| 
71137
 | 
     1  | 
section \<open>Neighbourhood bases and Locally path-connected spaces\<close>
  | 
| 
69945
 | 
     2  | 
  | 
| 
 | 
     3  | 
theory Locally
  | 
| 
 | 
     4  | 
  imports
  | 
| 
 | 
     5  | 
    Path_Connected Function_Topology
  | 
| 
 | 
     6  | 
begin
  | 
| 
 | 
     7  | 
  | 
| 
71137
 | 
     8  | 
subsection\<open>Neighbourhood Bases\<close>
  | 
| 
 | 
     9  | 
  | 
| 
 | 
    10  | 
text \<open>Useful for "local" properties of various kinds\<close>
  | 
| 
69945
 | 
    11  | 
  | 
| 
 | 
    12  | 
definition neighbourhood_base_at where
  | 
| 
 | 
    13  | 
 "neighbourhood_base_at x P X \<equiv>
  | 
| 
 | 
    14  | 
        \<forall>W. openin X W \<and> x \<in> W
  | 
| 
 | 
    15  | 
            \<longrightarrow> (\<exists>U V. openin X U \<and> P V \<and> x \<in> U \<and> U \<subseteq> V \<and> V \<subseteq> W)"
  | 
| 
 | 
    16  | 
  | 
| 
 | 
    17  | 
definition neighbourhood_base_of where
  | 
| 
 | 
    18  | 
 "neighbourhood_base_of P X \<equiv>
  | 
| 
 | 
    19  | 
        \<forall>x \<in> topspace X. neighbourhood_base_at x P X"
  | 
| 
 | 
    20  | 
  | 
| 
 | 
    21  | 
lemma neighbourhood_base_of:
  | 
| 
 | 
    22  | 
   "neighbourhood_base_of P X \<longleftrightarrow>
  | 
| 
 | 
    23  | 
        (\<forall>W x. openin X W \<and> x \<in> W
  | 
| 
 | 
    24  | 
          \<longrightarrow> (\<exists>U V. openin X U \<and> P V \<and> x \<in> U \<and> U \<subseteq> V \<and> V \<subseteq> W))"
  | 
| 
 | 
    25  | 
  unfolding neighbourhood_base_at_def neighbourhood_base_of_def
  | 
| 
 | 
    26  | 
  using openin_subset by blast
  | 
| 
 | 
    27  | 
  | 
| 
 | 
    28  | 
lemma neighbourhood_base_at_mono:
  | 
| 
 | 
    29  | 
   "\<lbrakk>neighbourhood_base_at x P X; \<And>S. \<lbrakk>P S; x \<in> S\<rbrakk> \<Longrightarrow> Q S\<rbrakk> \<Longrightarrow> neighbourhood_base_at x Q X"
  | 
| 
 | 
    30  | 
  unfolding neighbourhood_base_at_def
  | 
| 
 | 
    31  | 
  by (meson subset_eq)
  | 
| 
 | 
    32  | 
  | 
| 
 | 
    33  | 
lemma neighbourhood_base_of_mono:
  | 
| 
 | 
    34  | 
   "\<lbrakk>neighbourhood_base_of P X; \<And>S. P S \<Longrightarrow> Q S\<rbrakk> \<Longrightarrow> neighbourhood_base_of Q X"
  | 
| 
 | 
    35  | 
  unfolding neighbourhood_base_of_def
  | 
| 
 | 
    36  | 
  using neighbourhood_base_at_mono by force
  | 
| 
 | 
    37  | 
  | 
| 
 | 
    38  | 
lemma open_neighbourhood_base_at:
  | 
| 
 | 
    39  | 
   "(\<And>S. \<lbrakk>P S; x \<in> S\<rbrakk> \<Longrightarrow> openin X S)
  | 
| 
 | 
    40  | 
        \<Longrightarrow> neighbourhood_base_at x P X \<longleftrightarrow> (\<forall>W. openin X W \<and> x \<in> W \<longrightarrow> (\<exists>U. P U \<and> x \<in> U \<and> U \<subseteq> W))"
  | 
| 
 | 
    41  | 
  unfolding neighbourhood_base_at_def
  | 
| 
 | 
    42  | 
  by (meson subsetD)
  | 
| 
 | 
    43  | 
  | 
| 
 | 
    44  | 
lemma open_neighbourhood_base_of:
  | 
| 
 | 
    45  | 
  "(\<forall>S. P S \<longrightarrow> openin X S)
  | 
| 
 | 
    46  | 
        \<Longrightarrow> neighbourhood_base_of P X \<longleftrightarrow> (\<forall>W x. openin X W \<and> x \<in> W \<longrightarrow> (\<exists>U. P U \<and> x \<in> U \<and> U \<subseteq> W))"
  | 
| 
 | 
    47  | 
  apply (simp add: neighbourhood_base_of, safe, blast)
  | 
| 
 | 
    48  | 
  by meson
  | 
| 
 | 
    49  | 
  | 
| 
 | 
    50  | 
lemma neighbourhood_base_of_open_subset:
  | 
| 
 | 
    51  | 
   "\<lbrakk>neighbourhood_base_of P X; openin X S\<rbrakk>
  | 
| 
 | 
    52  | 
        \<Longrightarrow> neighbourhood_base_of P (subtopology X S)"
  | 
| 
 | 
    53  | 
  apply (clarsimp simp add: neighbourhood_base_of openin_subtopology_alt image_def)
  | 
| 
 | 
    54  | 
  apply (rename_tac x V)
  | 
| 
 | 
    55  | 
  apply (drule_tac x="S \<inter> V" in spec)
  | 
| 
 | 
    56  | 
  apply (simp add: Int_ac)
  | 
| 
 | 
    57  | 
  by (metis IntI le_infI1 openin_Int)
  | 
| 
 | 
    58  | 
  | 
| 
 | 
    59  | 
lemma neighbourhood_base_of_topology_base:
  | 
| 
 | 
    60  | 
   "openin X = arbitrary union_of (\<lambda>W. W \<in> \<B>)
  | 
| 
 | 
    61  | 
        \<Longrightarrow> neighbourhood_base_of P X \<longleftrightarrow>
  | 
| 
