| author | Christian Sternagel | 
| Thu, 30 Aug 2012 13:06:04 +0900 | |
| changeset 49088 | 5cd8b4426a57 | 
| parent 47108 | 2a1953f0d20d | 
| child 49834 | b27bbb021df1 | 
| permissions | -rw-r--r-- | 
| 43919 | 1 | (* Title: HOL/Library/Extended_Nat.thy | 
| 27110 | 2 | Author: David von Oheimb, TU Muenchen; Florian Haftmann, TU Muenchen | 
| 41853 | 3 | Contributions: David Trachtenherz, TU Muenchen | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 4 | *) | 
| 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 5 | |
| 43919 | 6 | header {* Extended natural numbers (i.e. with infinity) *}
 | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 7 | |
| 43919 | 8 | theory Extended_Nat | 
| 30663 
0b6aff7451b2
Main is (Complex_Main) base entry point in library theories
 haftmann parents: 
29668diff
changeset | 9 | imports Main | 
| 15131 | 10 | begin | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 11 | |
| 43921 | 12 | class infinity = | 
| 13 | fixes infinity :: "'a" | |
| 14 | ||
| 15 | notation (xsymbols) | |
| 16 |   infinity  ("\<infinity>")
 | |
| 17 | ||
| 18 | notation (HTML output) | |
| 19 |   infinity  ("\<infinity>")
 | |
| 20 | ||
| 27110 | 21 | subsection {* Type definition *}
 | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 22 | |
| 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 23 | text {*
 | 
| 11355 | 24 | We extend the standard natural numbers by a special value indicating | 
| 27110 | 25 | infinity. | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 26 | *} | 
| 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 27 | |
| 43921 | 28 | typedef (open) enat = "UNIV :: nat option set" .. | 
| 29 | ||
| 43924 | 30 | definition enat :: "nat \<Rightarrow> enat" where | 
| 31 | "enat n = Abs_enat (Some n)" | |
| 43921 | 32 | |
| 33 | instantiation enat :: infinity | |
| 34 | begin | |
| 35 | definition "\<infinity> = Abs_enat None" | |
| 36 | instance proof qed | |
| 37 | end | |
| 38 | ||
| 43924 | 39 | rep_datatype enat "\<infinity> :: enat" | 
| 43921 | 40 | proof - | 
| 43924 | 41 | fix P i assume "\<And>j. P (enat j)" "P \<infinity>" | 
| 43921 | 42 | then show "P i" | 
| 43 | proof induct | |
| 44 | case (Abs_enat y) then show ?case | |
| 45 | by (cases y rule: option.exhaust) | |
| 43924 | 46 | (auto simp: enat_def infinity_enat_def) | 
| 43921 | 47 | qed | 
| 43924 | 48 | qed (auto simp add: enat_def infinity_enat_def Abs_enat_inject) | 
| 19736 | 49 | |
| 43924 | 50 | declare [[coercion "enat::nat\<Rightarrow>enat"]] | 
| 19736 | 51 | |
| 45934 | 52 | lemmas enat2_cases = enat.exhaust[case_product enat.exhaust] | 
| 53 | lemmas enat3_cases = enat.exhaust[case_product enat.exhaust enat.exhaust] | |
| 54 | ||
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 55 | lemma not_infinity_eq [iff]: "(x \<noteq> \<infinity>) = (EX i. x = enat i)" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 56 | by (cases x) auto | 
| 31084 | 57 | |
| 43924 | 58 | lemma not_enat_eq [iff]: "(ALL y. x ~= enat y) = (x = \<infinity>)" | 
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 59 | by (cases x) auto | 
| 31077 | 60 | |
| 43924 | 61 | primrec the_enat :: "enat \<Rightarrow> nat" | 
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 62 | where "the_enat (enat n) = n" | 
| 41855 | 63 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 64 | |
| 27110 | 65 | subsection {* Constructors and numbers *}
 | 
| 66 | ||
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 67 | instantiation enat :: "{zero, one}"
 | 
| 25594 | 68 | begin | 
| 69 | ||
| 70 | definition | |
| 43924 | 71 | "0 = enat 0" | 
| 25594 | 72 | |
| 73 | definition | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 74 | "1 = enat 1" | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 75 | |
| 25594 | 76 | instance .. | 
| 77 | ||
| 78 | end | |
| 79 | ||
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 80 | definition eSuc :: "enat \<Rightarrow> enat" where | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 81 | "eSuc i = (case i of enat n \<Rightarrow> enat (Suc n) | \<infinity> \<Rightarrow> \<infinity>)" | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 82 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 83 | lemma enat_0 [code_post]: "enat 0 = 0" | 
| 43919 | 84 | by (simp add: zero_enat_def) | 
| 27110 | 85 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 86 | lemma enat_1 [code_post]: "enat 1 = 1" | 
| 43919 | 87 | by (simp add: one_enat_def) | 
| 27110 | 88 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 89 | lemma one_eSuc: "1 = eSuc 0" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 90 | by (simp add: zero_enat_def one_enat_def eSuc_def) | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 91 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 92 | lemma infinity_ne_i0 [simp]: "(\<infinity>::enat) \<noteq> 0" | 
| 43919 | 93 | by (simp add: zero_enat_def) | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 94 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 95 | lemma i0_ne_infinity [simp]: "0 \<noteq> (\<infinity>::enat)" | 
