereal) \<longlongrightarrow> B) (at_left b)"  | 
|
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
692  | 
shows "(LBINT x=a..b. f x) = B - A"  | 
| 
69681
 
689997a8a582
redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
 
immler 
parents: 
69680 
diff
changeset
 | 
693  | 
proof -  | 
| 
68095
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
694  | 
obtain u l where approx:  | 
| 
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
695  | 
    "einterval a b = (\<Union>i. {l i .. u i})"
 | 
| 
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
696  | 
"incseq u" "decseq l" "\<And>i. l i < u i" "\<And>i. a < l i" "\<And>i. u i < b"  | 
| 
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
697  | 
"l \<longlonglongrightarrow> a" "u \<longlonglongrightarrow> b"  | 
| 
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
698  | 
by (blast intro: einterval_Icc_approximation[OF \<open>a < b\<close>])  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
699  | 
have [simp]: "\<And>x i. l i \<le> x \<Longrightarrow> a < ereal x"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
700  | 
by (rule order_less_le_trans, rule approx, force)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
701  | 
have [simp]: "\<And>x i. x \<le> u i \<Longrightarrow> ereal x < b"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
702  | 
by (rule order_le_less_trans, subst ereal_less_eq(3), assumption, rule approx)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
703  | 
have FTCi: "\<And>i. (LBINT x=l i..u i. f x) = F (u i) - F (l i)"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
704  | 
using assms approx  | 
| 68096 | 705  | 
by (auto simp: less_imp_le min_def max_def  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
706  | 
intro!: f continuous_at_imp_continuous_on interval_integral_FTC_finite  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
707  | 
intro: has_vector_derivative_at_within)  | 
| 61969 | 708  | 
have "(\<lambda>i. LBINT x=l i..u i. f x) \<longlonglongrightarrow> B - A"  | 
| 68096 | 709  | 
unfolding FTCi  | 
710  | 
proof (intro tendsto_intros)  | 
|
711  | 
show "(\<lambda>x. F (l x)) \<longlonglongrightarrow> A"  | 
|
712  | 
using A approx unfolding tendsto_at_iff_sequentially comp_def  | 
|
713  | 
by (elim allE[of _ "\<lambda>i. ereal (l i)"], auto)  | 
|
714  | 
show "(\<lambda>x. F (u x)) \<longlonglongrightarrow> B"  | 
|
715  | 
using B approx unfolding tendsto_at_iff_sequentially comp_def  | 
|
716  | 
by (elim allE[of _ "\<lambda>i. ereal (u i)"], auto)  | 
|
717  | 
qed  | 
|
| 61969 | 718  | 
moreover have "(\<lambda>i. LBINT x=l i..u i. f x) \<longlonglongrightarrow> (LBINT x=a..b. f x)"  | 
| 61808 | 719  | 
by (rule interval_integral_Icc_approx_integrable [OF \<open>a < b\<close> approx f_integrable])  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
720  | 
ultimately show ?thesis  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
721  | 
by (elim LIMSEQ_unique)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
722  | 
qed  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
723  | 
|
| 63329 | 724  | 
(*  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
725  | 
The second Fundamental Theorem of Calculus and existence of antiderivatives on an  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
726  | 
einterval.  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
727  | 
*)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
728  | 
|
| 
69681
 
689997a8a582
redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
 
immler 
parents: 
69680 
diff
changeset
 | 
729  | 
theorem interval_integral_FTC2:  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
730  | 
fixes a b c :: real and f :: "real \<Rightarrow> 'a::euclidean_space"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
731  | 
assumes "a \<le> c" "c \<le> b"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
732  | 
  and contf: "continuous_on {a..b} f"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
733  | 
fixes x :: real  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
734  | 
assumes "a \<le> x" and "x \<le> b"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
735  | 
  shows "((\<lambda>u. LBINT y=c..u. f y) has_vector_derivative (f x)) (at x within {a..b})"
 | 
| 
69681
 
689997a8a582
redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
 
immler 
parents: 
69680 
diff
changeset
 | 
736  | 
proof -  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
737  | 
let ?F = "(\<lambda>u. LBINT y=a..u. f y)"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
738  | 
  have intf: "set_integrable lborel {a..b} f"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
739  | 
by (rule borel_integrable_atLeastAtMost', rule contf)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
740  | 
  have "((\<lambda>u. integral {a..u} f) has_vector_derivative f x) (at x within {a..b})"
 | 
| 68096 | 741  | 
using \<open>a \<le> x\<close> \<open>x \<le> b\<close>  | 
742  | 
by (auto intro: integral_has_vector_derivative continuous_on_subset [OF contf])  | 
|
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
743  | 
  then have "((\<lambda>u. integral {a..u} f) has_vector_derivative (f x)) (at x within {a..b})"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
744  | 
by simp  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
745  | 
  then have "(?F has_vector_derivative (f x)) (at x within {a..b})"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
746  | 
by (rule has_vector_derivative_weaken)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
747  | 
(auto intro!: assms interval_integral_eq_integral[symmetric] set_integrable_subset [OF intf])  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
748  | 
  then have "((\<lambda>x. (LBINT y=c..a. f y) + ?F x) has_vector_derivative (f x)) (at x within {a..b})"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
749  | 
by (auto intro!: derivative_eq_intros)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
750  | 
then show ?thesis  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
751  | 
proof (rule has_vector_derivative_weaken)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
752  | 
    fix u assume "u \<in> {a .. b}"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
753  | 
then show "(LBINT y=c..a. f y) + (LBINT y=a..u. f y) = (LBINT y=c..u. f y)"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
754  | 
using assms  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
755  | 
apply (intro interval_integral_sum)  | 
| 68096 | 756  | 
apply (auto simp: interval_lebesgue_integrable_def simp del: real_scaleR_def)  | 
757  | 
by (rule set_integrable_subset [OF intf], auto simp: min_def max_def)  | 
|
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
758  | 
qed (insert assms, auto)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
759  | 
qed  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
760  | 
|
| 
69681
 