 | 
    62  | 
             (\<forall>W x. W \<in> \<B> \<and> x \<in> W  \<longrightarrow> (\<exists>U V. openin X U \<and> P V \<and> x \<in> U \<and> U \<subseteq> V \<and> V \<subseteq> W))"
  | 
| 
 | 
    63  | 
  apply (auto simp: openin_topology_base_unique neighbourhood_base_of)
  | 
| 
 | 
    64  | 
  by (meson subset_trans)
  | 
| 
 | 
    65  | 
  | 
| 
 | 
    66  | 
lemma neighbourhood_base_at_unlocalized:
  | 
| 
 | 
    67  | 
  assumes "\<And>S T. \<lbrakk>P S; openin X T; x \<in> T; T \<subseteq> S\<rbrakk> \<Longrightarrow> P T"
  | 
| 
 | 
    68  | 
  shows "neighbourhood_base_at x P X
  | 
| 
 | 
    69  | 
     \<longleftrightarrow> (x \<in> topspace X \<longrightarrow> (\<exists>U V. openin X U \<and> P V \<and> x \<in> U \<and> U \<subseteq> V \<and> V \<subseteq> topspace X))"
  | 
| 
 | 
    70  | 
         (is "?lhs = ?rhs")
  | 
| 
 | 
    71  | 
proof
  | 
| 
 | 
    72  | 
  assume R: ?rhs show ?lhs
  | 
| 
 | 
    73  | 
    unfolding neighbourhood_base_at_def
  | 
| 
 | 
    74  | 
  proof clarify
  | 
| 
 | 
    75  | 
    fix W
  | 
| 
 | 
    76  | 
    assume "openin X W" "x \<in> W"
  | 
| 
 | 
    77  | 
    then have "x \<in> topspace X"
  | 
| 
 | 
    78  | 
      using openin_subset by blast
  | 
| 
 | 
    79  | 
    with R obtain U V where "openin X U" "P V" "x \<in> U" "U \<subseteq> V" "V \<subseteq> topspace X"
  | 
| 
 | 
    80  | 
      by blast
  | 
| 
 | 
    81  | 
    then show "\<exists>U V. openin X U \<and> P V \<and> x \<in> U \<and> U \<subseteq> V \<and> V \<subseteq> W"
  | 
| 
 | 
    82  | 
      by (metis IntI \<open>openin X W\<close> \<open>x \<in> W\<close> assms inf_le1 inf_le2 openin_Int)
  | 
| 
 | 
    83  | 
  qed
  | 
| 
 | 
    84  | 
qed (simp add: neighbourhood_base_at_def)
  | 
| 
 | 
    85  | 
  | 
| 
 | 
    86  | 
lemma neighbourhood_base_at_with_subset:
  | 
| 
 | 
    87  | 
   "\<lbrakk>openin X U; x \<in> U\<rbrakk>
  | 
| 
 | 
    88  | 
        \<Longrightarrow> (neighbourhood_base_at x P X \<longleftrightarrow> neighbourhood_base_at x (\<lambda>T. T \<subseteq> U \<and> P T) X)"
  | 
| 
 | 
    89  | 
  apply (simp add: neighbourhood_base_at_def)
  | 
| 
 | 
    90  | 
  apply (metis IntI Int_subset_iff openin_Int)
  | 
| 
 | 
    91  | 
  done
  | 
| 
 | 
    92  | 
  | 
| 
 | 
    93  | 
lemma neighbourhood_base_of_with_subset:
  | 
| 
 | 
    94  | 
   "neighbourhood_base_of P X \<longleftrightarrow> neighbourhood_base_of (\<lambda>t. t \<subseteq> topspace X \<and> P t) X"
  | 
| 
 | 
    95  | 
  using neighbourhood_base_at_with_subset
  | 
| 
 | 
    96  | 
  by (fastforce simp add: neighbourhood_base_of_def)
  | 
| 
 | 
    97  | 
  | 
| 
 | 
    98  | 
subsection\<open>Locally path-connected spaces\<close>
  | 
| 
 | 
    99  | 
  | 
| 
 | 
   100  | 
definition weakly_locally_path_connected_at
  | 
| 
 | 
   101  | 
  where "weakly_locally_path_connected_at x X \<equiv> neighbourhood_base_at x (path_connectedin X) X"
  | 
| 
 | 
   102  | 
  | 
| 
 | 
   103  | 
definition locally_path_connected_at
  | 
| 
 | 
   104  | 
  where "locally_path_connected_at x X \<equiv>
  | 
| 
 | 
   105  | 
    neighbourhood_base_at x (\<lambda>U. openin X U \<and> path_connectedin X U) X"
  | 
| 
 | 
   106  | 
  | 
| 
 | 
   107  | 
definition locally_path_connected_space
  | 
| 
 | 
   108  | 
  where "locally_path_connected_space X \<equiv> neighbourhood_base_of (path_connectedin X) X"
  | 
| 
 | 
   109  | 
  | 
| 
 | 
   110  | 
lemma locally_path_connected_space_alt:
  | 
| 
 | 
   111  | 
  "locally_path_connected_space X \<longleftrightarrow> neighbourhood_base_of (\<lambda>U. openin X U \<and> path_connectedin X U) X"
  | 
| 
 | 
   112  | 
  (is "?P = ?Q")
  | 
| 
 | 
   113  | 
  and locally_path_connected_space_eq_open_path_component_of:
  | 
| 
 | 
   114  | 
  "locally_path_connected_space X \<longleftrightarrow>
  | 
| 
 | 
   115  | 
        (\<forall>U x. openin X U \<and> x \<in> U \<longrightarrow> openin X (Collect (path_component_of (subtopology X U) x)))"
  | 
| 
 | 
   116  | 
  (is "?P = ?R")
  | 
| 
 | 
   117  | 
proof -
  | 
| 
 | 
   118  | 
  have ?P if ?Q
  | 
| 
 | 
   119  | 
    using locally_path_connected_space_def neighbourhood_base_of_mono that by auto