| 43919 | 96 | by (simp add: zero_enat_def) | 
| 27110 | 97 | |
| 43919 | 98 | lemma zero_one_enat_neq [simp]: | 
| 99 | "\<not> 0 = (1\<Colon>enat)" | |
| 100 | "\<not> 1 = (0\<Colon>enat)" | |
| 101 | unfolding zero_enat_def one_enat_def by simp_all | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 102 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 103 | lemma infinity_ne_i1 [simp]: "(\<infinity>::enat) \<noteq> 1" | 
| 43919 | 104 | by (simp add: one_enat_def) | 
| 27110 | 105 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 106 | lemma i1_ne_infinity [simp]: "1 \<noteq> (\<infinity>::enat)" | 
| 43919 | 107 | by (simp add: one_enat_def) | 
| 27110 | 108 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 109 | lemma eSuc_enat: "eSuc (enat n) = enat (Suc n)" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 110 | by (simp add: eSuc_def) | 
| 27110 | 111 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 112 | lemma eSuc_infinity [simp]: "eSuc \<infinity> = \<infinity>" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 113 | by (simp add: eSuc_def) | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 114 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 115 | lemma eSuc_ne_0 [simp]: "eSuc n \<noteq> 0" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 116 | by (simp add: eSuc_def zero_enat_def split: enat.splits) | 
| 27110 | 117 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 118 | lemma zero_ne_eSuc [simp]: "0 \<noteq> eSuc n" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 119 | by (rule eSuc_ne_0 [symmetric]) | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 120 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 121 | lemma eSuc_inject [simp]: "eSuc m = eSuc n \<longleftrightarrow> m = n" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 122 | by (simp add: eSuc_def split: enat.splits) | 
| 27110 | 123 | |
| 124 | subsection {* Addition *}
 | |
| 125 | ||
| 43919 | 126 | instantiation enat :: comm_monoid_add | 
| 27110 | 127 | begin | 
| 128 | ||
| 38167 | 129 | definition [nitpick_simp]: | 
| 43924 | 130 | "m + n = (case m of \<infinity> \<Rightarrow> \<infinity> | enat m \<Rightarrow> (case n of \<infinity> \<Rightarrow> \<infinity> | enat n \<Rightarrow> enat (m + n)))" | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 131 | |
| 43919 | 132 | lemma plus_enat_simps [simp, code]: | 
| 43921 | 133 | fixes q :: enat | 
| 43924 | 134 | shows "enat m + enat n = enat (m + n)" | 
| 43921 | 135 | and "\<infinity> + q = \<infinity>" | 
| 136 | and "q + \<infinity> = \<infinity>" | |
| 43919 | 137 | by (simp_all add: plus_enat_def split: enat.splits) | 
| 27110 | 138 | |
| 139 | instance proof | |
| 43919 | 140 | fix n m q :: enat | 
| 27110 | 141 | show "n + m + q = n + (m + q)" | 
| 45934 | 142 | by (cases n m q rule: enat3_cases) auto | 
| 27110 | 143 | show "n + m = m + n" | 
| 45934 | 144 | by (cases n m rule: enat2_cases) auto | 
| 27110 | 145 | show "0 + n = n" | 
| 43919 | 146 | by (cases n) (simp_all add: zero_enat_def) | 
| 26089 | 147 | qed | 
| 148 | ||
| 27110 | 149 | end | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 150 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 151 | lemma eSuc_plus_1: | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 152 | "eSuc n = n + 1" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 153 | by (cases n) (simp_all add: eSuc_enat one_enat_def) | 
| 27110 | 154 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 155 | lemma plus_1_eSuc: | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 156 | "1 + q = eSuc q" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 157 | "q + 1 = eSuc q" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 158 | by (simp_all add: eSuc_plus_1 add_ac) | 
| 41853 | 159 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 160 | lemma iadd_Suc: "eSuc m + n = eSuc (m + n)" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 161 | by (simp_all add: eSuc_plus_1 add_ac) | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 162 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 163 | lemma iadd_Suc_right: "m + eSuc n = eSuc (m + n)" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 164 | by (simp only: add_commute[of m] iadd_Suc) | 
| 41853 | 165 | |
| 43919 | 166 | lemma iadd_is_0: "(m + n = (0::enat)) = (m = 0 \<and> n = 0)" | 
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 167 | by (cases m, cases n, simp_all add: zero_enat_def) | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 168 | |
| 29014 | 169 | subsection {* Multiplication *}
 | 
| 170 | ||
| 43919 | 171 | instantiation enat :: comm_semiring_1 | 
| 29014 | 172 | begin | 
| 173 | ||
| 43919 | 174 | definition times_enat_def [nitpick_simp]: | 
| 43924 | 175 | "m * n = (case m of \<infinity> \<Rightarrow> if n = 0 then 0 else \<infinity> | enat m \<Rightarrow> | 