689997a8a582
redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
 
immler 
parents: 
69680 
diff
changeset
 | 
761  | 
proposition einterval_antiderivative:  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
762  | 
fixes a b :: ereal and f :: "real \<Rightarrow> 'a::euclidean_space"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
763  | 
assumes "a < b" and contf: "\<And>x :: real. a < x \<Longrightarrow> x < b \<Longrightarrow> isCont f x"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
764  | 
shows "\<exists>F. \<forall>x :: real. a < x \<longrightarrow> x < b \<longrightarrow> (F has_vector_derivative f x) (at x)"  | 
| 
69681
 
689997a8a582
redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
 
immler 
parents: 
69680 
diff
changeset
 | 
765  | 
proof -  | 
| 63329 | 766  | 
from einterval_nonempty [OF \<open>a < b\<close>] obtain c :: real where [simp]: "a < c" "c < b"  | 
| 68096 | 767  | 
by (auto simp: einterval_def)  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
768  | 
let ?F = "(\<lambda>u. LBINT y=c..u. f y)"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
769  | 
show ?thesis  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
770  | 
proof (rule exI, clarsimp)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
771  | 
fix x :: real  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
772  | 
assume [simp]: "a < x" "x < b"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
773  | 
have 1: "a < min c x" by simp  | 
| 63329 | 774  | 
from einterval_nonempty [OF 1] obtain d :: real where [simp]: "a < d" "d < c" "d < x"  | 
| 68096 | 775  | 
by (auto simp: einterval_def)  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
776  | 
have 2: "max c x < b" by simp  | 
| 63329 | 777  | 
from einterval_nonempty [OF 2] obtain e :: real where [simp]: "c < e" "x < e" "e < b"  | 
| 68096 | 778  | 
by (auto simp: einterval_def)  | 
| 
68095
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
779  | 
    have "(?F has_vector_derivative f x) (at x within {d<..<e})"
 | 
| 
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
780  | 
    proof (rule has_vector_derivative_within_subset [of _ _ _ "{d..e}"])
 | 
| 
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
781  | 
      have "continuous_on {d..e} f"
 | 
| 
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
782  | 
proof (intro continuous_at_imp_continuous_on ballI contf; clarsimp)  | 
| 
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
783  | 
show "\<And>x. \<lbrakk>d \<le> x; x \<le> e\<rbrakk> \<Longrightarrow> a < ereal x"  | 
| 
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
784  | 
using \<open>a < ereal d\<close> ereal_less_ereal_Ex by auto  | 
| 
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
785  | 
show "\<And>x. \<lbrakk>d \<le> x; x \<le> e\<rbrakk> \<Longrightarrow> ereal x < b"  | 
| 
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
786  | 
using \<open>ereal e < b\<close> ereal_less_eq(3) le_less_trans by blast  | 
| 
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
787  | 
qed  | 
| 
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
788  | 
      then show "(?F has_vector_derivative f x) (at x within {d..e})"
 | 
| 
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
789  | 
by (intro interval_integral_FTC2) (use \<open>d < c\<close> \<open>c < e\<close> \<open>d < x\<close> \<open>x < e\<close> in \<open>linarith+\<close>)  | 
| 
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
790  | 
qed auto  | 
| 
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
791  | 
then show "(?F has_vector_derivative f x) (at x)"  | 
| 68096 | 792  | 
      by (force simp: has_vector_derivative_within_open [of _ "{d<..<e}"])
 | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
793  | 
qed  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
794  | 
qed  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
795  | 
|
| 69683 | 796  | 
subsection\<open>The substitution theorem\<close>  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
797  | 
|
| 
67974
 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 
paulson <lp15@cam.ac.uk> 
parents: 
66164 
diff
changeset
 | 
798  | 
text\<open>Once again, three versions: first, for finite intervals, and then two versions for  | 
| 
 
3f352a91b45a
replacement of set integral abbreviations by actual definitions!
 
paulson <lp15@cam.ac.uk> 
parents: 
66164 
diff
changeset
 | 
799  | 
arbitrary intervals.\<close>  | 
| 63329 | 800  | 
|
| 
69681
 
689997a8a582
redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
 
immler 
parents: 
69680 
diff
changeset
 | 
801  | 
theorem interval_integral_substitution_finite:  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
802  | 
fixes a b :: real and f :: "real \<Rightarrow> 'a::euclidean_space"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
803  | 
assumes "a \<le> b"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
804  | 
  and derivg: "\<And>x. a \<le> x \<Longrightarrow> x \<le> b \<Longrightarrow> (g has_real_derivative (g' x)) (at x within {a..b})"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
805  | 
  and contf : "continuous_on (g ` {a..b}) f"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
806  | 
  and contg': "continuous_on {a..b} g'"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
807  | 
shows "LBINT x=a..b. g' x *\<^sub>R f (g x) = LBINT y=g a..g b. f y"  | 
| 
69681
 