  | 
| 
 | 
   120  | 
  moreover have ?R if P: ?P
  | 
| 
 | 
   121  | 
  proof -
  | 
| 
 | 
   122  | 
    show ?thesis
  | 
| 
 | 
   123  | 
    proof clarify
  | 
| 
 | 
   124  | 
      fix U y
  | 
| 
 | 
   125  | 
      assume "openin X U" "y \<in> U"
  | 
| 
 | 
   126  | 
      have "\<exists>T. openin X T \<and> x \<in> T \<and> T \<subseteq> Collect (path_component_of (subtopology X U) y)"
  | 
| 
 | 
   127  | 
        if "path_component_of (subtopology X U) y x" for x
  | 
| 
 | 
   128  | 
  | 
| 
 | 
   129  | 
      proof -
  | 
| 
 | 
   130  | 
        have "x \<in> U"
  | 
| 
 | 
   131  | 
          using path_component_of_equiv that topspace_subtopology by fastforce
  | 
| 
 | 
   132  | 
        then have "\<exists>Ua. openin X Ua \<and> (\<exists>V. path_connectedin X V \<and> x \<in> Ua \<and> Ua \<subseteq> V \<and> V \<subseteq> U)"
  | 
| 
 | 
   133  | 
      using P
  | 
| 
 | 
   134  | 
      by (simp add: \<open>openin X U\<close> locally_path_connected_space_def neighbourhood_base_of)
  | 
| 
 | 
   135  | 
        then show ?thesis
  | 
| 
 | 
   136  | 
          by (metis dual_order.trans path_component_of_equiv path_component_of_maximal path_connectedin_subtopology subset_iff that)
  | 
| 
 | 
   137  | 
      qed
  | 
| 
 | 
   138  | 
      then show "openin X (Collect (path_component_of (subtopology X U) y))"
  | 
| 
 | 
   139  | 
        using openin_subopen by force
  | 
| 
 | 
   140  | 
    qed
  | 
| 
 | 
   141  | 
  qed
  | 
| 
 | 
   142  | 
  moreover have ?Q if ?R
  | 
| 
 | 
   143  | 
    using that
  | 
| 
 | 
   144  | 
    apply (simp add: open_neighbourhood_base_of)
  | 
| 
 | 
   145  | 
    by (metis mem_Collect_eq openin_subset path_component_of_refl path_connectedin_path_component_of path_connectedin_subtopology that topspace_subtopology_subset)
  | 
| 
 | 
   146  | 
  ultimately show "?P = ?Q" "?P = ?R"
  | 
| 
 | 
   147  | 
    by blast+
  | 
| 
 | 
   148  | 
qed
  | 
| 
 | 
   149  | 
  | 
| 
 | 
   150  | 
lemma locally_path_connected_space:
  | 
| 
 | 
   151  | 
   "locally_path_connected_space X
  | 
| 
 | 
   152  | 
   \<longleftrightarrow> (\<forall>V x. openin X V \<and> x \<in> V \<longrightarrow> (\<exists>U. openin X U \<and> path_connectedin X U \<and> x \<in> U \<and> U \<subseteq> V))"
  | 
| 
 | 
   153  | 
  by (simp add: locally_path_connected_space_alt open_neighbourhood_base_of)
  | 
| 
 | 
   154  | 
  | 
| 
 | 
   155  | 
lemma locally_path_connected_space_open_path_components:
  | 
| 
 | 
   156  | 
   "locally_path_connected_space X \<longleftrightarrow>
  | 
| 
 | 
   157  | 
        (\<forall>U c. openin X U \<and> c \<in> path_components_of(subtopology X U) \<longrightarrow> openin X c)"
  | 
| 
71172
 | 
   158  | 
  apply (auto simp: locally_path_connected_space_eq_open_path_component_of path_components_of_def)
  | 
| 
69945
 | 
   159  | 
  by (metis imageI inf.absorb_iff2 openin_closedin_eq)
  | 
| 
 | 
   160  | 
  | 
| 
 | 
   161  | 
lemma openin_path_component_of_locally_path_connected_space:
  | 
| 
 | 
   162  | 
   "locally_path_connected_space X \<Longrightarrow> openin X (Collect (path_component_of X x))"
  | 
| 
 | 
   163  | 
  apply (auto simp: locally_path_connected_space_eq_open_path_component_of)
  | 
| 
 | 
   164  | 
  by (metis openin_empty openin_topspace path_component_of_eq_empty subtopology_topspace)
  | 
| 
 | 
   165  | 
  | 
| 
 | 
   166  | 
lemma openin_path_components_of_locally_path_connected_space:
  | 
| 
 | 
   167  | 
   "\<lbrakk>locally_path_connected_space X; c \<in> path_components_of X\<rbrakk> \<Longrightarrow> openin X c"
  | 
| 
 | 
   168  | 
  apply (auto simp: locally_path_connected_space_eq_open_path_component_of)
  | 
| 
 | 
   169  | 
  by (metis (no_types, lifting) imageE openin_topspace path_components_of_def subtopology_topspace)
  | 
| 
 | 
   170  | 
  | 
| 
 | 
   171  | 
lemma closedin_path_components_of_locally_path_connected_space:
  | 
| 
 | 
   172  | 
   "\<lbrakk>locally_path_connected_space X; c \<in> path_components_of X\<rbrakk> \<Longrightarrow> closedin X c"
  | 
| 
 | 
   173  | 