| 176 | (case n of \<infinity> \<Rightarrow> if m = 0 then 0 else \<infinity> | enat n \<Rightarrow> enat (m * n)))" | |
| 29014 | 177 | |
| 43919 | 178 | lemma times_enat_simps [simp, code]: | 
| 43924 | 179 | "enat m * enat n = enat (m * n)" | 
| 43921 | 180 | "\<infinity> * \<infinity> = (\<infinity>::enat)" | 
| 43924 | 181 | "\<infinity> * enat n = (if n = 0 then 0 else \<infinity>)" | 
| 182 | "enat m * \<infinity> = (if m = 0 then 0 else \<infinity>)" | |
| 43919 | 183 | unfolding times_enat_def zero_enat_def | 
| 184 | by (simp_all split: enat.split) | |
| 29014 | 185 | |
| 186 | instance proof | |
| 43919 | 187 | fix a b c :: enat | 
| 29014 | 188 | show "(a * b) * c = a * (b * c)" | 
| 43919 | 189 | unfolding times_enat_def zero_enat_def | 
| 190 | by (simp split: enat.split) | |
| 29014 | 191 | show "a * b = b * a" | 
| 43919 | 192 | unfolding times_enat_def zero_enat_def | 
| 193 | by (simp split: enat.split) | |
| 29014 | 194 | show "1 * a = a" | 
| 43919 | 195 | unfolding times_enat_def zero_enat_def one_enat_def | 
| 196 | by (simp split: enat.split) | |
| 29014 | 197 | show "(a + b) * c = a * c + b * c" | 
| 43919 | 198 | unfolding times_enat_def zero_enat_def | 
| 199 | by (simp split: enat.split add: left_distrib) | |
| 29014 | 200 | show "0 * a = 0" | 
| 43919 | 201 | unfolding times_enat_def zero_enat_def | 
| 202 | by (simp split: enat.split) | |
| 29014 | 203 | show "a * 0 = 0" | 
| 43919 | 204 | unfolding times_enat_def zero_enat_def | 
| 205 | by (simp split: enat.split) | |
| 206 | show "(0::enat) \<noteq> 1" | |
| 207 | unfolding zero_enat_def one_enat_def | |
| 29014 | 208 | by simp | 
| 209 | qed | |
| 210 | ||
| 211 | end | |
| 212 | ||
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 213 | lemma mult_eSuc: "eSuc m * n = n + m * n" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 214 | unfolding eSuc_plus_1 by (simp add: algebra_simps) | 
| 29014 | 215 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 216 | lemma mult_eSuc_right: "m * eSuc n = m + m * n" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 217 | unfolding eSuc_plus_1 by (simp add: algebra_simps) | 
| 29014 | 218 | |
| 43924 | 219 | lemma of_nat_eq_enat: "of_nat n = enat n" | 
| 29023 | 220 | apply (induct n) | 
| 43924 | 221 | apply (simp add: enat_0) | 
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 222 | apply (simp add: plus_1_eSuc eSuc_enat) | 
| 29023 | 223 | done | 
| 224 | ||
| 43919 | 225 | instance enat :: semiring_char_0 proof | 
| 43924 | 226 | have "inj enat" by (rule injI) simp | 
| 227 | then show "inj (\<lambda>n. of_nat n :: enat)" by (simp add: of_nat_eq_enat) | |
| 38621 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
38167diff
changeset | 228 | qed | 
| 29023 | 229 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 230 | lemma imult_is_0 [simp]: "((m::enat) * n = 0) = (m = 0 \<or> n = 0)" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 231 | by (auto simp add: times_enat_def zero_enat_def split: enat.split) | 
| 41853 | 232 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 233 | lemma imult_is_infinity: "((a::enat) * b = \<infinity>) = (a = \<infinity> \<and> b \<noteq> 0 \<or> b = \<infinity> \<and> a \<noteq> 0)" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 234 | by (auto simp add: times_enat_def zero_enat_def split: enat.split) | 
| 41853 | 235 | |
| 236 | ||
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 237 | subsection {* Numerals *}
 | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 238 | |
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 239 | lemma numeral_eq_enat: | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 240 | "numeral k = enat (numeral k)" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 241 | using of_nat_eq_enat [of "numeral k"] by simp | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 242 | |
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 243 | lemma enat_numeral [code_abbrev]: | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 244 | "enat (numeral k) = numeral k" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 245 | using numeral_eq_enat .. | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 246 | |
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 247 | lemma infinity_ne_numeral [simp]: "(\<infinity>::enat) \<noteq> numeral k" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 248 | by (simp add: numeral_eq_enat) | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 249 | |
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 250 | lemma numeral_ne_infinity [simp]: "numeral k \<noteq> (\<infinity>::enat)" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 251 | by (simp add: numeral_eq_enat) | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 252 | |
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 253 | lemma eSuc_numeral [simp]: "eSuc (numeral k) = numeral (k + Num.One)" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 254 | by (simp only: eSuc_plus_1 numeral_plus_one) | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 255 | |
