| author | wenzelm | 
| Sat, 09 Mar 2024 20:20:13 +0100 | |
| changeset 79838 | 5c9df01bee89 | 
| parent 74362 | 0135a0c77b64 | 
| permissions | -rw-r--r-- | 
| 69785 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1 | (* | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2 | File: HOL/Number_Theory/Residue_Primitive_Roots.thy | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 3 | Author: Manuel Eberl | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 4 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 5 | Primitive roots in residue rings: Definition and existence criteria | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 6 | *) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 7 | section \<open>Primitive roots in residue rings and Carmichael's function\<close> | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 8 | theory Residue_Primitive_Roots | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 9 | imports Pocklington | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 10 | begin | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 11 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 12 | text \<open> | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 13 | This theory develops the notions of primitive roots (generators) in residue rings. It also | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 14 | provides a definition and all the basic properties of Carmichael's function $\lambda(n)$, which | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 15 | is strongly related to this. The proofs mostly follow Apostol's presentation | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 16 | \<close> | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 17 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 18 | subsection \<open>Primitive roots in residue rings\<close> | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 19 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 20 | text \<open> | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 21 | A primitive root of a residue ring modulo \<open>n\<close> is an element \<open>g\<close> that \<^emph>\<open>generates\<close> the | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 22 | ring, i.\,e.\ such that for each \<open>x\<close> coprime to \<open>n\<close> there exists an \<open>i\<close> such that $x = g^i$. | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 23 | A simpler definition is that \<open>g\<close> must have the same order as the cardinality of the | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 24 | multiplicative group, which is $\varphi(n)$. | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 25 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 26 | Note that for convenience, this definition does \<^emph>\<open>not\<close> demand \<open>g < n\<close>. | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 27 | \<close> | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 28 | inductive residue_primroot :: "nat \<Rightarrow> nat \<Rightarrow> bool" where | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 29 | "n > 0 \<Longrightarrow> coprime n g \<Longrightarrow> ord n g = totient n \<Longrightarrow> residue_primroot n g" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 30 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 31 | lemma residue_primroot_def [code]: | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 32 | "residue_primroot n x \<longleftrightarrow> n > 0 \<and> coprime n x \<and> ord n x = totient n" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 33 | by (simp add: residue_primroot.simps) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 34 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 35 | lemma not_residue_primroot_0 [simp]: "~residue_primroot 0 x" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 36 | by (auto simp: residue_primroot_def) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 37 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 38 | lemma residue_primroot_mod [simp]: "residue_primroot n (x mod n) = residue_primroot n x" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 39 | by (cases "n = 0") (simp_all add: residue_primroot_def) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 40 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 41 | lemma residue_primroot_cong: | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 42 | assumes "[x = x'] (mod n)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 43 | shows "residue_primroot n x = residue_primroot n x'" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 44 | proof - | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 45 | have "residue_primroot n x = residue_primroot n (x mod n)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 46 | by simp | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 47 | also have "x mod n = x' mod n" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 48 | using assms by (simp add: cong_def) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 49 | also have "residue_primroot n (x' mod n) = residue_primroot n x'" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 50 | by simp | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 51 | finally show ?thesis . | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 52 | qed | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 53 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 54 | lemma not_residue_primroot_0_right [simp]: "residue_primroot n 0 \<longleftrightarrow> n = 1" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 55 | by (auto simp: residue_primroot_def) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 56 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 57 | lemma residue_primroot_1_iff: "residue_primroot n (Suc 0) \<longleftrightarrow> n \<in> {1, 2}"
 | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 58 | proof | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 59 | assume *: "residue_primroot n (Suc 0)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 60 | with totient_gt_1[of n] have "n \<le> 2" by (cases "n \<le> 2") (auto simp: residue_primroot_def) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 61 |   hence "n \<in> {0, 1, 2}" by auto
 | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 62 |   thus "n \<in> {1, 2}" using * by (auto simp: residue_primroot_def)
 | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 63 | qed (auto simp: residue_primroot_def) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 64 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 65 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 66 | subsection \<open>Primitive roots modulo a prime\<close> | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 67 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 68 | text \<open> | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 69 |   For prime \<open>p\<close>, we now analyse the number of elements in the ring $\mathbb{Z}/p\mathbb{Z}$
 | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 70 | whose order is precisely \<open>d\<close> for each \<open>d\<close>. | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 71 | \<close> | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 72 | context | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 73 | fixes n :: nat and \<psi> | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 74 | assumes n: "n > 1" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 75 |   defines "\<psi> \<equiv> (\<lambda>d. card {x\<in>totatives n. ord n x = d})"
 | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 76 | begin | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 77 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 78 | lemma elements_with_ord_restrict_totatives: | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 79 |   "d > 0 \<Longrightarrow> {x\<in>{..<n}. ord n x = d} = {x\<in>totatives n. ord n x = d}"
 | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 80 | using n by (auto simp: totatives_def coprime_commute intro!: Nat.gr0I le_neq_trans) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 81 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 82 | lemma prime_elements_with_ord: | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 83 | assumes "\<psi> d \<noteq> 0" and "prime n" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 84 | and a: "a \<in> totatives n" "ord n a = d" "a \<noteq> 1" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 85 |   shows   "inj_on (\<lambda>k. a ^ k mod n) {..<d}"
 | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 86 |     and   "{x\<in>{..<n}. [x ^ d = 1] (mod n)} = (\<lambda>k. a ^ k mod n) ` {..<d}"
 | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 87 |     and   "bij_betw (\<lambda>k. a ^ k mod n) (totatives d) {x\<in>{..<n}. ord n x = d}"
 | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 88 | proof - | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 89 |   show inj: "inj_on (\<lambda>k. a ^ k mod n) {..<d}"
 | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 90 | using inj_power_mod[of n a] a by (auto simp: totatives_def coprime_commute) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 91 | from a have "d > 0" by (auto simp: totatives_def coprime_commute) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 92 | moreover have "d \<noteq> 1" using a n | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 93 | by (auto simp: ord_eq_Suc_0_iff totatives_less cong_def) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 94 | ultimately have d: "d > 1" by simp | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 95 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 96 |   have *: "(\<lambda>k. a ^ k mod n) ` {..<d} = {x\<in>{..<n}. [x ^ d = 1] (mod n)}"
 | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 97 | proof (rule card_seteq) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 98 |     have "card {x\<in>{..<n}. [x ^ d = 1] (mod n)} \<le> d"
 | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 99 | using assms a by (intro roots_mod_prime_bound) (auto simp: totatives_def coprime_commute) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 100 |     also have "\<dots> = card ((\<lambda>k. a ^ k mod n) ` {..<d})"
 | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 101 | using inj by (subst card_image) auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 102 |     finally show "card {x \<in> {..<n}. [x ^ d = 1] (mod n)} \<le> \<dots>" .
 | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 103 | next | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 104 |     show "(\<lambda>k. a ^ k mod n) ` {..<d} \<subseteq> {x \<in> {..<n}. [x ^ d = 1] (mod n)}"
 | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 105 | proof safe | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 106 | fix k assume "k < d" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 107 | have "[(a ^ d) ^ k = 1 ^ k] (mod n)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 108 | by (intro cong_pow) (use a in \<open>auto simp: ord_divides'\<close>) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 109 | thus "[(a ^ k mod n) ^ d = 1] (mod n)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 110 | by (simp add: power_mult [symmetric] cong_def power_mod mult.commute) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 111 | qed (use \<open>prime n\<close> in \<open>auto dest: prime_gt_1_nat\<close>) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 112 | qed auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 113 |   thus "{x\<in>{..<n}. [x ^ d = 1] (mod n)} = (\<lambda>k. a ^ k mod n) ` {..<d}" ..
 | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 114 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 115 |   show "bij_betw (\<lambda>k. a ^ k mod n) (totatives d) {x\<in>{..<n}. ord n x = d}"
 | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 116 | unfolding bij_betw_def | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 117 | proof (intro conjI inj_on_subset[OF inj] equalityI subsetI) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 118 | fix b assume "b \<in> (\<lambda>k. a ^ k mod n) ` totatives d" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 119 | then obtain k where "b = a ^ k mod n" "k \<in> totatives d" by auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 120 |     thus "b \<in> {b \<in> {..<n}. ord n b = d}"
 | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 121 | using n a by (simp add: ord_power totatives_def coprime_commute) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 122 | next | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 123 |     fix b assume "b \<in> {x \<in> {..<n}. ord n x = d}"
 | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 124 | hence b: "ord n b = d" "b < n" by auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 125 | with d have "coprime n b" using ord_eq_0[of n b] by auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 126 |     from b have "b \<in> {x\<in>{..<n}. [x ^ d = 1] (mod n)}"
 | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 127 | by (auto simp: ord_divides') | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 128 | with * obtain k where k: "k < d" "b = a ^ k mod n" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 129 | by blast | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 130 | with b(2) n a d have "d div gcd k d = ord n b" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 131 | using \<open>coprime n b\<close> by (auto simp: ord_power) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 132 | also have "ord n b = d" by (simp add: b) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 133 | finally have "coprime k d" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 134 | unfolding coprime_iff_gcd_eq_1 using d a by (subst (asm) div_eq_dividend_iff) auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 135 | with k b d have "k \<in> totatives d" by (auto simp: totatives_def intro!: Nat.gr0I) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 136 | with k show "b \<in> (\<lambda>k. a ^ k mod n) ` totatives d" by blast | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 137 | qed (use d n in \<open>auto simp: totatives_less\<close>) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 138 | qed | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 139 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 140 | lemma prime_card_elements_with_ord: | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 141 | assumes "\<psi> d \<noteq> 0" and "prime n" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 142 | shows "\<psi> d = totient d" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 143 | proof (cases "d = 1") | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 144 | case True | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 145 | have "\<psi> 1 = 1" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 146 | using elements_with_ord_1[of n] n by (simp add: \<psi>_def) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 147 | thus ?thesis using True by simp | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 148 | next | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 149 | case False | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 150 | from assms obtain a where a: "a \<in> totatives n" "ord n a = d" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 151 | by (auto simp: \<psi>_def) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 152 | from a have "d > 0" by (auto intro!: Nat.gr0I simp: ord_eq_0 totatives_def coprime_commute) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 153 | from a and False have "a \<noteq> 1" by auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 154 | from bij_betw_same_card[OF prime_elements_with_ord(3)[OF assms a this]] show "\<psi> d = totient d" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 155 | using elements_with_ord_restrict_totatives[of d] False a \<open>d > 0\<close> | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 156 | by (simp add: \<psi>_def totient_def) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 157 | qed | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 158 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 159 | lemma prime_sum_card_elements_with_ord_eq_totient: | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 160 | "(\<Sum>d | d dvd totient n. \<psi> d) = totient n" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 161 | proof - | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 162 | have "totient n = card (totatives n)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 163 | by (simp add: totient_def) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 164 |   also have "totatives n = (\<Union>d\<in>{d. d dvd totient n}. {x\<in>totatives n. ord n x = d})"
 | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 165 | by (force simp: order_divides_totient totatives_def coprime_commute) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 166 | also have "card \<dots> = (\<Sum>d | d dvd totient n. \<psi> d)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 167 | unfolding \<psi>_def using n by (subst card_UN_disjoint) (auto intro!: finite_divisors_nat) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 168 | finally show ?thesis .. | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 169 | qed | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 170 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 171 | text \<open> | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 172 | We can now show that the number of elements of order \<open>d\<close> is $\varphi(d)$ if $d\mid p - 1$ | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 173 | and 0 otherwise. | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 174 | \<close> | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 175 | theorem prime_card_elements_with_ord_eq_totient: | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 176 | assumes "prime n" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 177 | shows "\<psi> d = (if d dvd n - 1 then totient d else 0)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 178 | proof (cases "d dvd totient n") | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 179 | case False | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 180 | thus ?thesis using order_divides_totient[of n] assms | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 181 | by (auto simp: \<psi>_def totient_prime totatives_def coprime_commute[of n]) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 182 | next | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 183 | case True | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 184 | have "\<psi> d = totient d" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 185 | proof (rule ccontr) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 186 | assume neq: "\<psi> d \<noteq> totient d" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 187 | have le: "\<psi> d \<le> totient d" if "d dvd totient n" for d | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 188 | using prime_card_elements_with_ord[of d] assms by (cases "\<psi> d = 0") auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 189 | from neq and le[of d] and True have less: "\<psi> d < totient d" by auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 190 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 191 | have "totient n = (\<Sum>d | d dvd totient n. \<psi> d)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 192 | using prime_sum_card_elements_with_ord_eq_totient .. | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 193 | also have "\<dots> < (\<Sum>d | d dvd totient n. totient d)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 194 | by (rule sum_strict_mono_ex1) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 195 | (use n le less assms True in \<open>auto intro!: finite_divisors_nat\<close>) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 196 | also have "\<dots> = totient n" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 197 | using totient_divisor_sum . | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 198 | finally show False by simp | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 199 | qed | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 200 | with True show ?thesis using assms by (simp add: totient_prime) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 201 | qed | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 202 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 203 | text \<open> | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 204 | As a corollary, we get that the number of primitive roots modulo a prime \<open>p\<close> is | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 205 | $\varphi(p - 1)$. Since this number is positive, we also get that there \<^emph>\<open>is\<close> at least | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 206 | one primitive root modulo \<open>p\<close>. | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 207 | \<close> | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 208 | lemma | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 209 | assumes "prime n" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 210 |   shows   prime_card_primitive_roots:  "card {x\<in>totatives n. ord n x = n - 1} = totient (n - 1)"
 | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 211 |                                        "card {x\<in>{..<n}. ord n x = n - 1} = totient (n - 1)"
 | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 212 | and prime_primitive_root_exists: "\<exists>x. residue_primroot n x" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 213 | proof - | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 214 |   show *: "card {x\<in>totatives n. ord n x = n - 1} = totient (n - 1)"
 | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 215 | using prime_card_elements_with_ord_eq_totient[of "n - 1"] assms | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 216 | by (auto simp: totient_prime \<psi>_def) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 217 |   thus "card {x\<in>{..<n}. ord n x = n - 1} = totient (n - 1)"
 | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 218 | using assms n elements_with_ord_restrict_totatives[of "n - 1"] by simp | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 219 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 220 | note * | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 221 | also have "totient (n - 1) > 0" using n by auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 222 | finally show "\<exists>x. residue_primroot n x" using assms prime_gt_1_nat[of n] | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 223 | by (subst (asm) card_gt_0_iff) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 224 | (auto simp: residue_primroot_def totient_prime totatives_def coprime_commute) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 225 | qed | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 226 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 227 | end | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 228 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 229 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 230 | subsection \<open>Primitive roots modulo powers of an odd prime\<close> | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 231 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 232 | text \<open> | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 233 | Any primitive root \<open>g\<close> modulo an odd prime \<open>p\<close> is also a primitive root modulo $p^k$ for all | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 234 |   $k > 0$ if $[g^{p - 1} \neq 1]\ (\text{mod}\ p^2)$. To show this, we first need the
 | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 235 | following lemma. | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 236 | \<close> | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 237 | lemma residue_primroot_power_prime_power_neq_1: | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 238 | assumes "k \<ge> 2" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 239 | assumes p: "prime p" "odd p" and "residue_primroot p g" and "[g ^ (p - 1) \<noteq> 1] (mod p\<^sup>2)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 240 | shows "[g ^ totient (p ^ (k - 1)) \<noteq> 1] (mod (p ^ k))" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 241 | using assms(1) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 242 | proof (induction k rule: dec_induct) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 243 | case base | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 244 | thus ?case using assms by (simp add: totient_prime) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 245 | next | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 246 | case (step k) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 247 | from p have "p > 2" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 248 | using prime_gt_1_nat[of p] by (cases "p = 2") auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 249 | from assms have g: "g > 0" by (auto intro!: Nat.gr0I) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 250 | have "[g ^ totient (p ^ (k - 1)) = 1] (mod p ^ (k - 1))" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 251 | using assms by (intro euler_theorem) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 252 | (auto simp: residue_primroot_def totatives_def coprime_commute) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 253 | from cong_to_1_nat[OF this] | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 254 | obtain t where *: "g ^ totient (p ^ (k - 1)) - 1 = p ^ (k - 1) * t" by auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 255 | have t: "g ^ totient (p ^ (k - 1)) = p ^ (k - 1) * t + 1" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 256 | using g by (subst * [symmetric]) auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 257 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 258 | have "\<not>p dvd t" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 259 | proof | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 260 | assume "p dvd t" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 261 | then obtain q where [simp]: "t = p * q" by auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 262 | from t have "g ^ totient (p ^ (k - 1)) = p ^ k * q + 1" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 263 | using \<open>k \<ge> 2\<close> by (cases k) auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 264 | hence "[g ^ totient (p ^ (k - 1)) = p ^ k * q + 1] (mod p ^ k)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 265 | by simp | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 266 | also have "[p ^ k * q + 1 = 0 * q + 1] (mod p ^ k)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 267 | by (intro cong_add cong_mult) (auto simp: cong_0_iff) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 268 | finally have "[g ^ totient (p ^ (k - 1)) = 1] (mod p ^ k)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 269 | by simp | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 270 | with step.IH show False by contradiction | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 271 | qed | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 272 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 273 | from t have "(g ^ totient (p ^ (k - 1))) ^ p = (p ^ (k - 1) * t + 1) ^ p" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 274 | by (rule arg_cong) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 275 | also have "(g ^ totient (p ^ (k - 1))) ^ p = g ^ (p * totient (p ^ (k - 1)))" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 276 | by (simp add: power_mult [symmetric] mult.commute) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 277 | also have "p * totient (p ^ (k - 1)) = totient (p ^ k)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 278 | using p \<open>k \<ge> 2\<close> by (simp add: totient_prime_power Suc_diff_Suc flip: power_Suc) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 279 | also have "(p ^ (k - 1) * t + 1) ^ p = (\<Sum>i\<le>p. (p choose i) * t ^ i * p ^ (i * (k - 1)))" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 280 | by (subst binomial) (simp_all add: mult_ac power_mult_distrib power_mult [symmetric]) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 281 | finally have "[g ^ totient (p ^ k) = (\<Sum>i\<le>p. (p choose i) * t ^ i * p ^ (i * (k - 1)))] | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 282 | (mod (p ^ Suc k))" (is "[_ = ?rhs] (mod _)") by simp | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 283 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 284 | also have "[?rhs = (\<Sum>i\<le>p. if i \<le> 1 then (p choose i) * t ^ i * p ^ (i * (k - 1)) else 0)] | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 285 | (mod (p ^ Suc k))" (is "[sum ?f _ = sum ?g _] (mod _)") | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 286 | proof (intro cong_sum) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 287 |     fix i assume i: "i \<in> {..p}"
 | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 288 | consider "i \<le> 1" | "i = 2" | "i > 2" by force | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 289 | thus "[?f i = ?g i] (mod (p ^ Suc k))" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 290 | proof cases | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 291 | assume i: "i > 2" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 292 | have "Suc k \<le> 3 * (k - 1)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 293 | using \<open>k \<ge> 2\<close> by (simp add: algebra_simps) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 294 | also have "3 * (k - 1) \<le> i * (k - 1)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 295 | using i by (intro mult_right_mono) auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 296 | finally have "p ^ Suc k dvd ?f i" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 297 | by (intro dvd_mult le_imp_power_dvd) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 298 | thus "[?f i = ?g i] (mod (p ^ Suc k))" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 299 | by (simp add: cong_0_iff) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 300 | next | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 301 | assume [simp]: "i = 2" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 302 | have "?f i = p * (p - 1) div 2 * t\<^sup>2 * p ^ (2 * (k - 1))" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 303 | using choose_two[of p] by simp | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 304 | also have "p * (p - 1) div 2 = (p - 1) div 2 * p" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 305 | using \<open>odd p\<close> by (auto elim!: oddE) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 306 | also have "\<dots> * t\<^sup>2 * p ^ (2 * (k - 1)) = (p - 1) div 2 * t\<^sup>2 * (p * p ^ (2 * (k - 1)))" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 307 | by (simp add: algebra_simps) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 308 | also have "p * p ^ (2 * (k - 1)) = p ^ (2 * k - 1)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 309 | using \<open>k \<ge> 2\<close> by (cases k) auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 310 | also have "p ^ Suc k dvd (p - 1) div 2 * t\<^sup>2 * p ^ (2 * k - 1)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 311 | using \<open>k \<ge> 2\<close> by (intro dvd_mult le_imp_power_dvd) auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 312 | finally show "[?f i = ?g i] (mod (p ^ Suc k))" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 313 | by (simp add: cong_0_iff) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 314 | qed auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 315 | qed | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 316 | also have "(\<Sum>i\<le>p. ?g i) = (\<Sum>i\<le>1. ?f i)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 317 | using p prime_gt_1_nat[of p] by (intro sum.mono_neutral_cong_right) auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 318 | also have "\<dots> = 1 + t * p ^ k" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 319 | using choose_two[of p] \<open>k \<ge> 2\<close> by (cases k) simp_all | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 320 | finally have eq: "[g ^ totient (p ^ k) = 1 + t * p ^ k] (mod p ^ Suc k)" . | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 321 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 322 | have "[g ^ totient (p ^ k) \<noteq> 1] (mod p ^ Suc k)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 323 | proof | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 324 | assume "[g ^ totient (p ^ k) = 1] (mod p ^ Suc k)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 325 | hence "[g ^ totient (p ^ k) - g ^ totient (p ^ k) = 1 + t * p ^ k - 1] (mod p ^ Suc k)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 326 | by (intro cong_diff_nat eq) auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 327 | hence "[t * p ^ k = 0] (mod p ^ Suc k)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 328 | by (simp add: cong_sym_eq) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 329 | hence "p * p ^ k dvd t * p ^ k" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 330 | by (simp add: cong_0_iff) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 331 | hence "p dvd t" using \<open>p > 2\<close> by simp | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 332 | with \<open>\<not>p dvd t\<close> show False by contradiction | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 333 | qed | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 334 | thus ?case by simp | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 335 | qed | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 336 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 337 | text \<open> | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 338 | We can now show that primitive roots modulo \<open>p\<close> with the above condition are | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 339 | indeed also primitive roots modulo $p^k$. | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 340 | \<close> | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 341 | proposition residue_primroot_prime_lift_iff: | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 342 | assumes p: "prime p" "odd p" and "residue_primroot p g" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 343 | shows "(\<forall>k>0. residue_primroot (p ^ k) g) \<longleftrightarrow> [g ^ (p - 1) \<noteq> 1] (mod p\<^sup>2)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 344 | proof - | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 345 | from assms have g: "coprime p g" "ord p g = p - 1" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 346 | by (auto simp: residue_primroot_def totient_prime) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 347 | show ?thesis | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 348 | proof | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 349 | assume "\<forall>k>0. residue_primroot (p ^ k) g" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 350 | hence "residue_primroot (p\<^sup>2) g" by auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 351 | hence "ord (p\<^sup>2) g = totient (p\<^sup>2)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 352 | by (simp_all add: residue_primroot_def) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 353 | thus "[g ^ (p - 1) \<noteq> 1] (mod p\<^sup>2)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 354 | using g assms prime_gt_1_nat[of p] | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 355 | by (auto simp: ord_divides' totient_prime_power) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 356 | next | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 357 | assume g': "[g ^ (p - 1) \<noteq> 1] (mod p\<^sup>2)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 358 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 359 | have "residue_primroot (p ^ k) g" if "k > 0" for k | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 360 | proof (cases "k = 1") | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 361 | case False | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 362 | with that have k: "k > 1" by simp | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 363 | from g have coprime: "coprime (p ^ k) g" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 364 | by (auto simp: totatives_def coprime_commute) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 365 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 366 | define t where "t = ord (p ^ k) g" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 367 | have "[g ^ t = 1] (mod (p ^ k))" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 368 | by (simp add: t_def ord_divides') | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 369 | also have "p ^ k = p * p ^ (k - 1)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 370 | using k by (cases k) auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 371 | finally have "[g ^ t = 1] (mod p)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 372 | by (rule cong_modulus_mult_nat) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 373 | hence "totient p dvd t" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 374 | using g p by (simp add: ord_divides' totient_prime) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 375 | then obtain q where t: "t = totient p * q" by auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 376 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 377 | have "t dvd totient (p ^ k)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 378 | using coprime by (simp add: t_def order_divides_totient) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 379 | with t p k have "q dvd p ^ (k - 1)" using prime_gt_1_nat[of p] | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 380 | by (auto simp: totient_prime totient_prime_power) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 381 | then obtain b where b: "b \<le> k - 1" "q = p ^ b" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 382 | using divides_primepow_nat[of p q "k - 1"] p by auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 383 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 384 | have "b = k - 1" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 385 | proof (rule ccontr) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 386 | assume "b \<noteq> k - 1" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 387 | with b have "b < k - 1" by simp | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 388 | have "t = p ^ b * (p - 1)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 389 | using b p by (simp add: t totient_prime) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 390 | also have "\<dots> dvd p ^ (k - 2) * (p - 1)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 391 | using \<open>b < k - 1\<close> by (intro mult_dvd_mono le_imp_power_dvd) auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 392 | also have "\<dots> = totient (p ^ (k - 1))" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 393 | using k p by (simp add: totient_prime_power numeral_2_eq_2) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 394 | finally have "[g ^ totient (p ^ (k - 1)) = 1] (mod (p ^ k))" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 395 | by (simp add: ord_divides' t_def) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 396 | with residue_primroot_power_prime_power_neq_1[of k p g] p k assms g' show False | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 397 | by auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 398 | qed | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 399 | hence "t = totient (p ^ k)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 400 | using p k by (simp add: t b totient_prime totient_prime_power) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 401 | thus "residue_primroot (p ^ k) g" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 402 | using g one_less_power[of p k] prime_gt_1_nat[of p] p k | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 403 | by (simp add: residue_primroot_def t_def) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 404 | qed (use assms in auto) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 405 | thus "\<forall>k>0. residue_primroot (p ^ k) g" by blast | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 406 | qed | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 