689997a8a582
redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
 
immler 
parents: 
69680 
diff
changeset
 | 
808  | 
proof-  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
809  | 
  have v_derivg: "\<And>x. a \<le> x \<Longrightarrow> x \<le> b \<Longrightarrow> (g has_vector_derivative (g' x)) (at x within {a..b})"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
810  | 
using derivg unfolding has_field_derivative_iff_has_vector_derivative .  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
811  | 
  then have contg [simp]: "continuous_on {a..b} g"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
812  | 
by (rule continuous_on_vector_derivative) auto  | 
| 68096 | 813  | 
  have 1: "\<exists>x\<in>{a..b}. u = g x" if "min (g a) (g b) \<le> u" "u \<le> max (g a) (g b)" for u
 | 
814  | 
by (cases "g a \<le> g b") (use that assms IVT' [of g a u b] IVT2' [of g b u a] in \<open>auto simp: min_def max_def\<close>)  | 
|
815  | 
  obtain c d where g_im: "g ` {a..b} = {c..d}" and "c \<le> d"
 | 
|
816  | 
by (metis continuous_image_closed_interval contg \<open>a \<le> b\<close>)  | 
|
817  | 
obtain F where derivF:  | 
|
818  | 
         "\<And>x. \<lbrakk>a \<le> x; x \<le> b\<rbrakk> \<Longrightarrow> (F has_vector_derivative (f (g x))) (at (g x) within (g ` {a..b}))" 
 | 
|
819  | 
using continuous_on_subset [OF contf] g_im  | 
|
820  | 
by (metis antiderivative_continuous atLeastAtMost_iff image_subset_iff set_eq_subset)  | 
|
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
821  | 
  have contfg: "continuous_on {a..b} (\<lambda>x. f (g x))"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
822  | 
by (blast intro: continuous_on_compose2 contf contg)  | 
| 68096 | 823  | 
  have "LBINT x. indicat_real {a..b} x *\<^sub>R g' x *\<^sub>R f (g x) = F (g b) - F (g a)"
 | 
824  | 
apply (rule integral_FTC_atLeastAtMost  | 
|
825  | 
[OF \<open>a \<le> b\<close> vector_diff_chain_within[OF v_derivg derivF, unfolded comp_def]])  | 
|
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
826  | 
apply (auto intro!: continuous_on_scaleR contg' contfg)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
827  | 
done  | 
| 68096 | 828  | 
then have "LBINT x=a..b. g' x *\<^sub>R f (g x) = F (g b) - F (g a)"  | 
829  | 
by (simp add: assms interval_integral_Icc set_lebesgue_integral_def)  | 
|
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
830  | 
moreover have "LBINT y=(g a)..(g b). f y = F (g b) - F (g a)"  | 
| 68096 | 831  | 
proof (rule interval_integral_FTC_finite)  | 
832  | 
    show "continuous_on {min (g a) (g b)..max (g a) (g b)} f"
 | 
|
833  | 
by (rule continuous_on_subset [OF contf]) (auto simp: image_def 1)  | 
|
834  | 
    show "(F has_vector_derivative f y) (at y within {min (g a) (g b)..max (g a) (g b)})" 
 | 
|
835  | 
if y: "min (g a) (g b) \<le> y" "y \<le> max (g a) (g b)" for y  | 
|
836  | 
proof -  | 
|
837  | 
obtain x where "a \<le> x" "x \<le> b" "y = g x"  | 
|
838  | 
using 1 y by force  | 
|
839  | 
then show ?thesis  | 
|
840  | 
by (auto simp: image_def intro!: 1 has_vector_derivative_within_subset [OF derivF])  | 
|
841  | 
qed  | 
|
842  | 
qed  | 
|
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
843  | 
ultimately show ?thesis by simp  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
844  | 
qed  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
845  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
846  | 
(* TODO: is it possible to lift the assumption here that g' is nonnegative? *)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
847  | 
|
| 
69681
 
689997a8a582
redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
 
immler 
parents: 
69680 
diff
changeset
 | 
848  | 
theorem interval_integral_substitution_integrable:  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
849  | 
fixes f :: "real \<Rightarrow> 'a::euclidean_space" and a b u v :: ereal  | 
| 63329 | 850  | 
assumes "a < b"  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
851  | 
and deriv_g: "\<And>x. a < ereal x \<Longrightarrow> ereal x < b \<Longrightarrow> DERIV g x :> g' x"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
852  | 
and contf: "\<And>x. a < ereal x \<Longrightarrow> ereal x < b \<Longrightarrow> isCont f (g x)"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
853  | 
and contg': "\<And>x. a < ereal x \<Longrightarrow> ereal x < b \<Longrightarrow> isCont g' x"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
854  | 
and g'_nonneg: "\<And>x. a \<le> ereal x \<Longrightarrow> ereal x \<le> b \<Longrightarrow> 0 \<le> g' x"  | 
| 61973 | 855  | 
and A: "((ereal \<circ> g \<circ> real_of_ereal) \<longlongrightarrow> A) (at_right a)"  | 
856  | 
and B: "((ereal \<circ> g \<circ> real_of_ereal) \<longlongrightarrow> B) (at_left b)"  | 
|
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
857  | 
and integrable: "set_integrable lborel (einterval a b) (\<lambda>x. g' x *\<^sub>R f (g x))"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
858  | 
and integrable2: "set_integrable lborel (einterval A B) (\<lambda>x. f x)"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
859  | 
shows "(LBINT x=A..B. f x) = (LBINT x=a..b. g' x *\<^sub>R f (g x))"  | 
| 
69681
 