| 41853 | 256 | subsection {* Subtraction *}
 | 
| 257 | ||
| 43919 | 258 | instantiation enat :: minus | 
| 41853 | 259 | begin | 
| 260 | ||
| 43919 | 261 | definition diff_enat_def: | 
| 43924 | 262 | "a - b = (case a of (enat x) \<Rightarrow> (case b of (enat y) \<Rightarrow> enat (x - y) | \<infinity> \<Rightarrow> 0) | 
| 41853 | 263 | | \<infinity> \<Rightarrow> \<infinity>)" | 
| 264 | ||
| 265 | instance .. | |
| 266 | ||
| 267 | end | |
| 268 | ||
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 269 | lemma idiff_enat_enat [simp, code]: "enat a - enat b = enat (a - b)" | 
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 270 | by (simp add: diff_enat_def) | 
| 41853 | 271 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 272 | lemma idiff_infinity [simp, code]: "\<infinity> - n = (\<infinity>::enat)" | 
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 273 | by (simp add: diff_enat_def) | 
| 41853 | 274 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 275 | lemma idiff_infinity_right [simp, code]: "enat a - \<infinity> = 0" | 
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 276 | by (simp add: diff_enat_def) | 
| 41853 | 277 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 278 | lemma idiff_0 [simp]: "(0::enat) - n = 0" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 279 | by (cases n, simp_all add: zero_enat_def) | 
| 41853 | 280 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 281 | lemmas idiff_enat_0 [simp] = idiff_0 [unfolded zero_enat_def] | 
| 41853 | 282 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 283 | lemma idiff_0_right [simp]: "(n::enat) - 0 = n" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 284 | by (cases n) (simp_all add: zero_enat_def) | 
| 41853 | 285 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 286 | lemmas idiff_enat_0_right [simp] = idiff_0_right [unfolded zero_enat_def] | 
| 41853 | 287 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 288 | lemma idiff_self [simp]: "n \<noteq> \<infinity> \<Longrightarrow> (n::enat) - n = 0" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 289 | by (auto simp: zero_enat_def) | 
| 41853 | 290 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 291 | lemma eSuc_minus_eSuc [simp]: "eSuc n - eSuc m = n - m" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 292 | by (simp add: eSuc_def split: enat.split) | 
| 41855 | 293 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 294 | lemma eSuc_minus_1 [simp]: "eSuc n - 1 = n" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 295 | by (simp add: one_enat_def eSuc_enat[symmetric] zero_enat_def[symmetric]) | 
| 41855 | 296 | |
| 43924 | 297 | (*lemmas idiff_self_eq_0_enat = idiff_self_eq_0[unfolded zero_enat_def]*) | 
| 41853 | 298 | |
| 27110 | 299 | subsection {* Ordering *}
 | 
| 300 | ||
| 43919 | 301 | instantiation enat :: linordered_ab_semigroup_add | 
| 27110 | 302 | begin | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 303 | |
| 38167 | 304 | definition [nitpick_simp]: | 
| 43924 | 305 | "m \<le> n = (case n of enat n1 \<Rightarrow> (case m of enat m1 \<Rightarrow> m1 \<le> n1 | \<infinity> \<Rightarrow> False) | 
| 27110 | 306 | | \<infinity> \<Rightarrow> True)" | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 307 | |
| 38167 | 308 | definition [nitpick_simp]: | 
| 43924 | 309 | "m < n = (case m of enat m1 \<Rightarrow> (case n of enat n1 \<Rightarrow> m1 < n1 | \<infinity> \<Rightarrow> True) | 
| 27110 | 310 | | \<infinity> \<Rightarrow> False)" | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 311 | |
| 43919 | 312 | lemma enat_ord_simps [simp]: | 
| 43924 | 313 | "enat m \<le> enat n \<longleftrightarrow> m \<le> n" | 
| 314 | "enat m < enat n \<longleftrightarrow> m < n" | |
| 43921 | 315 | "q \<le> (\<infinity>::enat)" | 
| 316 | "q < (\<infinity>::enat) \<longleftrightarrow> q \<noteq> \<infinity>" | |
| 317 | "(\<infinity>::enat) \<le> q \<longleftrightarrow> q = \<infinity>" | |
| 318 | "(\<infinity>::enat) < q \<longleftrightarrow> False" | |
| 43919 | 319 | by (simp_all add: less_eq_enat_def less_enat_def split: enat.splits) | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 320 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 321 | lemma numeral_le_enat_iff[simp]: | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 322 | shows "numeral m \<le> enat n \<longleftrightarrow> numeral m \<le> n" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 323 | by (auto simp: numeral_eq_enat) | 
| 45934 | 324 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 325 | lemma numeral_less_enat_iff[simp]: | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 326 | shows "numeral m < enat n \<longleftrightarrow> numeral m < n" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 327 | by (auto simp: numeral_eq_enat) | 
| 45934 | 328 | |
| 43919 | 329 | lemma enat_ord_code [code]: | 
| 43924 | 330 | "enat m \<le> enat n \<longleftrightarrow> m \<le> n" | 