  by (simp add: closedin_def complement_path_components_of_Union openin_path_components_of_locally_path_connected_space openin_clauses(3) path_components_of_subset)
  | 
| 
 | 
   174  | 
  | 
| 
 | 
   175  | 
lemma closedin_path_component_of_locally_path_connected_space:
  | 
| 
 | 
   176  | 
  assumes "locally_path_connected_space X"
  | 
| 
 | 
   177  | 
  shows "closedin X (Collect (path_component_of X x))"
  | 
| 
 | 
   178  | 
proof (cases "x \<in> topspace X")
  | 
| 
 | 
   179  | 
  case True
  | 
| 
 | 
   180  | 
  then show ?thesis
  | 
| 
 | 
   181  | 
    by (simp add: assms closedin_path_components_of_locally_path_connected_space path_component_in_path_components_of)
  | 
| 
 | 
   182  | 
next
  | 
| 
 | 
   183  | 
  case False
  | 
| 
 | 
   184  | 
  then show ?thesis
  | 
| 
 | 
   185  | 
    by (metis closedin_empty path_component_of_eq_empty)
  | 
| 
 | 
   186  | 
qed
  | 
| 
 | 
   187  | 
  | 
| 
 | 
   188  | 
lemma weakly_locally_path_connected_at:
  | 
| 
 | 
   189  | 
   "weakly_locally_path_connected_at x X \<longleftrightarrow>
  | 
| 
 | 
   190  | 
    (\<forall>V. openin X V \<and> x \<in> V
  | 
| 
 | 
   191  | 
          \<longrightarrow> (\<exists>U. openin X U \<and> x \<in> U \<and> U \<subseteq> V \<and>
  | 
| 
 | 
   192  | 
                  (\<forall>y \<in> U. \<exists>C. path_connectedin X C \<and> C \<subseteq> V \<and> x \<in> C \<and> y \<in> C)))"
  | 
| 
 | 
   193  | 
         (is "?lhs = ?rhs")
  | 
| 
 | 
   194  | 
proof
  | 
| 
 | 
   195  | 
  assume ?lhs then show ?rhs
  | 
| 
 | 
   196  | 
    apply (simp add: weakly_locally_path_connected_at_def neighbourhood_base_at_def)
  | 
| 
 | 
   197  | 
    by (meson order_trans subsetD)
  | 
| 
 | 
   198  | 
next
  | 
| 
 | 
   199  | 
  have *: "\<exists>V. path_connectedin X V \<and> U \<subseteq> V \<and> V \<subseteq> W"
  | 
| 
 | 
   200  | 
    if "(\<forall>y\<in>U. \<exists>C. path_connectedin X C \<and> C \<subseteq> W \<and> x \<in> C \<and> y \<in> C)"
  | 
| 
 | 
   201  | 
    for W U
  | 
| 
 | 
   202  | 
  proof (intro exI conjI)
  | 
| 
 | 
   203  | 
    let ?V = "(Collect (path_component_of (subtopology X W) x))"
  | 
| 
 | 
   204  | 
      show "path_connectedin X (Collect (path_component_of (subtopology X W) x))"
  | 
| 
 | 
   205  | 
        by (meson path_connectedin_path_component_of path_connectedin_subtopology)
  | 
| 
 | 
   206  | 
      show "U \<subseteq> ?V"
  | 
| 
 | 
   207  | 
        by (auto simp: path_component_of path_connectedin_subtopology that)
  | 
| 
 | 
   208  | 
      show "?V \<subseteq> W"
  | 
| 
 | 
   209  | 
        by (meson path_connectedin_path_component_of path_connectedin_subtopology)
  | 
| 
 | 
   210  | 
    qed
  | 
| 
 | 
   211  | 
  assume ?rhs
  | 
| 
 | 
   212  | 
  then show ?lhs
  | 
| 
 | 
   213  | 
    unfolding weakly_locally_path_connected_at_def neighbourhood_base_at_def by (metis "*")
  | 
| 
 | 
   214  | 
qed
  | 
| 
 | 
   215  | 
  | 
| 
 | 
   216  | 
lemma locally_path_connected_space_im_kleinen:
  | 
| 
 | 
   217  | 
   "locally_path_connected_space X \<longleftrightarrow>
  | 
| 
 | 
   218  | 
      (\<forall>V x. openin X V \<and> x \<in> V
  | 
| 
 | 
   219  | 
             \<longrightarrow> (\<exists>U. openin X U \<and>
  | 
| 
 | 
   220  | 
                    x \<in> U \<and> U \<subseteq> V \<and>
  | 
| 
 | 
   221  | 
                    (\<forall>y \<in> U. \<exists>c. path_connectedin X c \<and>
  | 
| 
 | 
   222  | 
                                c \<subseteq> V \<and> x \<in> c \<and> y \<in> c)))"
  | 
| 
 | 
   223  | 
  apply (simp add: locally_path_connected_space_def neighbourhood_base_of_def)
  | 
| 
 | 
   224  | 
  apply (simp add: weakly_locally_path_connected_at flip: weakly_locally_path_connected_at_def)
  | 
| 
 | 
   225  | 
  using openin_subset apply force
  | 
| 
 | 
   226  | 
  done
  | 
| 
 | 
   227  | 
  | 
| 
 | 
   228  | 
lemma locally_path_connected_space_open_subset:
  | 
| 
 | 
   229  | 
   "\<lbrakk>locally_path_connected_space X; openin X s\<rbrakk>
  | 
| 
 | 
   230  | 
        \<Longrightarrow> locally_path_connected_space (subtopology X s)"
  | 
| 
 | 
   231  | 
  apply (simp add: locally_path_connected_space_def neighbourhood_base_of openin_open_subtopology path_connectedin_subtopology)