689997a8a582
redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
 
immler 
parents: 
69680 
diff
changeset
 | 
860  | 
proof -  | 
| 
68095
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
861  | 
obtain u l where approx [simp]:  | 
| 
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
862  | 
    "einterval a b = (\<Union>i. {l i .. u i})"
 | 
| 
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
863  | 
"incseq u" "decseq l" "\<And>i. l i < u i" "\<And>i. a < l i" "\<And>i. u i < b"  | 
| 
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
864  | 
"l \<longlonglongrightarrow> a" "u \<longlonglongrightarrow> b"  | 
| 
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
865  | 
by (blast intro: einterval_Icc_approximation[OF \<open>a < b\<close>])  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
866  | 
note less_imp_le [simp]  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
867  | 
have [simp]: "\<And>x i. l i \<le> x \<Longrightarrow> a < ereal x"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
868  | 
by (rule order_less_le_trans, rule approx, force)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
869  | 
have [simp]: "\<And>x i. x \<le> u i \<Longrightarrow> ereal x < b"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
870  | 
by (rule order_le_less_trans, subst ereal_less_eq(3), assumption, rule approx)  | 
| 
68095
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
871  | 
then have lessb[simp]: "\<And>i. l i < b"  | 
| 
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
872  | 
using approx(4) less_eq_real_def by blast  | 
| 63329 | 873  | 
have [simp]: "\<And>i. a < u i"  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
874  | 
by (rule order_less_trans, rule approx, auto, rule approx)  | 
| 
68095
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
875  | 
have lle[simp]: "\<And>i j. i \<le> j \<Longrightarrow> l j \<le> l i" by (rule decseqD, rule approx)  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
876  | 
have [simp]: "\<And>i j. i \<le> j \<Longrightarrow> u i \<le> u j" by (rule incseqD, rule approx)  | 
| 
68095
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
877  | 
have g_nondec [simp]: "g x \<le> g y" if "a < x" "x \<le> y" "y < b" for x y  | 
| 
68638
 
87d1bff264df
de-applying and meta-quantifying
 
paulson <lp15@cam.ac.uk> 
parents: 
68532 
diff
changeset
 | 
878  | 
proof (rule DERIV_nonneg_imp_nondecreasing [OF \<open>x \<le> y\<close>], intro exI conjI)  | 
| 
 
87d1bff264df
de-applying and meta-quantifying
 
paulson <lp15@cam.ac.uk> 
parents: 
68532 
diff
changeset
 | 
879  | 
show "\<And>u. x \<le> u \<Longrightarrow> u \<le> y \<Longrightarrow> (g has_real_derivative g' u) (at u)"  | 
| 
68095
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
880  | 
by (meson deriv_g ereal_less_eq(3) le_less_trans less_le_trans that)  | 
| 
68638
 
87d1bff264df
de-applying and meta-quantifying
 
paulson <lp15@cam.ac.uk> 
parents: 
68532 
diff
changeset
 | 
881  | 
show "\<And>u. x \<le> u \<Longrightarrow> u \<le> y \<Longrightarrow> 0 \<le> g' u"  | 
| 
68095
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
882  | 
by (meson assms(5) dual_order.trans le_ereal_le less_imp_le order_refl that)  | 
| 
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
883  | 
qed  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
884  | 
  have "A \<le> B" and un: "einterval A B = (\<Union>i. {g(l i)<..<g(u i)})"
 | 
| 63329 | 885  | 
proof -  | 
| 61969 | 886  | 
have A2: "(\<lambda>i. g (l i)) \<longlonglongrightarrow> A"  | 
| 68096 | 887  | 
using A apply (auto simp: einterval_def tendsto_at_iff_sequentially comp_def)  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
888  | 
by (drule_tac x = "\<lambda>i. ereal (l i)" in spec, auto)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
889  | 
hence A3: "\<And>i. g (l i) \<ge> A"  | 
| 
68532
 