| 331 | "enat m < enat n \<longleftrightarrow> m < n" | |
| 43921 | 332 | "q \<le> (\<infinity>::enat) \<longleftrightarrow> True" | 
| 43924 | 333 | "enat m < \<infinity> \<longleftrightarrow> True" | 
| 334 | "\<infinity> \<le> enat n \<longleftrightarrow> False" | |
| 43921 | 335 | "(\<infinity>::enat) < q \<longleftrightarrow> False" | 
| 27110 | 336 | by simp_all | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 337 | |
| 27110 | 338 | instance by default | 
| 43919 | 339 | (auto simp add: less_eq_enat_def less_enat_def plus_enat_def split: enat.splits) | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 340 | |
| 27110 | 341 | end | 
| 342 | ||
| 43919 | 343 | instance enat :: ordered_comm_semiring | 
| 29014 | 344 | proof | 
| 43919 | 345 | fix a b c :: enat | 
| 29014 | 346 | assume "a \<le> b" and "0 \<le> c" | 
| 347 | thus "c * a \<le> c * b" | |
| 43919 | 348 | unfolding times_enat_def less_eq_enat_def zero_enat_def | 
| 349 | by (simp split: enat.splits) | |
| 29014 | 350 | qed | 
| 351 | ||
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 352 | (* BH: These equations are already proven generally for any type in | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 353 | class linordered_semidom. However, enat is not in that class because | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 354 | it does not have the cancellation property. Would it be worthwhile to | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 355 | a generalize linordered_semidom to a new class that includes enat? *) | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 356 | |
| 43919 | 357 | lemma enat_ord_number [simp]: | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 358 | "(numeral m \<Colon> enat) \<le> numeral n \<longleftrightarrow> (numeral m \<Colon> nat) \<le> numeral n" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 359 | "(numeral m \<Colon> enat) < numeral n \<longleftrightarrow> (numeral m \<Colon> nat) < numeral n" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 360 | by (simp_all add: numeral_eq_enat) | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 361 | |
| 43919 | 362 | lemma i0_lb [simp]: "(0\<Colon>enat) \<le> n" | 
| 363 | by (simp add: zero_enat_def less_eq_enat_def split: enat.splits) | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 364 | |
| 43919 | 365 | lemma ile0_eq [simp]: "n \<le> (0\<Colon>enat) \<longleftrightarrow> n = 0" | 
| 366 | by (simp add: zero_enat_def less_eq_enat_def split: enat.splits) | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 367 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 368 | lemma infinity_ileE [elim!]: "\<infinity> \<le> enat m \<Longrightarrow> R" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 369 | by (simp add: zero_enat_def less_eq_enat_def split: enat.splits) | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 370 | |
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 371 | lemma infinity_ilessE [elim!]: "\<infinity> < enat m \<Longrightarrow> R" | 
| 27110 | 372 | by simp | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 373 | |
| 43919 | 374 | lemma not_iless0 [simp]: "\<not> n < (0\<Colon>enat)" | 
| 375 | by (simp add: zero_enat_def less_enat_def split: enat.splits) | |
| 27110 | 376 | |
| 43919 | 377 | lemma i0_less [simp]: "(0\<Colon>enat) < n \<longleftrightarrow> n \<noteq> 0" | 
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 378 | by (simp add: zero_enat_def less_enat_def split: enat.splits) | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 379 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 380 | lemma eSuc_ile_mono [simp]: "eSuc n \<le> eSuc m \<longleftrightarrow> n \<le> m" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 381 | by (simp add: eSuc_def less_eq_enat_def split: enat.splits) | 
| 27110 | 382 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 383 | lemma eSuc_mono [simp]: "eSuc n < eSuc m \<longleftrightarrow> n < m" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 384 | by (simp add: eSuc_def less_enat_def split: enat.splits) | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 385 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 386 | lemma ile_eSuc [simp]: "n \<le> eSuc n" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 387 | by (simp add: eSuc_def less_eq_enat_def split: enat.splits) | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 388 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 389 | lemma not_eSuc_ilei0 [simp]: "\<not> eSuc n \<le> 0" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 390 | by (simp add: zero_enat_def eSuc_def less_eq_enat_def split: enat.splits) | 
| 27110 | 391 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 392 | lemma i0_iless_eSuc [simp]: "0 < eSuc n" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 393 | by (simp add: zero_enat_def eSuc_def less_enat_def split: enat.splits) | 