  | 
| 
 | 
   232  | 
  by (meson order_trans)
  | 
| 
 | 
   233  | 
  | 
| 
 | 
   234  | 
lemma locally_path_connected_space_quotient_map_image:
  | 
| 
 | 
   235  | 
  assumes f: "quotient_map X Y f" and X: "locally_path_connected_space X"
  | 
| 
 | 
   236  | 
  shows "locally_path_connected_space Y"
  | 
| 
 | 
   237  | 
  unfolding locally_path_connected_space_open_path_components
  | 
| 
 | 
   238  | 
proof clarify
  | 
| 
 | 
   239  | 
  fix V C
  | 
| 
 | 
   240  | 
  assume V: "openin Y V" and c: "C \<in> path_components_of (subtopology Y V)"
  | 
| 
 | 
   241  | 
  then have sub: "C \<subseteq> topspace Y"
  | 
| 
 | 
   242  | 
    using path_connectedin_path_components_of path_connectedin_subset_topspace path_connectedin_subtopology by blast
  | 
| 
 | 
   243  | 
  have "openin X {x \<in> topspace X. f x \<in> C}"
 | 
| 
 | 
   244  | 
  proof (subst openin_subopen, clarify)
  | 
| 
 | 
   245  | 
    fix x
  | 
| 
 | 
   246  | 
    assume x: "x \<in> topspace X" and "f x \<in> C"
  | 
| 
 | 
   247  | 
    let ?T = "Collect (path_component_of (subtopology X {z \<in> topspace X. f z \<in> V}) x)"
 | 
| 
 | 
   248  | 
    show "\<exists>T. openin X T \<and> x \<in> T \<and> T \<subseteq> {x \<in> topspace X. f x \<in> C}"
 | 
| 
 | 
   249  | 
    proof (intro exI conjI)
  | 
| 
 | 
   250  | 
      have "\<exists>U. openin X U \<and> ?T \<in> path_components_of (subtopology X U)"
  | 
| 
 | 
   251  | 
      proof (intro exI conjI)
  | 
| 
 | 
   252  | 
        show "openin X ({z \<in> topspace X. f z \<in> V})"
 | 
| 
 | 
   253  | 
          using V f openin_subset quotient_map_def by fastforce
  | 
| 
 | 
   254  | 
        show "Collect (path_component_of (subtopology X {z \<in> topspace X. f z \<in> V}) x)
 | 
| 
 | 
   255  | 
        \<in> path_components_of (subtopology X {z \<in> topspace X. f z \<in> V})"
 | 
| 
 | 
   256  | 
          by (metis (no_types, lifting) Int_iff \<open>f x \<in> C\<close> c mem_Collect_eq path_component_in_path_components_of path_components_of_subset topspace_subtopology topspace_subtopology_subset x)
  | 
| 
 | 
   257  | 
      qed
  | 
| 
 | 
   258  | 
      with X show "openin X ?T"
  | 
| 
 | 
   259  | 
        using locally_path_connected_space_open_path_components by blast
  | 
| 
 | 
   260  | 
      show x: "x \<in> ?T"
  | 
| 
 | 
   261  | 
        using V \<open>f x \<in> C\<close> c openin_subset path_component_of_equiv path_components_of_subset topspace_subtopology topspace_subtopology_subset x
  | 
| 
 | 
   262  | 
        by fastforce
  | 
| 
 | 
   263  | 
      have "f ` ?T \<subseteq> C"
  | 
| 
 | 
   264  | 
      proof (rule path_components_of_maximal)
  | 
| 
 | 
   265  | 
        show "C \<in> path_components_of (subtopology Y V)"
  | 
| 
 | 
   266  | 
          by (simp add: c)
  | 
| 
 | 
   267  | 
        show "path_connectedin (subtopology Y V) (f ` ?T)"
  | 
| 
 | 
   268  | 
        proof -
  | 
| 
 | 
   269  | 
          have "quotient_map (subtopology X {a \<in> topspace X. f a \<in> V}) (subtopology Y V) f"
 | 
| 
 | 
   270  | 
            by (simp add: V f quotient_map_restriction)
  | 
| 
 | 
   271  | 
          then show ?thesis
  | 
| 
 | 
   272  | 
            by (meson path_connectedin_continuous_map_image path_connectedin_path_component_of quotient_imp_continuous_map)
  | 
| 
 | 
   273  | 
        qed
  | 
| 
 | 
   274  | 
        show "\<not> disjnt C (f ` ?T)"
  | 
| 
 | 
   275  | 
          by (metis (no_types, lifting) \<open>f x \<in> C\<close> x disjnt_iff image_eqI)
  | 
| 
 | 
   276  | 
      qed
  | 
| 
 | 
   277  | 
      then show "?T \<subseteq> {x \<in> topspace X. f x \<in> C}"
 | 
| 
71172
 | 
   278  | 
        by (force simp: path_component_of_equiv)
  | 
| 
69945
 | 
   279  | 
    qed
  | 
| 
 | 
   280  | 
  qed
  | 
| 
 | 
   281  | 
  then show "openin Y C"
  | 
| 
 | 
   282  | 
    using f sub by (simp add: quotient_map_def)
  | 
| 
 | 
   283  | 
qed
  | 
| 
 | 
   284  | 
  | 
| 
 | 
   285  | 
lemma homeomorphic_locally_path_connected_space:
  | 
| 
 | 
   286  | 
  assumes "X homeomorphic_space Y"
  | 
| 
 | 
   287  | 
  shows "locally_path_connected_space X \<longleftrightarrow> locally_path_connected_space Y"