f8b98d31ad45
Incorporating new/strengthened proofs from Library and AFP entries
 
paulson <lp15@cam.ac.uk> 
parents: 
68403 
diff
changeset
 | 
890  | 
by (intro decseq_ge, auto simp: decseq_def)  | 
| 61969 | 891  | 
have B2: "(\<lambda>i. g (u i)) \<longlonglongrightarrow> B"  | 
| 68096 | 892  | 
using B apply (auto simp: einterval_def tendsto_at_iff_sequentially comp_def)  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
893  | 
by (drule_tac x = "\<lambda>i. ereal (u i)" in spec, auto)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
894  | 
hence B3: "\<And>i. g (u i) \<le> B"  | 
| 68096 | 895  | 
by (intro incseq_le, auto simp: incseq_def)  | 
| 
68095
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
896  | 
have "ereal (g (l 0)) \<le> ereal (g (u 0))"  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
897  | 
by auto  | 
| 
68095
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
898  | 
then show "A \<le> B"  | 
| 
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
899  | 
by (meson A3 B3 order.trans)  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
900  | 
    { fix x :: real
 | 
| 63329 | 901  | 
assume "A < x" and "x < B"  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
902  | 
then have "eventually (\<lambda>i. ereal (g (l i)) < x \<and> x < ereal (g (u i))) sequentially"  | 
| 
68095
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
903  | 
by (fast intro: eventually_conj order_tendstoD A2 B2)  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
904  | 
hence "\<exists>i. g (l i) < x \<and> x < g (u i)"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
905  | 
by (simp add: eventually_sequentially, auto)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
906  | 
} note AB = this  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
907  | 
    show "einterval A B = (\<Union>i. {g(l i)<..<g(u i)})"
 | 
| 
68095
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
908  | 
proof  | 
| 
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
909  | 
      show "einterval A B \<subseteq> (\<Union>i. {g(l i)<..<g(u i)})"
 | 
| 68096 | 910  | 
by (auto simp: einterval_def AB)  | 
| 
68095
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
911  | 
      show "(\<Union>i. {g(l i)<..<g(u i)}) \<subseteq> einterval A B"
 | 
| 
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
912  | 
proof (clarsimp simp add: einterval_def, intro conjI)  | 
| 
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
913  | 
show "\<And>x i. \<lbrakk>g (l i) < x; x < g (u i)\<rbrakk> \<Longrightarrow> A < ereal x"  | 
| 
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
914  | 
using A3 le_ereal_less by blast  | 
| 
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
915  | 
show "\<And>x i. \<lbrakk>g (l i) < x; x < g (u i)\<rbrakk> \<Longrightarrow> ereal x < B"  | 
| 
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
916  | 
using B3 ereal_le_less by blast  | 
| 
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
917  | 
qed  | 
| 
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
918  | 
qed  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
919  | 
qed  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
920  | 
(* finally, the main argument *)  | 
| 
68095
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
921  | 
have eq1: "(LBINT x=l i.. u i. g' x *\<^sub>R f (g x)) = (LBINT y=g (l i)..g (u i). f y)" for i  | 
| 
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
922  | 
apply (rule interval_integral_substitution_finite [OF _ DERIV_subset [OF deriv_g]])  | 
| 
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
923  | 
unfolding has_field_derivative_iff_has_vector_derivative[symmetric]  | 
| 
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
924  | 
apply (auto intro!: continuous_at_imp_continuous_on contf contg')  | 
| 
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
925  | 
done  | 
| 61969 | 926  | 
have "(\<lambda>i. LBINT x=l i..u i. g' x *\<^sub>R f (g x)) \<longlonglongrightarrow> (LBINT x=a..b. g' x *\<^sub>R f (g x))"  | 
| 61808 | 927  | 
apply (rule interval_integral_Icc_approx_integrable [OF \<open>a < b\<close> approx])  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
928  | 
by (rule assms)  | 
| 61969 | 929  | 
hence 2: "(\<lambda>i. (LBINT y=g (l i)..g (u i). f y)) \<longlonglongrightarrow> (LBINT x=a..b. g' x *\<^sub>R f (g x))"  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
930  | 
by (simp add: eq1)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
931  | 
  have incseq: "incseq (\<lambda>i. {g (l i)<..<g (u i)})"
 | 
| 68096 | 932  | 
apply (auto simp: incseq_def)  | 
| 
68095
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
933  | 
using lessb lle approx(5) g_nondec le_less_trans apply blast  | 
| 
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
934  | 
by (force intro: less_le_trans)  | 
| 68096 | 935  | 
  have "(\<lambda>i. set_lebesgue_integral lborel {g (l i)<..<g (u i)} f)
 | 
936  | 
\<longlonglongrightarrow> set_lebesgue_integral lborel (einterval A B) f"  | 
|
937  | 
unfolding un by (rule set_integral_cont_up) (use incseq integrable2 un in auto)  | 
|
938  | 
then have "(\<lambda>i. (LBINT y=g (l i)..g (u i). f y)) \<longlonglongrightarrow> (LBINT x = A..B. f x)"  | 
|
939  | 
by (simp add: interval_lebesgue_integral_le_eq \<open>A \<le> B\<close>)  | 
|
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
940  | 
thus ?thesis by (intro LIMSEQ_unique [OF _ 2])  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
941  | 
qed  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
942  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
943  | 
(* TODO: the last two proofs are only slightly different. Factor out common part?  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
944  | 
An alternative: make the second one the main one, and then have another lemma  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
945  | 
that says that if f is nonnegative and all the other hypotheses hold, then it is integrable. *)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
946  | 
|
| 
69681
 
689997a8a582
redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
 
immler 
parents: 
69680 
diff
changeset
 | 
947  | 
theorem interval_integral_substitution_nonneg:  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
948  | 
fixes f g g':: "real \<Rightarrow> real" and a b u v :: ereal  | 
| 63329 | 949  | 
assumes "a < b"  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
950  | 
and deriv_g: "\<And>x. a < ereal x \<Longrightarrow> ereal x < b \<Longrightarrow> DERIV g x :> g' x"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
951  | 
and contf: "\<And>x. a < ereal x \<Longrightarrow> ereal x < b \<Longrightarrow> isCont f (g x)"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
952  | 
and contg': "\<And>x. a < ereal x \<Longrightarrow> ereal x < b \<Longrightarrow> isCont g' x"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
953  | 
and f_nonneg: "\<And>x. a < ereal x \<Longrightarrow> ereal x < b \<Longrightarrow> 0 \<le> f (g x)" (* TODO: make this AE? *)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
954  | 
and g'_nonneg: "\<And>x. a \<le> ereal x \<Longrightarrow> ereal x \<le> b \<Longrightarrow> 0 \<le> g' x"  | 
| 61973 | 955  | 
and A: "((ereal \<circ> g \<circ> real_of_ereal) \<longlongrightarrow> A) (at_right a)"  | 
956  | 
and B: "((ereal \<circ> g \<circ> real_of_ereal) \<longlongrightarrow> B) (at_left b)"  | 
|
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
957  | 
and integrable_fg: "set_integrable lborel (einterval a b) (\<lambda>x. f (g x) * g' x)"  | 
| 63329 | 958  | 
shows  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
959  | 
"set_integrable lborel (einterval A B) f"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
960  | 
"(LBINT x=A..B. f x) = (LBINT x=a..b. (f (g x) * g' x))"  | 
| 
69681
 