407 | qed | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 408 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 409 | text \<open> | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 410 | If \<open>p\<close> is an odd prime, there is always a primitive root \<open>g\<close> modulo \<open>p\<close>, and if \<open>g\<close> does not | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 411 | fulfil the above assumption required for it to be liftable to $p^k$, we can use $g + p$, which | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 412 | is also a primitive root modulo \<open>p\<close> and \<^emph>\<open>does\<close> fulfil the assumption. | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 413 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 414 | This shows that any modulus that is a power of an odd prime has a primitive root. | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 415 | \<close> | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 416 | theorem residue_primroot_odd_prime_power_exists: | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 417 | assumes p: "prime p" "odd p" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 418 | obtains g where "\<forall>k>0. residue_primroot (p ^ k) g" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 419 | proof - | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 420 | obtain g where g: "residue_primroot p g" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 421 | using prime_primitive_root_exists[of p] assms prime_gt_1_nat[of p] by auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 422 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 423 | have "\<exists>g. residue_primroot p g \<and> [g ^ (p - 1) \<noteq> 1] (mod p\<^sup>2)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 424 | proof (cases "[g ^ (p - 1) = 1] (mod p\<^sup>2)") | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 425 | case True | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 426 | define g' where "g' = p + g" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 427 | note g | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 428 | also have "residue_primroot p g \<longleftrightarrow> residue_primroot p g'" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 429 | unfolding g'_def by (rule residue_primroot_cong) (auto simp: cong_def) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 430 | finally have g': "residue_primroot p g'" . | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 431 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 432 | have "[g' ^ (p - 1) = (\<Sum>k\<le>p-1. ((p-1) choose k) * g ^ (p - Suc k) * p ^ k)] (mod p\<^sup>2)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 433 | (is "[_ = ?rhs] (mod _)") by (simp add: g'_def binomial mult_ac) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 434 | also have "[?rhs = (\<Sum>k\<le>p-1. if k \<le> 1 then ((p-1) choose k) * | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 435 | g ^ (p - Suc k) * p ^ k else 0)] (mod p\<^sup>2)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 436 | (is "[sum ?f _ = sum ?g _] (mod _)") | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 437 | proof (intro cong_sum) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 438 |       fix k assume "k \<in> {..p-1}"
 | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 439 | show "[?f k = ?g k] (mod p\<^sup>2)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 440 | proof (cases "k \<le> 1") | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 441 | case False | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 442 | have "p\<^sup>2 dvd ?f k" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 443 | using False by (intro dvd_mult le_imp_power_dvd) auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 444 | thus ?thesis using False by (simp add: cong_0_iff) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 445 | qed auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 446 | qed | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 447 |     also have "sum ?g {..p-1} = sum ?f {0, 1}"
 | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 448 | using prime_gt_1_nat[of p] p by (intro sum.mono_neutral_cong_right) auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 449 | also have "\<dots> = g ^ (p - 1) + p * (p - 1) * g ^ (p - 2)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 450 | using p by (simp add: numeral_2_eq_2) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 451 | also have "[g ^ (p - 1) + p * (p - 1) * g ^ (p - 2) = 1 + p * (p - 1) * g ^ (p - 2)] (mod p\<^sup>2)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 452 | by (intro cong_add True) auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 453 | finally have "[g' ^ (p - 1) = 1 + p * (p - 1) * g ^ (p - 2)] (mod p\<^sup>2)" . | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 454 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 455 | moreover have "[1 + p * (p - 1) * g ^ (p - 2) \<noteq> 1] (mod p\<^sup>2)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 456 | proof | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 457 | assume "[1 + p * (p - 1) * g ^ (p - 2) = 1] (mod p\<^sup>2)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 458 | hence "[1 + p * (p - 1) * g ^ (p - 2) - 1 = 1 - 1] (mod p\<^sup>2)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 459 | by (intro cong_diff_nat) auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 460 | hence "p * p dvd p * ((p - 1) * g ^ (p - 2))" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 461 | by (auto simp: cong_0_iff power2_eq_square) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 462 | hence "p dvd (p - 1) * g ^ (p - 2)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 463 | using p by simp | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 464 | hence "p dvd g ^ (p - 2)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 465 | using p dvd_imp_le[of p "p - Suc 0"] prime_gt_1_nat[of p] | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 466 | by (auto simp: prime_dvd_mult_iff) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 467 | also have "\<dots> dvd g ^ (p - 1)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 468 | by (intro le_imp_power_dvd) auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 469 | finally have "[g ^ (p - 1) = 0] (mod p)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 470 | by (simp add: cong_0_iff) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 471 | hence "[0 = g ^ (p - 1)] (mod p)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 472 | by (simp add: cong_sym_eq) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 473 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 474 | also from \<open>residue_primroot p g\<close> have "[g ^ (p - 1) = 1] (mod p)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 475 | using p by (auto simp: residue_primroot_def ord_divides' totient_prime) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 476 | finally have "[0 = 1] (mod p)" . | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 477 | thus False using prime_gt_1_nat[of p] p by (simp add: cong_def) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 478 | qed | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 479 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 480 | ultimately have "[g' ^ (p - 1) \<noteq> 1] (mod p\<^sup>2)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 481 | by (simp add: cong_def) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 482 | thus "\<exists>g. residue_primroot p g \<and> [g ^ (p - 1) \<noteq> 1] (mod p\<^sup>2)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 483 | using g' by blast | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 484 | qed (use g in auto) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 485 | thus ?thesis | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 486 | using residue_primroot_prime_lift_iff[OF assms] that by blast | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 487 | qed | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 488 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 489 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 490 | subsection \<open>Carmichael's function\<close> | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 491 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 492 | text \<open> | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 493 | Carmichael's function $\lambda(n)$ gives the LCM of the orders of all elements in the | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 494 | residue ring modulo $n$ -- or, equivalently, the maximum order, as we will show later. | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 495 | Algebraically speaking, it is the exponent of the multiplicative group | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 496 |   $(\mathbb{Z}/n\mathbb{Z})^*$.
 | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 497 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 498 | It is not to be confused with Liouville's function, which is also denoted by $\lambda(n)$. | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 499 | \<close> | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 500 | definition Carmichael where | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 501 | "Carmichael n = (LCM a \<in> totatives n. ord n a)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 502 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 503 | lemma Carmichael_0 [simp]: "Carmichael 0 = 1" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 504 | by (simp add: Carmichael_def) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 505 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 506 | lemma Carmichael_1 [simp]: "Carmichael 1 = 1" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 507 | by (simp add: Carmichael_def) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 508 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 509 | lemma Carmichael_Suc_0 [simp]: "Carmichael (Suc 0) = 1" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 510 | by (simp add: Carmichael_def) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 511 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 512 | lemma ord_dvd_Carmichael: | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 513 | assumes "n > 1" "coprime n k" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 514 | shows "ord n k dvd Carmichael n" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 515 | proof - | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 516 | have "k mod n \<in> totatives n" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 517 | using assms by (auto simp: totatives_def coprime_commute intro!: Nat.gr0I) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 518 | hence "ord n (k mod n) dvd Carmichael n" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 519 | by (simp add: Carmichael_def del: ord_mod) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 520 | thus ?thesis by simp | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 521 | qed | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 522 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 523 | lemma Carmichael_divides: | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 524 | assumes "Carmichael n dvd k" "coprime n a" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 525 | shows "[a ^ k = 1] (mod n)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 526 | proof (cases "n < 2 \<or> a = 1") | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 527 | case False | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 528 | hence "ord n a dvd Carmichael n" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 529 | using False assms by (intro ord_dvd_Carmichael) auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 530 | also have "\<dots> dvd k" by fact | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 531 | finally have "ord n a dvd k" . | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 532 | thus ?thesis using ord_divides by auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 533 | next | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 534 | case True | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 535 | then consider "a = 1" | "n = 0" | "n = 1" by force | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 536 | thus ?thesis using assms by cases auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 537 | qed | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 538 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 539 | lemma Carmichael_dvd_totient: "Carmichael n dvd totient n" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 540 | unfolding Carmichael_def | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 541 | proof (intro Lcm_least, safe) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 542 | fix a assume "a \<in> totatives n" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 543 | hence "[a ^ totient n = 1] (mod n)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 544 | by (intro euler_theorem) (auto simp: totatives_def) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 545 | thus "ord n a dvd totient n" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 546 | using ord_divides by blast | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 547 | qed | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 548 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 549 | lemma Carmichael_dvd_mono_coprime: | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 550 | assumes "coprime m n" "m > 1" "n > 1" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 551 | shows "Carmichael m dvd Carmichael (m * n)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 552 | unfolding Carmichael_def[of m] | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 553 | proof (intro Lcm_least, safe) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 554 | fix x assume x: "x \<in> totatives m" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 555 |   from assms have "totatives n \<noteq> {}" by simp
 | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 556 | then obtain y where y: "y \<in> totatives n" by blast | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 557 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 558 | from binary_chinese_remainder_nat[OF assms(1), of x y] | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 559 | obtain z where z: "[z = x] (mod m)" "[z = y] (mod n)" by blast | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 560 | have z': "coprime z n" "coprime z m" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 561 | by (rule cong_imp_coprime; use x y z in \<open>force simp: totatives_def cong_sym_eq\<close>)+ | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 562 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 563 | from z have "ord m x = ord m z" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 564 | by (intro ord_cong) (auto simp: cong_sym_eq) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 565 | also have "ord m z dvd ord (m * n) z" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 566 | using assms by (auto simp: ord_modulus_mult_coprime) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 567 | also from z' assms have "\<dots> dvd Carmichael (m * n)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 568 | by (intro ord_dvd_Carmichael) (auto simp: coprime_commute intro!:one_less_mult) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 569 | finally show "ord m x dvd Carmichael (m * n)" . | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 570 | qed | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 571 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 572 | text \<open> | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 573 | $\lambda$ distributes over the product of coprime numbers similarly to $\varphi$, but | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 574 | with LCM instead of multiplication: | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 575 | \<close> | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 576 | lemma Carmichael_mult_coprime: | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 577 | assumes "coprime m n" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 578 | shows "Carmichael (m * n) = lcm (Carmichael m) (Carmichael n)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 579 | proof (cases "m \<le> 1 \<or> n \<le> 1") | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 580 | case True | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 581 | hence "m = 0 \<or> n = 0 \<or> m = 1 \<or> n = 1" by force | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 582 | thus ?thesis using assms by auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 583 | next | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 584 | case False | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 585 | show ?thesis | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 586 | proof (rule dvd_antisym) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 587 | show "Carmichael (m * n) dvd lcm (Carmichael m) (Carmichael n)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 588 | unfolding Carmichael_def[of "m * n"] | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 589 | proof (intro Lcm_least, safe) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 590 | fix x assume x: "x \<in> totatives (m * n)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 591 | have "ord (m * n) x = lcm (ord m x) (ord n x)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 592 | using assms x by (subst ord_modulus_mult_coprime) (auto simp: coprime_commute totatives_def) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 593 | also have "\<dots> dvd lcm (Carmichael m) (Carmichael n)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 594 | using False x | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 595 | by (intro lcm_mono ord_dvd_Carmichael) (auto simp: totatives_def coprime_commute) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 596 | finally show "ord (m * n) x dvd \<dots>" . | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 597 | qed | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 598 | next | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 599 | show "lcm (Carmichael m) (Carmichael n) dvd Carmichael (m * n)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 600 | using Carmichael_dvd_mono_coprime[of m n] | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 601 | Carmichael_dvd_mono_coprime[of n m] assms False | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 602 | by (auto intro!: lcm_least simp: coprime_commute mult.commute) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 603 | qed | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 604 | qed | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 605 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 606 | lemma Carmichael_pos [simp, intro]: "Carmichael n > 0" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 607 | by (auto simp: Carmichael_def ord_eq_0 totatives_def coprime_commute intro!: Nat.gr0I) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 608 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 609 | lemma Carmichael_nonzero [simp]: "Carmichael n \<noteq> 0" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 610 | by simp | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 611 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 612 | lemma power_Carmichael_eq_1: | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 613 | assumes "n > 1" "coprime n x" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 614 | shows "[x ^ Carmichael n = 1] (mod n)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 615 | using ord_dvd_Carmichael[of n x] assms | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 616 | by (auto simp: ord_divides') | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 617 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 618 | lemma Carmichael_2 [simp]: "Carmichael 2 = 1" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 619 | using Carmichael_dvd_totient[of 2] by simp | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 620 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 621 | lemma Carmichael_4 [simp]: "Carmichael 4 = 2" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 622 | proof - | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 623 | have "Carmichael 4 dvd 2" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 624 | using Carmichael_dvd_totient[of 4] by simp | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 625 | hence "Carmichael 4 \<le> 2" by (rule dvd_imp_le) auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 626 | moreover have "Carmichael 4 \<noteq> 1" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 627 | using power_Carmichael_eq_1[of "4::nat" 3] | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 628 | unfolding coprime_iff_gcd_eq_1 by (auto simp: gcd_non_0_nat cong_def) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 629 | ultimately show ?thesis | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 630 | using Carmichael_pos[of 4] by linarith | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 631 | qed | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 632 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 633 | lemma residue_primroot_Carmichael: | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 634 | assumes "residue_primroot n g" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 635 | shows "Carmichael n = totient n" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 636 | proof (cases "n = 1") | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 637 | case False | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 638 | show ?thesis | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 639 | proof (intro dvd_antisym Carmichael_dvd_totient) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 640 | have "ord n g dvd Carmichael n" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 641 | using assms False by (intro ord_dvd_Carmichael) (auto simp: residue_primroot_def) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 642 | thus "totient n dvd Carmichael n" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 643 | using assms by (auto simp: residue_primroot_def) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 644 | qed | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 645 | qed auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 646 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 647 | lemma Carmichael_odd_prime_power: | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 648 | assumes "prime p" "odd p" "k > 0" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 649 | shows "Carmichael (p ^ k) = p ^ (k - 1) * (p - 1)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 650 | proof - | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 651 | from assms obtain g where "residue_primroot (p ^ k) g" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 652 | using residue_primroot_odd_prime_power_exists[of p] assms by metis | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 653 | hence "Carmichael (p ^ k) = totient (p ^ k)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 654 | by (intro residue_primroot_Carmichael[of "p ^ k" g]) auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 655 | with assms show ?thesis by (simp add: totient_prime_power) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 656 | qed | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 657 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 658 | lemma Carmichael_prime: | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 659 | assumes "prime p" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 660 | shows "Carmichael p = p - 1" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 661 | proof (cases "even p") | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 662 | case True | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 663 | with assms have "p = 2" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 664 | using primes_dvd_imp_eq two_is_prime_nat by blast | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 665 | thus ?thesis by simp | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 666 | next | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 667 | case False | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 668 | with Carmichael_odd_prime_power[of p 1] assms show ?thesis by simp | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 669 | qed | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 670 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 671 | lemma Carmichael_twopow_ge_8: | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 672 | assumes "k \<ge> 3" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 673 | shows "Carmichael (2 ^ k) = 2 ^ (k - 2)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 674 | proof (intro dvd_antisym) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 675 | have "2 ^ (k - 2) = ord (2 ^ k) (3 :: nat)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 676 | using ord_twopow_3_5[of k 3] assms by simp | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 677 | also have "\<dots> dvd Carmichael (2 ^ k)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 678 | using assms one_less_power[of "2::nat" k] by (intro ord_dvd_Carmichael) auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 679 | finally show "2 ^ (k - 2) dvd \<dots>" . | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 680 | next | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 681 | show "Carmichael (2 ^ k) dvd 2 ^ (k - 2)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 682 | unfolding Carmichael_def | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 683 | proof (intro Lcm_least, safe) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 684 | fix x assume "x \<in> totatives (2 ^ k)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 685 | hence "odd x" by (auto simp: totatives_def) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 686 | hence "[x ^ 2 ^ (k - 2) = 1] (mod 2 ^ k)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 687 | using assms ord_twopow_aux[of k x] by auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 688 | thus "ord (2 ^ k) x dvd 2 ^ (k - 2)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 689 | by (simp add: ord_divides') | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 690 | qed | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 691 | qed | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 692 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 693 | lemma Carmichael_twopow: | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 694 | "Carmichael (2 ^ k) = (if k \<le> 2 then 2 ^ (k - 1) else 2 ^ (k - 2))" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 695 | proof - | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 696 | have "k = 0 \<or> k = 1 \<or> k = 2 \<or> k \<ge> 3" by linarith | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 697 | thus ?thesis by (auto simp: Carmichael_twopow_ge_8) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 698 | qed | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 699 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 700 | lemma Carmichael_prime_power: | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 701 | assumes "prime p" "k > 0" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 702 | shows "Carmichael (p ^ k) = | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 703 | (if p = 2 \<and> k > 2 then 2 ^ (k - 2) else p ^ (k - 1) * (p - 1))" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 704 | proof (cases "p = 2") | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 705 | case True | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 706 | thus ?thesis by (simp add: Carmichael_twopow) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 707 | next | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 708 | case False | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 709 | with assms have "odd p" "p > 2" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 710 | using prime_odd_nat[of p] prime_gt_1_nat[of p] by auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 711 | thus ?thesis | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 712 | using assms Carmichael_odd_prime_power[of p k] by simp | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 713 | qed | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 714 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 715 | lemma Carmichael_prod_coprime: | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 716 | assumes "finite A" "\<And>i j. i \<in> A \<Longrightarrow> j \<in> A \<Longrightarrow> i \<noteq> j \<Longrightarrow> coprime (f i) (f j)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 717 | shows "Carmichael (\<Prod>i\<in>A. f i) = (LCM i\<in>A. Carmichael (f