  | 
| 
 | 
   288  | 
proof -
  | 
| 
 | 
   289  | 
  obtain f g where "homeomorphic_maps X Y f g"
  | 
| 
 | 
   290  | 
    using assms homeomorphic_space_def by fastforce
  | 
| 
 | 
   291  | 
  then show ?thesis
  | 
| 
 | 
   292  | 
    by (metis (no_types) homeomorphic_map_def homeomorphic_maps_map locally_path_connected_space_quotient_map_image)
  | 
| 
 | 
   293  | 
qed
  | 
| 
 | 
   294  | 
  | 
| 
 | 
   295  | 
lemma locally_path_connected_space_retraction_map_image:
  | 
| 
 | 
   296  | 
   "\<lbrakk>retraction_map X Y r; locally_path_connected_space X\<rbrakk>
  | 
| 
 | 
   297  | 
        \<Longrightarrow> locally_path_connected_space Y"
  | 
| 
 | 
   298  | 
  using Abstract_Topology.retraction_imp_quotient_map locally_path_connected_space_quotient_map_image by blast
  | 
| 
 | 
   299  | 
  | 
| 
 | 
   300  | 
lemma locally_path_connected_space_euclideanreal: "locally_path_connected_space euclideanreal"
  | 
| 
 | 
   301  | 
  unfolding locally_path_connected_space_def neighbourhood_base_of
  | 
| 
 | 
   302  | 
  proof clarsimp
  | 
| 
 | 
   303  | 
  fix W and x :: "real"
  | 
| 
 | 
   304  | 
  assume "open W" "x \<in> W"
  | 
| 
 | 
   305  | 
  then obtain e where "e > 0" and e: "\<And>x'. \<bar>x' - x\<bar> < e \<longrightarrow> x' \<in> W"
  | 
| 
 | 
   306  | 
    by (auto simp: open_real)
  | 
| 
 | 
   307  | 
  then show "\<exists>U. open U \<and> (\<exists>V. path_connected V \<and> x \<in> U \<and> U \<subseteq> V \<and> V \<subseteq> W)"
  | 
| 
 | 
   308  | 
    by (force intro!: convex_imp_path_connected exI [where x = "{x-e<..<x+e}"])
 | 
| 
 | 
   309  | 
qed
  | 
| 
 | 
   310  | 
  | 
| 
 | 
   311  | 
lemma locally_path_connected_space_discrete_topology:
  | 
| 
 | 
   312  | 
   "locally_path_connected_space (discrete_topology U)"
  | 
| 
 | 
   313  | 
  using locally_path_connected_space_open_path_components by fastforce
  | 
| 
 | 
   314  | 
  | 
| 
 | 
   315  | 
lemma path_component_eq_connected_component_of:
  | 
| 
 | 
   316  | 
  assumes "locally_path_connected_space X"
  | 
| 
 | 
   317  | 
  shows "(path_component_of_set X x = connected_component_of_set X x)"
  | 
| 
 | 
   318  | 
proof (cases "x \<in> topspace X")
  | 
| 
 | 
   319  | 
  case True
  | 
| 
 | 
   320  | 
  then show ?thesis
  | 
| 
 | 
   321  | 
    using connectedin_connected_component_of [of X x]
  | 
| 
 | 
   322  | 
    apply (clarsimp simp add: connectedin_def connected_space_clopen_in topspace_subtopology_subset cong: conj_cong)
  | 
| 
 | 
   323  | 
    apply (drule_tac x="path_component_of_set X x" in spec)
  | 
| 
 | 
   324  | 
    by (metis assms closedin_closed_subtopology closedin_connected_component_of closedin_path_component_of_locally_path_connected_space inf.absorb_iff2 inf.orderE openin_path_component_of_locally_path_connected_space openin_subtopology path_component_of_eq_empty path_component_subset_connected_component_of)
  | 
| 
 | 
   325  | 
next
  | 
| 
 | 
   326  | 
  case False
  | 
| 
 | 
   327  | 
  then show ?thesis
  | 
| 
 | 
   328  | 
    using connected_component_of_eq_empty path_component_of_eq_empty by fastforce
  | 
| 
 | 
   329  | 
qed
  | 
| 
 | 
   330  | 
  | 
| 
 | 
   331  | 
lemma path_components_eq_connected_components_of:
  | 
| 
 | 
   332  | 
   "locally_path_connected_space X \<Longrightarrow> (path_components_of X = connected_components_of X)"
  | 
| 
 | 
   333  | 
  by (simp add: path_components_of_def connected_components_of_def image_def path_component_eq_connected_component_of)
  | 
| 
 | 
   334  | 
  | 
| 
 | 
   335  | 
lemma path_connected_eq_connected_space:
  | 
| 
 | 
   336  | 
   "locally_path_connected_space X
  | 
| 
 | 
   337  | 
         \<Longrightarrow> path_connected_space X \<longleftrightarrow> connected_space X"
  | 
| 
 | 
   338  | 
  by (metis connected_components_of_subset_sing path_components_eq_connected_components_of path_components_of_subset_singleton)
  | 
| 
 | 
   339  | 
  | 
| 
 | 
   340  | 
lemma locally_path_connected_space_product_topology:
  | 
| 
 | 
   341  | 
   "locally_path_connected_space(product_topology X I) \<longleftrightarrow>
  | 
| 
 | 
   342  | 
        topspace(product_topology X I) = {} \<or>