689997a8a582
redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
 
immler 
parents: 
69680 
diff
changeset
 | 
961  | 
proof -  | 
| 74362 | 962  | 
from einterval_Icc_approximation[OF \<open>a < b\<close>] obtain u l where approx [simp]:  | 
963  | 
    "einterval a b = (\<Union>i. {l i..u i})"
 | 
|
964  | 
"incseq u"  | 
|
965  | 
"decseq l"  | 
|
966  | 
"\<And>i. l i < u i"  | 
|
967  | 
"\<And>i. a < ereal (l i)"  | 
|
968  | 
"\<And>i. ereal (u i) < b"  | 
|
969  | 
"(\<lambda>x. ereal (l x)) \<longlonglongrightarrow> a"  | 
|
970  | 
"(\<lambda>x. ereal (u x)) \<longlonglongrightarrow> b" by this auto  | 
|
| 68096 | 971  | 
have aless[simp]: "\<And>x i. l i \<le> x \<Longrightarrow> a < ereal x"  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
972  | 
by (rule order_less_le_trans, rule approx, force)  | 
| 
68095
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
973  | 
have lessb[simp]: "\<And>x i. x \<le> u i \<Longrightarrow> ereal x < b"  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
974  | 
by (rule order_le_less_trans, subst ereal_less_eq(3), assumption, rule approx)  | 
| 
68095
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
975  | 
have llb[simp]: "\<And>i. l i < b"  | 
| 
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
976  | 
using lessb approx(4) less_eq_real_def by blast  | 
| 
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
977  | 
have alu[simp]: "\<And>i. a < u i"  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
978  | 
by (rule order_less_trans, rule approx, auto, rule approx)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
979  | 
have [simp]: "\<And>i j. i \<le> j \<Longrightarrow> l j \<le> l i" by (rule decseqD, rule approx)  | 
| 
68095
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
980  | 
have uleu[simp]: "\<And>i j. i \<le> j \<Longrightarrow> u i \<le> u j" by (rule incseqD, rule approx)  | 
| 
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
981  | 
have g_nondec [simp]: "g x \<le> g y" if "a < x" "x \<le> y" "y < b" for x y  | 
| 
68638
 
87d1bff264df
de-applying and meta-quantifying
 
paulson <lp15@cam.ac.uk> 
parents: 
68532 
diff
changeset
 | 
982  | 
proof (rule DERIV_nonneg_imp_nondecreasing [OF \<open>x \<le> y\<close>], intro exI conjI)  | 
| 
 
87d1bff264df
de-applying and meta-quantifying
 
paulson <lp15@cam.ac.uk> 
parents: 
68532 
diff
changeset
 | 
983  | 
show "\<And>u. x \<le> u \<Longrightarrow> u \<le> y \<Longrightarrow> (g has_real_derivative g' u) (at u)"  | 
| 
68095
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
984  | 
by (meson deriv_g ereal_less_eq(3) le_less_trans less_le_trans that)  | 
| 
68638
 
87d1bff264df
de-applying and meta-quantifying
 
paulson <lp15@cam.ac.uk> 
parents: 
68532 
diff
changeset
 | 
985  | 
show "\<And>u. x \<le> u \<Longrightarrow> u \<le> y \<Longrightarrow> 0 \<le> g' u"  | 
| 
68095
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
986  | 
by (meson g'_nonneg less_ereal.simps(1) less_trans not_less that)  | 
| 
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
987  | 
qed  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
988  | 
  have "A \<le> B" and un: "einterval A B = (\<Union>i. {g(l i)<..<g(u i)})"
 | 
| 63329 | 989  | 
proof -  | 
| 61969 | 990  | 
have A2: "(\<lambda>i. g (l i)) \<longlonglongrightarrow> A"  | 
| 68096 | 991  | 
using A apply (auto simp: einterval_def tendsto_at_iff_sequentially comp_def)  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
992  | 
by (drule_tac x = "\<lambda>i. ereal (l i)" in spec, auto)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
993  | 
hence A3: "\<And>i. g (l i) \<ge> A"  | 
| 
68532
 
f8b98d31ad45
Incorporating new/strengthened proofs from Library and AFP entries
 
paulson <lp15@cam.ac.uk> 
parents: 
68403 
diff
changeset
 | 
994  | 
by (intro decseq_ge, auto simp: decseq_def)  | 
| 61969 | 995  | 
have B2: "(\<lambda>i. g (u i)) \<longlonglongrightarrow> B"  | 
| 68096 | 996  | 
using B apply (auto simp: einterval_def tendsto_at_iff_sequentially comp_def)  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
997  | 
by (drule_tac x = "\<lambda>i. ereal (u i)" in spec, auto)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
998  | 
hence B3: "\<And>i. g (u i) \<le> B"  | 
| 68096 | 999  | 
by (intro incseq_le, auto simp: incseq_def)  | 
| 
68095
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
1000  | 
have "ereal (g (l 0)) \<le> ereal (g (u 0))"  | 
| 74362 | 1001  | 
by (auto simp: less_imp_le)  | 
| 
68095
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
1002  | 
then show "A \<le> B"  | 
| 
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
1003  | 
by (meson A3 B3 order.trans)  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
1004  | 
    { fix x :: real
 | 
| 63329 | 1005  | 
assume "A < x" and "x < B"  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
1006  | 
then have "eventually (\<lambda>i. ereal (g (l i)) < x \<and> x < ereal (g (u i))) sequentially"  | 
| 68096 | 1007  | 
by (fast intro: eventually_conj order_tendstoD A2 B2)  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
1008  | 
hence "\<exists>i. g (l i) < x \<and> x < g (u i)"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
1009  | 
by (simp add: eventually_sequentially, auto)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
1010  | 
} note AB = this  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
1011  | 
    show "einterval A B = (\<Union>i. {g(l i)<..<g(u i)})"
 | 
| 
68095
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
1012  | 
proof  | 
| 
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
1013  | 
      show "einterval A B \<subseteq> (\<Union>i. {g (l i)<..<g (u i)})"
 | 
| 68096 | 1014  | 
by (auto simp: einterval_def AB)  | 
| 
68095
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
1015  | 
      show "(\<Union>i. {g (l i)<..<g (u i)}) \<subseteq> einterval A B"
 | 
| 
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
1016  | 
apply (clarsimp simp: einterval_def, intro conjI)  | 
| 
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
1017  | 
using A3 le_ereal_less apply blast  | 
| 
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
1018  | 
using B3 ereal_le_less by blast  | 
| 
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
1019  | 
qed  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
1020  | 
qed  | 
| 
68095
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
1021  | 
(* finally, the main argument *)  | 
| 
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
1022  | 
have eq1: "(LBINT x=l i.. u i. (f (g x) * g' x)) = (LBINT y=g (l i)..g (u i). f y)" for i  | 
| 
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
1023  | 
proof -  | 
| 
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
1024  | 
have "(LBINT x=l i.. u i. g' x *\<^sub>R f (g x)) = (LBINT y=g (l i)..g (u i). f y)"  | 
| 
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
1025  | 
apply (rule interval_integral_substitution_finite [OF _ DERIV_subset [OF deriv_g]])  | 
| 
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
1026  | 
unfolding has_field_derivative_iff_has_vector_derivative[symmetric]  | 
| 74362 | 1027  | 
apply (auto simp: less_imp_le intro!: continuous_at_imp_continuous_on contf contg')  | 
| 
68095
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
1028  | 
done  | 
| 
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
1029  | 
then show ?thesis  | 
| 
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
1030  | 
by (simp add: ac_simps)  | 
| 
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
1031  | 
qed  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
1032  | 
  have incseq: "incseq (\<lambda>i. {g (l i)<..<g (u i)})"
 | 
| 
68095
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
1033  | 
apply (clarsimp simp add: incseq_def, intro conjI)  | 
| 
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
1034  | 
apply (meson llb antimono_def approx(3) approx(5) g_nondec le_less_trans)  | 
| 
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
1035  | 
using alu uleu approx(6) g_nondec less_le_trans by blast  | 
| 
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
1036  | 
have img: "\<exists>c \<ge> l i. c \<le> u i \<and> x = g c" if "g (l i) \<le> x" "x \<le> g (u i)" for x i  | 
| 
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
1037  | 
proof -  | 
| 
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
1038  | 
    have "continuous_on {l i..u i} g"
 | 
| 
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
1039  | 
by (force intro!: DERIV_isCont deriv_g continuous_at_imp_continuous_on)  | 
| 
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
1040  | 
with that show ?thesis  | 
| 
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
1041  | 
using IVT' [of g] approx(4) dual_order.strict_implies_order by blast  | 
| 
 