| 27110 | 394 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 395 | lemma iless_eSuc0[simp]: "(n < eSuc 0) = (n = 0)" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 396 | by (simp add: zero_enat_def eSuc_def less_enat_def split: enat.split) | 
| 41853 | 397 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 398 | lemma ileI1: "m < n \<Longrightarrow> eSuc m \<le> n" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 399 | by (simp add: eSuc_def less_eq_enat_def less_enat_def split: enat.splits) | 
| 27110 | 400 | |
| 43924 | 401 | lemma Suc_ile_eq: "enat (Suc m) \<le> n \<longleftrightarrow> enat m < n" | 
| 27110 | 402 | by (cases n) auto | 
| 403 | ||
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 404 | lemma iless_Suc_eq [simp]: "enat m < eSuc n \<longleftrightarrow> enat m \<le> n" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 405 | by (auto simp add: eSuc_def less_enat_def split: enat.splits) | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 406 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 407 | lemma imult_infinity: "(0::enat) < n \<Longrightarrow> \<infinity> * n = \<infinity>" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 408 | by (simp add: zero_enat_def less_enat_def split: enat.splits) | 
| 41853 | 409 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 410 | lemma imult_infinity_right: "(0::enat) < n \<Longrightarrow> n * \<infinity> = \<infinity>" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 411 | by (simp add: zero_enat_def less_enat_def split: enat.splits) | 
| 41853 | 412 | |
| 43919 | 413 | lemma enat_0_less_mult_iff: "(0 < (m::enat) * n) = (0 < m \<and> 0 < n)" | 
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 414 | by (simp only: i0_less imult_is_0, simp) | 
| 41853 | 415 | |
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 416 | lemma mono_eSuc: "mono eSuc" | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 417 | by (simp add: mono_def) | 
| 41853 | 418 | |
| 419 | ||
| 43919 | 420 | lemma min_enat_simps [simp]: | 
| 43924 | 421 | "min (enat m) (enat n) = enat (min m n)" | 
| 27110 | 422 | "min q 0 = 0" | 
| 423 | "min 0 q = 0" | |
| 43921 | 424 | "min q (\<infinity>::enat) = q" | 
| 425 | "min (\<infinity>::enat) q = q" | |
| 27110 | 426 | by (auto simp add: min_def) | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 427 | |
| 43919 | 428 | lemma max_enat_simps [simp]: | 
| 43924 | 429 | "max (enat m) (enat n) = enat (max m n)" | 
| 27110 | 430 | "max q 0 = q" | 
| 431 | "max 0 q = q" | |
| 43921 | 432 | "max q \<infinity> = (\<infinity>::enat)" | 
| 433 | "max \<infinity> q = (\<infinity>::enat)" | |
| 27110 | 434 | by (simp_all add: max_def) | 
| 435 | ||
| 43924 | 436 | lemma enat_ile: "n \<le> enat m \<Longrightarrow> \<exists>k. n = enat k" | 
| 27110 | 437 | by (cases n) simp_all | 
| 438 | ||
| 43924 | 439 | lemma enat_iless: "n < enat m \<Longrightarrow> \<exists>k. n = enat k" | 
| 27110 | 440 | by (cases n) simp_all | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 441 | |
| 43924 | 442 | lemma chain_incr: "\<forall>i. \<exists>j. Y i < Y j ==> \<exists>j. enat k < Y j" | 
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 443 | apply (induct_tac k) | 
| 43924 | 444 | apply (simp (no_asm) only: enat_0) | 
| 27110 | 445 | apply (fast intro: le_less_trans [OF i0_lb]) | 
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 446 | apply (erule exE) | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 447 | apply (drule spec) | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 448 | apply (erule exE) | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 449 | apply (drule ileI1) | 
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 450 | apply (rule eSuc_enat [THEN subst]) | 
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 451 | apply (rule exI) | 
| 27110 | 452 | apply (erule (1) le_less_trans) | 
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 453 | done | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 454 | |
| 43919 | 455 | instantiation enat :: "{bot, top}"
 | 
| 29337 | 456 | begin | 
| 457 | ||
| 43919 | 458 | definition bot_enat :: enat where | 
| 459 | "bot_enat = 0" | |
| 29337 | 460 | |
| 43919 | 461 | definition top_enat :: enat where | 
| 462 | "top_enat = \<infinity>" | |
| 29337 | 463 | |
| 464 | instance proof | |
| 43919 | 465 | qed (simp_all add: bot_enat_def top_enat_def) | 
| 29337 | 466 | |
| 467 | end | |
| 468 | ||
| 43924 | 469 | lemma finite_enat_bounded: | 
| 470 | assumes le_fin: "\<And>y. y \<in> A \<Longrightarrow> y \<le> enat n" | |
| 42993 | 471 | shows "finite A" | 
| 472 | proof (rule finite_subset) | |
| 43924 | 473 |   show "finite (enat ` {..n})" by blast
 | 
| 42993 | 474 | |
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
44019diff
changeset | 475 |   have "A \<subseteq> {..enat n}" using le_fin by fastforce
 | 
| 43924 | 476 |   also have "\<dots> \<subseteq> enat ` {..n}"
 | 
| 42993 | 477 | by (rule subsetI) (case_tac x, auto) | 
| 43924 | 478 |   finally show "A \<subseteq> enat ` {..n}" .