 | 
| 
 | 
   343  | 
        finite {i. i \<in> I \<and> ~path_connected_space(X i)} \<and>
 | 
| 
 | 
   344  | 
        (\<forall>i \<in> I. locally_path_connected_space(X i))"
  | 
| 
 | 
   345  | 
    (is "?lhs \<longleftrightarrow> ?empty \<or> ?rhs")
  | 
| 
 | 
   346  | 
proof (cases ?empty)
  | 
| 
 | 
   347  | 
  case True
  | 
| 
 | 
   348  | 
  then show ?thesis
  | 
| 
 | 
   349  | 
    by (simp add: locally_path_connected_space_def neighbourhood_base_of openin_closedin_eq)
  | 
| 
 | 
   350  | 
next
  | 
| 
 | 
   351  | 
  case False
  | 
| 
 | 
   352  | 
  then obtain z where z: "z \<in> (\<Pi>\<^sub>E i\<in>I. topspace (X i))"
  | 
| 
 | 
   353  | 
    by auto
  | 
| 
 | 
   354  | 
  have ?rhs if L: ?lhs
  | 
| 
 | 
   355  | 
  proof -
  | 
| 
 | 
   356  | 
    obtain U C where U: "openin (product_topology X I) U"
  | 
| 
 | 
   357  | 
      and V: "path_connectedin (product_topology X I) C"
  | 
| 
 | 
   358  | 
      and "z \<in> U" "U \<subseteq> C" and Csub: "C \<subseteq> (\<Pi>\<^sub>E i\<in>I. topspace (X i))"
  | 
| 
 | 
   359  | 
      using L apply (clarsimp simp add: locally_path_connected_space_def neighbourhood_base_of)
  | 
| 
 | 
   360  | 
      by (metis openin_topspace topspace_product_topology z)
  | 
| 
 | 
   361  | 
    then obtain V where finV: "finite {i \<in> I. V i \<noteq> topspace (X i)}"
 | 
| 
 | 
   362  | 
      and XV: "\<And>i. i\<in>I \<Longrightarrow> openin (X i) (V i)" and "z \<in> Pi\<^sub>E I V" and subU: "Pi\<^sub>E I V \<subseteq> U"
  | 
| 
 | 
   363  | 
      by (force simp: openin_product_topology_alt)
  | 
| 
 | 
   364  | 
    show ?thesis
  | 
| 
 | 
   365  | 
    proof (intro conjI ballI)
  | 
| 
 | 
   366  | 
      have "path_connected_space (X i)" if "i \<in> I" "V i = topspace (X i)" for i
  | 
| 
 | 
   367  | 
      proof -
  | 
| 
 | 
   368  | 
        have pc: "path_connectedin (X i) ((\<lambda>x. x i) ` C)"
  | 
| 
 | 
   369  | 
          apply (rule path_connectedin_continuous_map_image [OF _ V])
  | 
| 
 | 
   370  | 
          by (simp add: continuous_map_product_projection \<open>i \<in> I\<close>)
  | 
| 
 | 
   371  | 
        moreover have "((\<lambda>x. x i) ` C) = topspace (X i)"
  | 
| 
 | 
   372  | 
        proof
  | 
| 
 | 
   373  | 
          show "(\<lambda>x. x i) ` C \<subseteq> topspace (X i)"
  | 
| 
 | 
   374  | 
            by (simp add: pc path_connectedin_subset_topspace)
  | 
| 
 | 
   375  | 
          have "V i \<subseteq> (\<lambda>x. x i) ` (\<Pi>\<^sub>E i\<in>I. V i)"
  | 
| 
 | 
   376  | 
            by (metis \<open>z \<in> Pi\<^sub>E I V\<close> empty_iff image_projection_PiE order_refl that(1))
  | 
| 
 | 
   377  | 
          also have "\<dots> \<subseteq> (\<lambda>x. x i) ` U"
  | 
| 
 | 
   378  | 
            using subU by blast
  | 
| 
 | 
   379  | 
          finally show "topspace (X i) \<subseteq> (\<lambda>x. x i) ` C"
  | 
| 
 | 
   380  | 
            using \<open>U \<subseteq> C\<close> that by blast
  | 
| 
 | 
   381  | 
        qed
  | 
| 
 | 
   382  | 
        ultimately show ?thesis
  | 
| 
 | 
   383  | 
          by (simp add: path_connectedin_topspace)
  | 
| 
 | 
   384  | 
      qed
  | 
| 
 | 
   385  | 
      then have "{i \<in> I. \<not> path_connected_space (X i)} \<subseteq> {i \<in> I. V i \<noteq> topspace (X i)}"
 | 
| 
 | 
   386  | 
        by blast
  | 
| 
 | 
   387  | 
      with finV show "finite {i \<in> I. \<not> path_connected_space (X i)}"
 | 
| 
 | 
   388  | 
        using finite_subset by blast
  | 
| 
 | 
   389  | 
    next
  | 
| 
 | 
   390  | 
      show "locally_path_connected_space (X i)" if "i \<in> I" for i
  | 
| 
 | 
   391  | 
        apply (rule locally_path_connected_space_quotient_map_image [OF _ L, where f = "\<lambda>x. x i"])
  | 
| 
 | 
   392  | 
        by (metis False Abstract_Topology.retraction_imp_quotient_map retraction_map_product_projection that)
  | 
| 
 | 
   393  | 
    qed
  | 
| 
 | 
   394  | 
  qed
  | 
| 
 | 
   395  | 
  moreover have ?lhs if R: ?rhs
  | 
| 
 | 
   396  | 
  proof (clarsimp simp add: locally_path_connected_space_def neighbourhood_base_of)
  | 
| 
 | 
   397  | 
    fix F z
  | 
| 
 | 
   398  | 