4fa3e63ecc7e
starting to tidy up Interval_Integral.thy
 
paulson <lp15@cam.ac.uk> 
parents: 
68046 
diff
changeset
 | 
1042  | 
qed  | 
| 68096 | 1043  | 
  have "continuous_on {g (l i)..g (u i)} f" for i
 | 
1044  | 
apply (intro continuous_intros continuous_at_imp_continuous_on)  | 
|
1045  | 
using contf img by force  | 
|
1046  | 
  then have int_f: "\<And>i. set_integrable lborel {g (l i)<..<g (u i)} f"
 | 
|
1047  | 
by (rule set_integrable_subset [OF borel_integrable_atLeastAtMost']) (auto intro: less_imp_le)  | 
|
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
1048  | 
  have integrable: "set_integrable lborel (\<Union>i. {g (l i)<..<g (u i)}) f"
 | 
| 68096 | 1049  | 
proof (intro pos_integrable_to_top incseq int_f)  | 
1050  | 
let ?l = "(LBINT x=a..b. f (g x) * g' x)"  | 
|
1051  | 
have "(\<lambda>i. LBINT x=l i..u i. f (g x) * g' x) \<longlonglongrightarrow> ?l"  | 
|
1052  | 
by (intro assms interval_integral_Icc_approx_integrable [OF \<open>a < b\<close> approx])  | 
|
1053  | 
hence "(\<lambda>i. (LBINT y=g (l i)..g (u i). f y)) \<longlonglongrightarrow> ?l"  | 
|
1054  | 
by (simp add: eq1)  | 
|
1055  | 
    then show "(\<lambda>i. set_lebesgue_integral lborel {g (l i)<..<g (u i)} f) \<longlonglongrightarrow> ?l"
 | 
|
| 74362 | 1056  | 
unfolding interval_lebesgue_integral_def by (auto simp: less_imp_le)  | 
| 68096 | 1057  | 
have "\<And>x i. g (l i) \<le> x \<Longrightarrow> x \<le> g (u i) \<Longrightarrow> 0 \<le> f x"  | 
1058  | 
using aless f_nonneg img lessb by blast  | 
|
1059  | 
    then show "\<And>x i. x \<in> {g (l i)<..<g (u i)} \<Longrightarrow> 0 \<le> f x"
 | 
|
1060  | 
using less_eq_real_def by auto  | 
|
1061  | 
qed (auto simp: greaterThanLessThan_borel)  | 
|
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
1062  | 
thus "set_integrable lborel (einterval A B) f"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
1063  | 
by (simp add: un)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
1064  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
1065  | 
have "(LBINT x=A..B. f x) = (LBINT x=a..b. g' x *\<^sub>R f (g x))"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
1066  | 
proof (rule interval_integral_substitution_integrable)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
1067  | 
show "set_integrable lborel (einterval a b) (\<lambda>x. g' x *\<^sub>R f (g x))"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
1068  | 
using integrable_fg by (simp add: ac_simps)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
1069  | 
qed fact+  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
1070  | 
then show "(LBINT x=A..B. f x) = (LBINT x=a..b. (f (g x) * g' x))"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
1071  | 
by (simp add: ac_simps)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
1072  | 
qed  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
1073  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
1074  | 
|
| 
63941
 
f353674c2528
move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
 
hoelzl 
parents: 
63886 
diff
changeset
 | 
1075  | 
syntax "_complex_lebesgue_borel_integral" :: "pttrn \<Rightarrow> real \<Rightarrow> complex"  | 
| 
 
f353674c2528
move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
 
hoelzl 
parents: 
63886 
diff
changeset
 | 
1076  | 
  ("(2CLBINT _. _)" [0,60] 60)
 | 
| 
 