 | 
| 42993 | 479 | qed | 
| 480 | ||
| 26089 | 481 | |
| 45775 | 482 | subsection {* Cancellation simprocs *}
 | 
| 483 | ||
| 484 | lemma enat_add_left_cancel: "a + b = a + c \<longleftrightarrow> a = (\<infinity>::enat) \<or> b = c" | |
| 485 | unfolding plus_enat_def by (simp split: enat.split) | |
| 486 | ||
| 487 | lemma enat_add_left_cancel_le: "a + b \<le> a + c \<longleftrightarrow> a = (\<infinity>::enat) \<or> b \<le> c" | |
| 488 | unfolding plus_enat_def by (simp split: enat.split) | |
| 489 | ||
| 490 | lemma enat_add_left_cancel_less: "a + b < a + c \<longleftrightarrow> a \<noteq> (\<infinity>::enat) \<and> b < c" | |
| 491 | unfolding plus_enat_def by (simp split: enat.split) | |
| 492 | ||
| 493 | ML {*
 | |
| 494 | structure Cancel_Enat_Common = | |
| 495 | struct | |
| 496 | (* copied from src/HOL/Tools/nat_numeral_simprocs.ML *) | |
| 497 |   fun find_first_t _    _ []         = raise TERM("find_first_t", [])
 | |
| 498 | | find_first_t past u (t::terms) = | |
| 499 | if u aconv t then (rev past @ terms) | |
| 500 | else find_first_t (t::past) u terms | |
| 501 | ||
| 502 | val mk_sum = Arith_Data.long_mk_sum | |
| 503 | val dest_sum = Arith_Data.dest_sum | |
| 504 | val find_first = find_first_t [] | |
| 505 | val trans_tac = Numeral_Simprocs.trans_tac | |
| 506 | val norm_ss = HOL_basic_ss addsimps | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 507 |     @{thms add_ac add_0_left add_0_right}
 | 
| 45775 | 508 | fun norm_tac ss = ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss)) | 
| 509 | fun simplify_meta_eq ss cancel_th th = | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 510 | Arith_Data.simplify_meta_eq [] ss | 
| 45775 | 511 | ([th, cancel_th] MRS trans) | 
| 512 | fun mk_eq (a, b) = HOLogic.mk_Trueprop (HOLogic.mk_eq (a, b)) | |
| 513 | end | |
| 514 | ||
| 515 | structure Eq_Enat_Cancel = ExtractCommonTermFun | |
| 516 | (open Cancel_Enat_Common | |
| 517 | val mk_bal = HOLogic.mk_eq | |
| 518 |   val dest_bal = HOLogic.dest_bin @{const_name HOL.eq} @{typ enat}
 | |
| 519 |   fun simp_conv _ _ = SOME @{thm enat_add_left_cancel}
 | |
| 520 | ) | |
| 521 | ||
| 522 | structure Le_Enat_Cancel = ExtractCommonTermFun | |
| 523 | (open Cancel_Enat_Common | |
| 524 |   val mk_bal = HOLogic.mk_binrel @{const_name Orderings.less_eq}
 | |
| 525 |   val dest_bal = HOLogic.dest_bin @{const_name Orderings.less_eq} @{typ enat}
 | |
| 526 |   fun simp_conv _ _ = SOME @{thm enat_add_left_cancel_le}
 | |
| 527 | ) | |
| 528 | ||
| 529 | structure Less_Enat_Cancel = ExtractCommonTermFun | |
| 530 | (open Cancel_Enat_Common | |
| 531 |   val mk_bal = HOLogic.mk_binrel @{const_name Orderings.less}
 | |
| 532 |   val dest_bal = HOLogic.dest_bin @{const_name Orderings.less} @{typ enat}
 | |
| 533 |   fun simp_conv _ _ = SOME @{thm enat_add_left_cancel_less}
 | |
| 534 | ) | |
| 535 | *} | |
| 536 | ||
| 537 | simproc_setup enat_eq_cancel | |
| 538 |   ("(l::enat) + m = n" | "(l::enat) = m + n") =
 | |
| 539 |   {* fn phi => fn ss => fn ct => Eq_Enat_Cancel.proc ss (term_of ct) *}
 | |
| 540 | ||
| 541 | simproc_setup enat_le_cancel | |
| 542 |   ("(l::enat) + m \<le> n" | "(l::enat) \<le> m + n") =
 | |
| 543 |   {* fn phi => fn ss => fn ct => Le_Enat_Cancel.proc ss (term_of ct) *}
 | |
| 544 | ||
| 545 | simproc_setup enat_less_cancel | |
| 546 |   ("(l::enat) + m < n" | "(l::enat) < m + n") =
 | |
| 547 |   {* fn phi => fn ss => fn ct => Less_Enat_Cancel.proc ss (term_of ct) *}
 | |
| 548 | ||
| 549 | text {* TODO: add regression tests for these simprocs *}
 | |
| 550 | ||
| 551 | text {* TODO: add simprocs for combining and cancelling numerals *}
 | |
| 552 | ||
| 553 | ||