    assume "openin (product_topology X I) F" and "z \<in> F"
  | 
| 
 | 
   399  | 
    then obtain W where finW: "finite {i \<in> I. W i \<noteq> topspace (X i)}"
 | 
| 
 | 
   400  | 
            and opeW: "\<And>i. i \<in> I \<Longrightarrow> openin (X i) (W i)" and "z \<in> Pi\<^sub>E I W" "Pi\<^sub>E I W \<subseteq> F"
  | 
| 
 | 
   401  | 
      by (auto simp: openin_product_topology_alt)
  | 
| 
 | 
   402  | 
    have "\<forall>i \<in> I. \<exists>U C. openin (X i) U \<and> path_connectedin (X i) C \<and> z i \<in> U \<and> U \<subseteq> C \<and> C \<subseteq> W i \<and>
  | 
| 
 | 
   403  | 
                        (W i = topspace (X i) \<and>
  | 
| 
 | 
   404  | 
                         path_connected_space (X i) \<longrightarrow> U = topspace (X i) \<and> C = topspace (X i))"
  | 
| 
 | 
   405  | 
          (is "\<forall>i \<in> I. ?\<Phi> i")
  | 
| 
 | 
   406  | 
    proof
  | 
| 
 | 
   407  | 
      fix i assume "i \<in> I"
  | 
| 
 | 
   408  | 
      have "locally_path_connected_space (X i)"
  | 
| 
 | 
   409  | 
        by (simp add: R \<open>i \<in> I\<close>)
  | 
| 
 | 
   410  | 
      moreover have "openin (X i) (W i) " "z i \<in> W i"
  | 
| 
 | 
   411  | 
        using \<open>z \<in> Pi\<^sub>E I W\<close> opeW \<open>i \<in> I\<close> by auto
  | 
| 
 | 
   412  | 
      ultimately obtain U C where UC: "openin (X i) U" "path_connectedin (X i) C" "z i \<in> U" "U \<subseteq> C" "C \<subseteq> W i"
  | 
| 
 | 
   413  | 
        using \<open>i \<in> I\<close> by (force simp: locally_path_connected_space_def neighbourhood_base_of)
  | 
| 
 | 
   414  | 
      show "?\<Phi> i"
  | 
| 
 | 
   415  | 
      proof (cases "W i = topspace (X i) \<and> path_connected_space(X i)")
  | 
| 
 | 
   416  | 
        case True
  | 
| 
 | 
   417  | 
        then show ?thesis
  | 
| 
 | 
   418  | 
          using \<open>z i \<in> W i\<close> path_connectedin_topspace by blast
  | 
| 
 | 
   419  | 
      next
  | 
| 
 | 
   420  | 
        case False
  | 
| 
 | 
   421  | 
        then show ?thesis
  | 
| 
 | 
   422  | 
          by (meson UC)
  | 
| 
 | 
   423  | 
      qed
  | 
| 
 | 
   424  | 
    qed
  | 
| 
 | 
   425  | 
    then obtain U C where
  | 
| 
 | 
   426  | 
      *: "\<And>i. i \<in> I \<Longrightarrow> openin (X i) (U i) \<and> path_connectedin (X i) (C i) \<and> z i \<in> (U i) \<and> (U i) \<subseteq> (C i) \<and> (C i) \<subseteq> W i \<and>
  | 
| 
 | 
   427  | 
                        (W i = topspace (X i) \<and> path_connected_space (X i)
  | 
| 
 | 
   428  | 
                         \<longrightarrow> (U i) = topspace (X i) \<and> (C i) = topspace (X i))"
  | 
| 
 | 
   429  | 
      by metis
  | 
| 
 | 
   430  | 
    let ?A = "{i \<in> I. \<not> path_connected_space (X i)} \<union> {i \<in> I. W i \<noteq> topspace (X i)}"
 | 
| 
 | 
   431  | 
    have "{i \<in> I. U i \<noteq> topspace (X i)} \<subseteq> ?A"
 | 
| 
 | 
   432  | 
      by (clarsimp simp add: "*")
  | 
| 
 | 
   433  | 
    moreover have "finite ?A"
  | 
| 
 | 
   434  | 
      by (simp add: that finW)
  | 
| 
 | 
   435  | 
    ultimately have "finite {i \<in> I. U i \<noteq> topspace (X i)}"
 | 
| 
 | 
   436  | 
      using finite_subset by auto
  | 
| 
 | 
   437  | 
    then have "openin (product_topology X I) (Pi\<^sub>E I U)"
  | 
| 
 | 
   438  | 
      using * by (simp add: openin_PiE_gen)
  | 
| 
 | 
   439  | 
    then show "\<exists>U. openin (product_topology X I) U \<and>
  | 
| 
 | 
   440  | 
            (\<exists>V. path_connectedin (product_topology X I) V \<and> z \<in> U \<and> U \<subseteq> V \<and> V \<subseteq> F)"
  | 
| 
 | 
   441  | 
      apply (rule_tac x="PiE I U" in exI, simp)
  | 
| 
 | 
   442  | 
      apply (rule_tac x="PiE I C" in exI)
  | 
| 
 | 
   443  | 
      using \<open>z \<in> Pi\<^sub>E I W\<close> \<open>Pi\<^sub>E I W \<subseteq> F\<close> *
  | 
| 
 | 
   444  | 
      apply (simp add: path_connectedin_PiE subset_PiE PiE_iff PiE_mono dual_order.trans)
  | 
| 
 | 
   445  | 
      done
  | 
| 
 | 
   446  | 
  qed
  | 
| 
 | 
   447  | 
  ultimately show ?thesis
  | 
| 
 | 
   448  | 
    using False by blast
  | 
| 
 | 
   449  | 
qed
  | 
| 
 | 
   450  | 
  | 
| 
 | 
   451  | 
end
  |