f353674c2528
move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
 
hoelzl 
parents: 
63886 
diff
changeset
 | 
1077  | 
|
| 
 
f353674c2528
move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
 
hoelzl 
parents: 
63886 
diff
changeset
 | 
1078  | 
translations "CLBINT x. f" == "CONST complex_lebesgue_integral CONST lborel (\<lambda>x. f)"  | 
| 
 
f353674c2528
move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
 
hoelzl 
parents: 
63886 
diff
changeset
 | 
1079  | 
|
| 
 
f353674c2528
move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
 
hoelzl 
parents: 
63886 
diff
changeset
 | 
1080  | 
syntax "_complex_set_lebesgue_borel_integral" :: "pttrn \<Rightarrow> real set \<Rightarrow> real \<Rightarrow> complex"  | 
| 
 
f353674c2528
move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
 
hoelzl 
parents: 
63886 
diff
changeset
 | 
1081  | 
  ("(3CLBINT _:_. _)" [0,60,61] 60)
 | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
1082  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
1083  | 
translations  | 
| 
63941
 
f353674c2528
move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
 
hoelzl 
parents: 
63886 
diff
changeset
 | 
1084  | 
"CLBINT x:A. f" == "CONST complex_set_lebesgue_integral CONST lborel A (\<lambda>x. f)"  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
1085  | 
|
| 63329 | 1086  | 
abbreviation complex_interval_lebesgue_integral ::  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
1087  | 
"real measure \<Rightarrow> ereal \<Rightarrow> ereal \<Rightarrow> (real \<Rightarrow> complex) \<Rightarrow> complex" where  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
1088  | 
"complex_interval_lebesgue_integral M a b f \<equiv> interval_lebesgue_integral M a b f"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
1089  | 
|
| 63329 | 1090  | 
abbreviation complex_interval_lebesgue_integrable ::  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
1091  | 
"real measure \<Rightarrow> ereal \<Rightarrow> ereal \<Rightarrow> (real \<Rightarrow> complex) \<Rightarrow> bool" where  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
1092  | 
"complex_interval_lebesgue_integrable M a b f \<equiv> interval_lebesgue_integrable M a b f"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
1093  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
1094  | 
syntax  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
1095  | 
"_ascii_complex_interval_lebesgue_borel_integral" :: "pttrn \<Rightarrow> ereal \<Rightarrow> ereal \<Rightarrow> real \<Rightarrow> complex"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
1096  | 
  ("(4CLBINT _=_.._. _)" [0,60,60,61] 60)
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
1097  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
1098  | 
translations  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
1099  | 
"CLBINT x=a..b. f" == "CONST complex_interval_lebesgue_integral CONST lborel a b (\<lambda>x. f)"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
1100  | 
|
| 
69681
 
689997a8a582
redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
 
immler 
parents: 
69680 
diff
changeset
 | 
1101  | 
proposition interval_integral_norm:  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
1102  | 
  fixes f :: "real \<Rightarrow> 'a :: {banach, second_countable_topology}"
 | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
1103  | 
shows "interval_lebesgue_integrable lborel a b f \<Longrightarrow> a \<le> b \<Longrightarrow>  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
1104  | 
norm (LBINT t=a..b. f t) \<le> LBINT t=a..b. norm (f t)"  | 
| 70136 | 1105  | 
using integral_norm_bound[of lborel "\<lambda>x. indicator (einterval a b) x *\<^sub>R f x"]  | 
1106  | 
by (auto simp: interval_lebesgue_integral_def interval_lebesgue_integrable_def set_lebesgue_integral_def)  | 
|
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
1107  | 
|
| 
69681
 
689997a8a582
redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
 
immler 
parents: 
69680 
diff
changeset
 | 
1108  | 
proposition interval_integral_norm2:  | 
| 63329 | 1109  | 
"interval_lebesgue_integrable lborel a b f \<Longrightarrow>  | 
| 61945 | 1110  | 
norm (LBINT t=a..b. f t) \<le> \<bar>LBINT t=a..b. norm (f t)\<bar>"  | 
| 
69681
 
689997a8a582
redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
 
immler 
parents: 
69680 
diff
changeset
 | 
1111  | 
proof (induct a b rule: linorder_wlog)  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
1112  | 
case (sym a b) then show ?case  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
1113  | 
by (simp add: interval_integral_endpoints_reverse[of a b] interval_integrable_endpoints_reverse[of a b])  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
1114  | 
next  | 
| 63329 | 1115  | 
case (le a b)  | 
1116  | 
then have "\<bar>LBINT t=a..b. norm (f t)\<bar> = LBINT t=a..b. norm (f t)"  | 
|
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
1117  | 
using integrable_norm[of lborel "\<lambda>x. indicator (einterval a b) x *\<^sub>R f x"]  | 
| 68096 | 1118  | 
by (auto simp: interval_lebesgue_integral_def interval_lebesgue_integrable_def set_lebesgue_integral_def  | 
| 
59092
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
1119  | 
intro!: integral_nonneg_AE abs_of_nonneg)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
1120  | 
then show ?case  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
1121  | 
using le by (simp add: interval_integral_norm)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
1122  | 
qed  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
1123  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
1124  | 
(* TODO: should we have a library of facts like these? *)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
1125  | 
lemma integral_cos: "t \<noteq> 0 \<Longrightarrow> LBINT x=a..b. cos (t * x) = sin (t * b) / t - sin (t * a) / t"  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
1126  | 
apply (intro interval_integral_FTC_finite continuous_intros)  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
1127  | 
by (auto intro!: derivative_eq_intros simp: has_field_derivative_iff_has_vector_derivative[symmetric])  | 
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
1128  | 
|
| 
 
d469103c0737
add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
 
hoelzl 
parents:  
diff
changeset
 | 
1129  | 
end  |