| 27110 | 554 | subsection {* Well-ordering *}
 | 
| 26089 | 555 | |
| 43924 | 556 | lemma less_enatE: | 
| 557 | "[| n < enat m; !!k. n = enat k ==> k < m ==> P |] ==> P" | |
| 26089 | 558 | by (induct n) auto | 
| 559 | ||
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 560 | lemma less_infinityE: | 
| 43924 | 561 | "[| n < \<infinity>; !!k. n = enat k ==> P |] ==> P" | 
| 26089 | 562 | by (induct n) auto | 
| 563 | ||
| 43919 | 564 | lemma enat_less_induct: | 
| 565 | assumes prem: "!!n. \<forall>m::enat. m < n --> P m ==> P n" shows "P n" | |
| 26089 | 566 | proof - | 
| 43924 | 567 | have P_enat: "!!k. P (enat k)" | 
| 26089 | 568 | apply (rule nat_less_induct) | 
| 569 | apply (rule prem, clarify) | |
| 43924 | 570 | apply (erule less_enatE, simp) | 
| 26089 | 571 | done | 
| 572 | show ?thesis | |
| 573 | proof (induct n) | |
| 574 | fix nat | |
| 43924 | 575 | show "P (enat nat)" by (rule P_enat) | 
| 26089 | 576 | next | 
| 43921 | 577 | show "P \<infinity>" | 
| 26089 | 578 | apply (rule prem, clarify) | 
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43978diff
changeset | 579 | apply (erule less_infinityE) | 
| 43924 | 580 | apply (simp add: P_enat) | 
| 26089 | 581 | done | 
| 582 | qed | |
| 583 | qed | |
| 584 | ||
| 43919 | 585 | instance enat :: wellorder | 
| 26089 | 586 | proof | 
| 27823 | 587 | fix P and n | 
| 43919 | 588 | assume hyp: "(\<And>n\<Colon>enat. (\<And>m\<Colon>enat. m < n \<Longrightarrow> P m) \<Longrightarrow> P n)" | 
| 589 | show "P n" by (blast intro: enat_less_induct hyp) | |
| 26089 | 590 | qed | 
| 591 | ||
| 42993 | 592 | subsection {* Complete Lattice *}
 | 
| 593 | ||
| 43919 | 594 | instantiation enat :: complete_lattice | 
| 42993 | 595 | begin | 
| 596 | ||
| 43919 | 597 | definition inf_enat :: "enat \<Rightarrow> enat \<Rightarrow> enat" where | 
| 598 | "inf_enat \<equiv> min" | |
| 42993 | 599 | |
| 43919 | 600 | definition sup_enat :: "enat \<Rightarrow> enat \<Rightarrow> enat" where | 
| 601 | "sup_enat \<equiv> max" | |
| 42993 | 602 | |
| 43919 | 603 | definition Inf_enat :: "enat set \<Rightarrow> enat" where | 
| 604 |   "Inf_enat A \<equiv> if A = {} then \<infinity> else (LEAST x. x \<in> A)"
 | |
| 42993 | 605 | |
| 43919 | 606 | definition Sup_enat :: "enat set \<Rightarrow> enat" where | 
| 607 |   "Sup_enat A \<equiv> if A = {} then 0
 | |
| 42993 | 608 | else if finite A then Max A | 
| 609 | else \<infinity>" | |
| 610 | instance proof | |
| 43919 | 611 | fix x :: "enat" and A :: "enat set" | 
| 42993 | 612 |   { assume "x \<in> A" then show "Inf A \<le> x"
 | 
| 43919 | 613 | unfolding Inf_enat_def by (auto intro: Least_le) } | 
| 42993 | 614 |   { assume "\<And>y. y \<in> A \<Longrightarrow> x \<le> y" then show "x \<le> Inf A"
 | 
| 43919 | 615 | unfolding Inf_enat_def | 
| 42993 | 616 |       by (cases "A = {}") (auto intro: LeastI2_ex) }
 | 
| 617 |   { assume "x \<in> A" then show "x \<le> Sup A"
 | |
| 43919 | 618 | unfolding Sup_enat_def by (cases "finite A") auto } | 
| 42993 | 619 |   { assume "\<And>y. y \<in> A \<Longrightarrow> y \<le> x" then show "Sup A \<le> x"
 | 
| 43924 | 620 | unfolding Sup_enat_def using finite_enat_bounded by auto } | 
| 43919 | 621 | qed (simp_all add: inf_enat_def sup_enat_def) | 
| 42993 | 622 | end | 
| 623 | ||
| 43978 | 624 | instance enat :: complete_linorder .. | 
| 27110 | 625 | |
| 626 | subsection {* Traditional theorem names *}
 | |
| 627 | ||
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45934diff
changeset | 628 | lemmas enat_defs = zero_enat_def one_enat_def eSuc_def | 
| 43919 | 629 | plus_enat_def less_eq_enat_def less_enat_def | 
| 27110 | 630 | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 631 | end |