i))" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 718 | using assms by (induction A rule: finite_induct) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 719 | (simp, simp, subst Carmichael_mult_coprime[OF prod_coprime_right], auto) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 720 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 721 | text \<open> | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 722 | Since $\lambda$ distributes over coprime factors and we know the value of $\lambda(p^k)$ | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 723 | for prime $p$, we can now give a closed formula for $\lambda(n)$ in terms of the prime | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 724 | factorisation of $n$: | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 725 | \<close> | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 726 | theorem Carmichael_closed_formula: | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 727 | "Carmichael n = | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 728 | (LCM p\<in>prime_factors n. let k = multiplicity p n | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 729 | in if p = 2 \<and> k > 2 then 2 ^ (k - 2) else p ^ (k - 1) * (p - 1))" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 730 | (is "_ = Lcm ?A") | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 731 | proof (cases "n = 0") | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 732 | case False | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 733 | hence "n = (\<Prod>p\<in>prime_factors n. p ^ multiplicity p n)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 734 | using prime_factorization_nat by blast | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 735 | also have "Carmichael \<dots> = | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 736 | (LCM p\<in>prime_factors n. Carmichael (p ^ multiplicity p n))" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 737 | by (subst Carmichael_prod_coprime) (auto simp: in_prime_factors_iff primes_coprime) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 738 | also have "(\<lambda>p. Carmichael (p ^ multiplicity p n)) ` prime_factors n = ?A" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 739 | by (intro image_cong) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 740 | (auto simp: Let_def Carmichael_prime_power prime_factors_multiplicity) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 741 | finally show ?thesis . | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 742 | qed auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 743 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 744 | corollary even_Carmichael: | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 745 | assumes "n > 2" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 746 | shows "even (Carmichael n)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 747 | proof (cases "\<exists>k. n = 2 ^ k") | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 748 | case True | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 749 | then obtain k where [simp]: "n = 2 ^ k" by auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 750 | from assms have "k \<noteq> 0" "k \<noteq> 1" by (auto intro!: Nat.gr0I) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 751 | hence "k \<ge> 2" by auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 752 | thus ?thesis by (auto simp: Carmichael_twopow) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 753 | next | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 754 | case False | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 755 | from assms have "n \<noteq> 0" by auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 756 | from False have "\<exists>p\<in>prime_factors n. p \<noteq> 2" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 757 | using assms Ex_other_prime_factor[of n 2] by auto | 
| 74362 | 758 | from divide_out_primepow_ex[OF \<open>n \<noteq> 0\<close> this] | 
| 759 | obtain p k n' | |
| 760 | where p: | |
| 761 | "p \<noteq> 2" | |
| 762 | "prime p" | |
| 763 | "p dvd n" | |
| 764 | "\<not> p dvd n'" | |
| 765 | "0 < k" | |
| 766 | "n = p ^ k * n'" . | |
| 69785 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 767 | from p have coprime: "coprime (p ^ k) n'" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 768 | using p prime_imp_coprime by auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 769 | have "odd p" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 770 | using p primes_dvd_imp_eq[of 2 p] by auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 771 | have "even (Carmichael (p ^ k))" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 772 | using p \<open>odd p\<close> by (auto simp: Carmichael_prime_power) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 773 | with p coprime show ?thesis | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 774 | by (auto simp: Carmichael_mult_coprime intro!: dvd_lcmI1) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 775 | qed | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 776 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 777 | lemma eval_Carmichael: | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 778 | assumes "prime_factorization n = A" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 779 | shows "Carmichael n = (LCM p \<in> set_mset A. | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 780 | let k = count A p in if p = 2 \<and> k > 2 then 2 ^ (k - 2) else p ^ (k - 1) * (p - 1))" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 781 | unfolding assms [symmetric] Carmichael_closed_formula | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 782 | by (intro arg_cong[where f = Lcm] image_cong) (auto simp: Let_def count_prime_factorization) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 783 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 784 | text \<open> | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 785 | Any residue ring always contains a $\lambda$-root, i.\,e.\ an element whose | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 786 | order is $\lambda(n)$. | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 787 | \<close> | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 788 | theorem Carmichael_root_exists: | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 789 | assumes "n > (0::nat)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 790 | obtains g where "g \<in> totatives n" and "ord n g = Carmichael n" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 791 | proof (cases "n = 1") | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 792 | case True | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 793 | thus ?thesis by (intro that[of 1]) (auto simp: totatives_def) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 794 | next | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 795 | case False | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 796 | have primepow: "\<exists>g. coprime (p ^ k) g \<and> ord (p ^ k) g = Carmichael (p ^ k)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 797 | if pk: "prime p" "k > 0" for p k | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 798 | proof (cases "p = 2") | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 799 | case [simp]: True | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 800 | from \<open>k > 0\<close> consider "k = 1" | "k = 2" | "k \<ge> 3" by force | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 801 | thus ?thesis | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 802 | proof cases | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 803 | assume "k = 1" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 804 | thus ?thesis by (intro exI[of _ 1]) auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 805 | next | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 806 | assume [simp]: "k = 2" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 807 | have "coprime 4 (3::nat)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 808 | by (auto simp: coprime_iff_gcd_eq_1 gcd_non_0_nat) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 809 | thus ?thesis by (intro exI[of _ 3]) auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 810 | next | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 811 | assume k: "k \<ge> 3" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 812 | have "coprime (2 ^ k :: nat) 3" by auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 813 | thus ?thesis using k | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 814 | by (intro exI[of _ 3]) (auto simp: ord_twopow_3_5 Carmichael_twopow) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 815 | qed | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 816 | next | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 817 | case False | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 818 | hence "odd p" using \<open>prime p\<close> | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 819 | using primes_dvd_imp_eq two_is_prime_nat by blast | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 820 | then obtain g where "residue_primroot (p ^ k) g" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 821 | using residue_primroot_odd_prime_power_exists[of p] pk by metis | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 822 | thus ?thesis using False pk | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 823 | by (intro exI[of _ g]) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 824 | (auto simp: Carmichael_prime_power residue_primroot_def totient_prime_power) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 825 | qed | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 826 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 827 | define P where "P = prime_factors n" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 828 | define k where "k = (\<lambda>p. multiplicity p n)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 829 | have "\<forall>p\<in>P. \<exists>g. coprime (p ^ k p) g \<and> ord (p ^ k p) g = Carmichael (p ^ k p)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 830 | using primepow by (auto simp: P_def k_def prime_factors_multiplicity) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 831 | hence "\<exists>g. \<forall>p\<in>P. coprime (p ^ k p) (g p) \<and> ord (p ^ k p) (g p) = Carmichael (p ^ k p)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 832 | by (subst (asm) bchoice_iff) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 833 | then obtain g where g: "\<And>p. p \<in> P \<Longrightarrow> coprime (p ^ k p) (g p)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 834 | "\<And>p. p \<in> P \<Longrightarrow> ord (p ^ k p) (g p) = Carmichael (p ^ k p)" by metis | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 835 | have "\<exists>x. \<forall>i\<in>P. [x = g i] (mod i ^ k i)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 836 | by (intro chinese_remainder_nat) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 837 | (auto simp: P_def k_def in_prime_factors_iff primes_coprime) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 838 | then obtain x where x: "\<And>p. p \<in> P \<Longrightarrow> [x = g p] (mod p ^ k p)" by metis | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 839 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 840 | have "n = (\<Prod>p\<in>P. p ^ k p)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 841 | using assms unfolding P_def k_def by (rule prime_factorization_nat) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 842 | also have "ord \<dots> x = (LCM p\<in>P. ord (p ^ k p) x)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 843 | by (intro ord_modulus_prod_coprime) (auto simp: P_def in_prime_factors_iff primes_coprime) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 844 | also have "(\<lambda>p. ord (p ^ k p) x) ` P = (\<lambda>p. ord (p ^ k p) (g p)) ` P" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 845 | by (intro image_cong ord_cong x) auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 846 | also have "\<dots> = (\<lambda>p. Carmichael (p ^ k p)) ` P" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 847 | by (intro image_cong g) auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 848 | also have "Lcm \<dots> = Carmichael (\<Prod>p\<in>P. p ^ k p)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 849 | by (intro Carmichael_prod_coprime [symmetric]) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 850 | (auto simp: P_def in_prime_factors_iff primes_coprime) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 851 | also have "(\<Prod>p\<in>P. p ^ k p) = n" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 852 | using assms unfolding P_def k_def by (rule prime_factorization_nat [symmetric]) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 853 | finally have "ord n x = Carmichael n" . | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 854 | moreover from this have "coprime n x" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 855 | by (cases "coprime n x") (auto split: if_splits) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 856 | ultimately show ?thesis using assms False | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 857 | by (intro that[of "x mod n"]) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 858 | (auto simp: totatives_def coprime_commute coprime_absorb_left intro!: Nat.gr0I) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 859 | qed | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 860 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 861 | text \<open> | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 862 | This also means that the Carmichael number is not only the LCM of the orders | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 863 | of the elements of the residue ring, but indeed the maximum of the orders. | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 864 | \<close> | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 865 | lemma Carmichael_altdef: | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 866 | "Carmichael n = (if n = 0 then 1 else Max (ord n ` totatives n))" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 867 | proof (cases "n = 0") | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 868 | case False | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 869 | have "Carmichael n = Max (ord n ` totatives n)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 870 | proof (intro antisym Max.boundedI Max.coboundedI) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 871 | fix k assume k: "k \<in> ord n ` totatives n" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 872 | thus "k \<le> Carmichael n" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 873 | proof (cases "n = 1") | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 874 | case False | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 875 | with \<open>n \<noteq> 0\<close> have "n > 1" by linarith | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 876 | thus ?thesis using k \<open>n \<noteq> 0\<close> | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 877 | by (intro dvd_imp_le) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 878 | (auto intro!: ord_dvd_Carmichael simp: totatives_def coprime_commute) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 879 | qed auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 880 | next | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 881 | obtain g where "g \<in> totatives n" and "ord n g = Carmichael n" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 882 | using Carmichael_root_exists[of n] \<open>n \<noteq> 0\<close> by auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 883 | thus "Carmichael n \<in> ord n ` totatives n" by force | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 884 | qed (use \<open>n \<noteq> 0\<close> in auto) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 885 | thus ?thesis using False by simp | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 886 | qed auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 887 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 888 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 889 | subsection \<open>Existence of primitive roots for general moduli\<close> | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 890 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 891 | text \<open> | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 892 | We now related Carmichael's function to the existence of primitive roots and, in the end, | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 893 | use this to show precisely which moduli have primitive roots and which do not. | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 894 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 895 | The first criterion for the existence of a primitive root is this: A primitive root modulo $n$ | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 896 | exists iff $\lambda(n) = \varphi(n)$. | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 897 | \<close> | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 898 | lemma Carmichael_eq_totient_imp_primroot: | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 899 | assumes "n > 0" and "Carmichael n = totient n" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 900 | shows "\<exists>g. residue_primroot n g" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 901 | proof - | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 902 | from \<open>n > 0\<close> obtain g where "g \<in> totatives n" and "ord n g = Carmichael n" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 903 | using Carmichael_root_exists[of n] by metis | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 904 | with assms show ?thesis by (auto simp: residue_primroot_def totatives_def coprime_commute) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 905 | qed | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 906 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 907 | theorem residue_primroot_iff_Carmichael: | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 908 | "(\<exists>g. residue_primroot n g) \<longleftrightarrow> Carmichael n = totient n \<and> n > 0" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 909 | proof safe | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 910 | fix g assume g: "residue_primroot n g" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 911 | thus "n > 0" by (auto simp: residue_primroot_def) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 912 | have "coprime n g" by (rule ccontr) (use g in \<open>auto simp: residue_primroot_def\<close>) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 913 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 914 | show "Carmichael n = totient n" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 915 | proof (cases "n = 1") | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 916 | case False | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 917 | with \<open>n > 0\<close> have "n > 1" by auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 918 | with \<open>coprime n g\<close> have "ord n g dvd Carmichael n" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 919 | by (intro ord_dvd_Carmichael) auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 920 | thus ?thesis using g by (intro dvd_antisym Carmichael_dvd_totient) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 921 | (auto simp: residue_primroot_def) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 922 | qed auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 923 | qed (use Carmichael_eq_totient_imp_primroot[of n] in auto) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 924 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 925 | text \<open> | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 926 | Any primitive root modulo $mn$ for coprime $m$, $n$ is also a primitive root modulo $m$ and $n$. | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 927 | The converse does not hold in general. | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 928 | \<close> | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 929 | lemma residue_primroot_modulus_mult_coprimeD: | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 930 | assumes "coprime m n" and "residue_primroot (m * n) g" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 931 | shows "residue_primroot m g" "residue_primroot n g" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 932 | proof - | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 933 | have *: "m > 0" "n > 0" "coprime m g" "coprime n g" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 934 | "lcm (ord m g) (ord n g) = totient m * totient n" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 935 | using assms | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 936 | by (auto simp: residue_primroot_def ord_modulus_mult_coprime totient_mult_coprime) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 937 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 938 | define a b where "a = totient m div ord m g" and "b = totient n div ord n g" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 939 | have ab: "totient m = ord m g * a" "totient n = ord n g * b" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 940 | using * by (auto simp: a_def b_def order_divides_totient) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 941 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 942 | have "a = 1" "b = 1" "coprime (ord m g) (ord n g)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 943 | unfolding coprime_iff_gcd_eq_1 using * by (auto simp: ab lcm_nat_def dvd_div_eq_mult ord_eq_0) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 944 | with ab and * show "residue_primroot m g" "residue_primroot n g" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 945 | by (auto simp: residue_primroot_def) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 946 | qed | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 947 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 948 | text \<open> | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 949 | If a primitive root modulo $mn$ exists for coprime $m, n$, then $\lambda(m)$ and $\lambda(n)$ | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 950 | must also be coprime. This is helpful in establishing that there are no primitive roots | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 951 | modulo $mn$ by showing e.\,g.\ that $\lambda(m)$ and $\lambda(n)$ are both even. | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 952 | \<close> | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 953 | lemma residue_primroot_modulus_mult_coprime_imp_Carmichael_coprime: | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 954 | assumes "coprime m n" and "residue_primroot (m * n) g" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 955 | shows "coprime (Carmichael m) (Carmichael n)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 956 | proof - | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 957 | from residue_primroot_modulus_mult_coprimeD[OF assms] | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 958 | have *: "residue_primroot m g" "residue_primroot n g" by auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 959 | hence [simp]: "Carmichael m = totient m" "Carmichael n = totient n" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 960 | by (simp_all add: residue_primroot_Carmichael) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 961 | from * have mn: "m > 0" "n > 0" by (auto simp: residue_primroot_def) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 962 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 963 | from assms have "Carmichael (m * n) = totient (m * n) \<and> n > 0" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 964 | using residue_primroot_iff_Carmichael[of "m * n"] by auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 965 | with assms have "lcm (totient m) (totient n) = totient m * totient n" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 966 | by (simp add: Carmichael_mult_coprime totient_mult_coprime) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 967 | thus ?thesis unfolding coprime_iff_gcd_eq_1 using mn | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 968 | by (simp add: lcm_nat_def dvd_div_eq_mult) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 969 | qed | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 970 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 971 | text \<open> | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 972 | The following moduli are precisely those that have primitive roots. | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 973 | \<close> | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 974 | definition cyclic_moduli :: "nat set" where | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 975 |   "cyclic_moduli = {1, 2, 4} \<union> {p ^ k |p k. prime p \<and> odd p \<and> k > 0} \<union>
 | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 976 |                      {2 * p ^ k |p k. prime p \<and> odd p \<and> k > 0}"
 | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 977 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 978 | theorem residue_primroot_iff_in_cyclic_moduli: | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 979 | "(\<exists>g. residue_primroot m g) \<longleftrightarrow> m \<in> cyclic_moduli" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 980 | proof - | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 981 | have "(\<exists>g. residue_primroot m g)" if "m \<in> cyclic_moduli" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 982 | using that unfolding cyclic_moduli_def | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 983 | by (intro Carmichael_eq_totient_imp_primroot) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 984 | (auto dest: prime_gt_0_nat simp: Carmichael_prime_power totient_prime_power | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 985 | Carmichael_mult_coprime totient_mult_coprime) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 986 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 987 | moreover have "\<not>(\<exists>g. residue_primroot m g)" if "m \<notin> cyclic_moduli" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 988 | proof (cases "m = 0") | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 989 | case False | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 990 | with that have [simp]: "m > 0" "m \<noteq> 1" by (auto simp: cyclic_moduli_def) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 991 | show ?thesis | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 992 | proof (cases "\<exists>k. m = 2 ^ k") | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 993 | case True | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 994 | then obtain k where [simp]: "m = 2 ^ k" by auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 995 | with that have "k \<noteq> 0 \<and> k \<noteq> 1 \<and> k \<noteq> 2" by (auto simp: cyclic_moduli_def) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 996 | hence "k \<ge> 3" by auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 997 | thus ?thesis by (subst residue_primroot_iff_Carmichael) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 998 | (auto simp: Carmichael_twopow totient_prime_power) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 999 | next | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1000 | case False | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1001 | hence "\<exists>p\<in>prime_factors m. p \<noteq> 2" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1002 | using Ex_other_prime_factor[of m 2] by auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1003 | from divide_out_primepow_ex[OF \<open>m \<noteq> 0\<close> this] | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1004 | obtain p k m' where p: "p \<noteq> 2" "prime p" "p dvd m" "\<not>p dvd m'" "0 < k" "m = p ^ k * m'" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1005 | by metis | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1006 | have "odd p" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1007 | using p primes_dvd_imp_eq[of 2 p] by auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1008 | from p have coprime: "coprime (p ^ k) m'" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1009 | using p prime_imp_coprime by auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1010 | have "m \<in> cyclic_moduli" if "m' = 1" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1011 | using that p \<open>odd p\<close> by (auto simp: cyclic_moduli_def) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1012 | moreover have "m \<in> cyclic_moduli" if "m' = 2" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1013 | proof - | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1014 | have "m = 2 * p ^ k" using p that by (simp add: mult.commute) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1015 | thus "m \<in> cyclic_moduli" using p \<open>odd p\<close> | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1016 | unfolding cyclic_moduli_def by blast | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1017 | qed | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1018 | moreover have "m' \<noteq> 0" using p by (intro notI) auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1019 | ultimately have "m' \<noteq> 0 \<and>m' \<noteq> 1 \<and> m' \<noteq> 2" using that by auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1020 | hence "m' > 2" by linarith | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1021 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1022 | show ?thesis | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1023 | proof | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1024 | assume "\<exists>g. residue_primroot m g" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1025 | with coprime p have coprime': "coprime (p - 1) (Carmichael m')" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1026 | using residue_primroot_modulus_mult_coprime_imp_Carmichael_coprime[OF coprime] | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1027 | by (auto simp: Carmichael_prime_power) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1028 | moreover have "even (p - 1)" "even (Carmichael m')" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1029 | using \<open>m' > 2\<close> \<open>odd p\<close> by (auto intro!: even_Carmichael) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1030 | ultimately show False by force | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1031 | qed | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1032 | qed | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1033 | qed auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1034 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1035 | ultimately show ?thesis by metis | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1036 | qed | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1037 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1038 | lemma residue_primroot_is_generator: | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1039 | assumes "m > 1" and "residue_primroot m g" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1040 |   shows   "bij_betw (\<lambda>i. g ^ i mod m) {..<totient m} (totatives m)"
 | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1041 | unfolding bij_betw_def | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1042 | proof | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1043 | from assms have [simp]: "ord m g = totient m" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1044 | by (simp add: residue_primroot_def) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1045 | from assms have "coprime m g" by (simp add: residue_primroot_def) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1046 |   hence "inj_on (\<lambda>i. g ^ i mod m) {..<ord m g}"
 | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1047 | by (intro inj_power_mod) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1048 |   thus inj: "inj_on (\<lambda>i. g ^ i mod m) {..<totient m}"
 | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1049 | by simp | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1050 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1051 |   show "(\<lambda>i. g ^ i mod m) ` {..<totient m} = totatives m"
 | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1052 | proof (rule card_subset_eq) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1053 |     show "card ((\<lambda>i. g ^ i mod m) ` {..<totient m}) = card (totatives m)"
 | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1054 | using inj by (subst card_image) (auto simp: totient_def) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1055 |     show "(\<lambda>i. g ^ i mod m) ` {..<totient m} \<subseteq> totatives m"
 | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1056 | using \<open>m > 1\<close> \<open>coprime m g\<close> power_in_totatives[of m g] by blast | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1057 | qed auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1058 | qed | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1059 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1060 | text \<open> | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1061 | Given one primitive root \<open>g\<close>, all the primitive roots are powers $g^i$ for | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1062 |   $1\leq i \leq \varphi(n)$ with $\text{gcd}(i, \varphi(n)) = 1$.
 | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1063 | \<close> | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1064 | theorem residue_primroot_bij_betw_primroots: | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1065 | assumes "m > 1" and "residue_primroot m g" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1066 | shows "bij_betw (\<lambda>i. g ^ i mod m) (totatives (totient m)) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1067 |                                       {g\<in>totatives m. residue_primroot m g}"
 | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1068 | proof (cases "m = 2") | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1069 | case [simp]: True | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1070 |   have [simp]: "totatives 2 = {1}"
 | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1071 | by (auto simp: totatives_def elim!: oddE) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1072 | from assms have "odd g" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1073 | by (auto simp: residue_primroot_def) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1074 | hence pow_eq: "(\<lambda>i. g ^ i mod m) = (\<lambda>_. 1)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1075 | by (auto simp: fun_eq_iff mod_2_eq_odd) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1076 |   have "{g \<in> totatives m. residue_primroot m g} = {1}"
 | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1077 | by (auto simp: residue_primroot_def) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1078 | thus ?thesis using pow_eq by (auto simp: bij_betw_def) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1079 | next | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1080 | case False | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1081 | thus ?thesis unfolding bij_betw_def | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1082 | proof safe | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1083 | from assms False have "m > 2" by auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1084 | from assms \<open>m > 2\<close> have "totient m > 1" by (intro totient_gt_1) auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1085 | from assms have [simp]: "ord m g = totient m" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1086 | by (simp add: residue_primroot_def) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1087 | from assms have "coprime m g" by (simp add: residue_primroot_def) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1088 |     hence "inj_on (\<lambda>i. g ^ i mod m) {..<ord m g}"
 | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1089 | by (intro inj_power_mod) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1090 | thus "inj_on (\<lambda>i. g ^ i mod m) (totatives (totient m))" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1091 | by (rule inj_on_subset) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1092 | (use assms \<open>totient m > 1\<close> in \<open>auto simp: totatives_less residue_primroot_def\<close>) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1093 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1094 |     {
 | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1095 | fix i assume i: "i \<in> totatives (totient m)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1096 | from \<open>coprime m g\<close> and \<open>m > 2\<close> show "g ^ i mod m \<in> totatives m" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1097 | by (intro power_in_totatives) auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1098 | show "residue_primroot m (g ^ i mod m)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1099 | using i \<open>m > 2\<close> \<open>coprime m g\<close> | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1100 | by (auto simp: residue_primroot_def coprime_commute ord_power totatives_def) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1101 | } | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1102 |     {
 | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1103 | fix x assume x: "x \<in> totatives m" "residue_primroot m x" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1104 | then obtain i where i: "i < totient m" "x = (g ^ i mod m)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1105 | using assms residue_primroot_is_generator[of m g] by (auto simp: bij_betw_def) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1106 | from i x \<open>m > 2\<close> have "i > 0" by (intro Nat.gr0I) (auto simp: residue_primroot_1_iff) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1107 | have "totient m div gcd i (totient m) = totient m" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1108 | using x i \<open>coprime m g\<close> by (auto simp add: residue_primroot_def ord_power) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1109 | hence "coprime i (totient m)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1110 | unfolding coprime_iff_gcd_eq_1 using assms by (subst (asm) dvd_div_eq_mult) auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1111 | with i \<open>i > 0\<close> have "i \<in> totatives (totient m)" by (auto simp: totatives_def) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1112 | thus "x \<in> (\<lambda>i. g ^ i mod m) ` totatives (totient m)" using i by auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1113 | } | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1114 | qed | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1115 | qed | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1116 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1117 | text \<open> | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1118 | It follows from the above statement that any residue ring modulo \<open>n\<close> that \<^emph>\<open>has\<close> primitive roots | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1119 | has exactly $\varphi(\varphi(n))$ of them. | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1120 | \<close> | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1121 | corollary card_residue_primroots: | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1122 | assumes "\<exists>g. residue_primroot m g" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1123 |   shows   "card {g\<in>totatives m. residue_primroot m g} = totient (totient m)"
 | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1124 | proof (cases "m = 1") | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1125 | case [simp]: True | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1126 |   have "{g \<in> totatives m. residue_primroot m g} = {1}"
 | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1127 | by (auto simp: residue_primroot_def) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1128 | thus ?thesis by simp | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1129 | next | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1130 | case False | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1131 | from assms obtain g where g: "residue_primroot m g" by auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1132 | hence "m \<noteq> 0" by (intro notI) auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1133 | with \<open>m \<noteq> 1\<close> have "m > 1" by linarith | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1134 | from this g have "bij_betw (\<lambda>i. g ^ i mod m) (totatives (totient m)) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1135 |                       {g\<in>totatives m. residue_primroot m g}"
 | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1136 | by (rule residue_primroot_bij_betw_primroots) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1137 |   hence "card (totatives (totient m)) = card {g\<in>totatives m. residue_primroot m g}"
 | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1138 | by (rule bij_betw_same_card) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1139 | thus ?thesis by (simp add: totient_def) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1140 | qed | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1141 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1142 | corollary card_residue_primroots': | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1143 |   "card {g\<in>totatives m. residue_primroot m g} =
 | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1144 | (if m \<in> cyclic_moduli then totient (totient m) else 0)" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1145 | by (simp add: residue_primroot_iff_in_cyclic_moduli [symmetric] card_residue_primroots) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1146 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1147 | text \<open> | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1148 | As an example, we evaluate $\lambda(122200)$ using the prime factorisation. | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1149 | \<close> | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1150 | lemma "Carmichael 122200 = 1380" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1151 | proof - | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1152 |   have "prime_factorization (2^3 * 5^2 * 13 * 47) = {#2, 2, 2, 5, 5, 13, 47::nat#}"
 | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1153 | by (intro prime_factorization_eqI) auto | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1154 | from eval_Carmichael[OF this] show "Carmichael 122200 = 1380" | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1155 | by (simp add: lcm_nat_def gcd_non_0_nat) | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1156 | qed | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1157 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1158 | (* TODO: definition of index ("discrete logarithm") *)
 | 
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1159 | |
| 
9e326f6f8a24
More material for HOL-Number_Theory: ord, Carmichael's function, primitive roots
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1160 | end |