| author | Christian Sternagel | 
| Thu, 30 Aug 2012 13:06:04 +0900 | |
| changeset 49088 | 5cd8b4426a57 | 
| parent 47761 | dfe747e72fa8 | 
| child 50104 | de19856feb54 | 
| permissions | -rw-r--r-- | 
| 13586 | 1 | (* Title: HOL/Library/FuncSet.thy | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 2 | Author: Florian Kammueller and Lawrence C Paulson, Lukas Bulwahn | 
| 13586 | 3 | *) | 
| 4 | ||
| 14706 | 5 | header {* Pi and Function Sets *}
 | 
| 13586 | 6 | |
| 15131 | 7 | theory FuncSet | 
| 30663 
0b6aff7451b2
Main is (Complex_Main) base entry point in library theories
 haftmann parents: 
28524diff
changeset | 8 | imports Hilbert_Choice Main | 
| 15131 | 9 | begin | 
| 13586 | 10 | |
| 19736 | 11 | definition | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 12 |   Pi :: "['a set, 'a => 'b set] => ('a => 'b) set" where
 | 
| 19736 | 13 |   "Pi A B = {f. \<forall>x. x \<in> A --> f x \<in> B x}"
 | 
| 13586 | 14 | |
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 15 | definition | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 16 |   extensional :: "'a set => ('a => 'b) set" where
 | 
| 28524 | 17 |   "extensional A = {f. \<forall>x. x~:A --> f x = undefined}"
 | 
| 13586 | 18 | |
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 19 | definition | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 20 |   "restrict" :: "['a => 'b, 'a set] => ('a => 'b)" where
 | 
| 28524 | 21 | "restrict f A = (%x. if x \<in> A then f x else undefined)" | 
| 13586 | 22 | |
| 19536 | 23 | abbreviation | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 24 |   funcset :: "['a set, 'b set] => ('a => 'b) set"
 | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 25 | (infixr "->" 60) where | 
| 19536 | 26 | "A -> B == Pi A (%_. B)" | 
| 27 | ||
| 21210 | 28 | notation (xsymbols) | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19536diff
changeset | 29 | funcset (infixr "\<rightarrow>" 60) | 
| 19536 | 30 | |
| 13586 | 31 | syntax | 
| 19736 | 32 |   "_Pi"  :: "[pttrn, 'a set, 'b set] => ('a => 'b) set"  ("(3PI _:_./ _)" 10)
 | 
| 33 |   "_lam" :: "[pttrn, 'a set, 'a => 'b] => ('a=>'b)"  ("(3%_:_./ _)" [0,0,3] 3)
 | |
| 13586 | 34 | |
| 35 | syntax (xsymbols) | |
| 19736 | 36 |   "_Pi" :: "[pttrn, 'a set, 'b set] => ('a => 'b) set"  ("(3\<Pi> _\<in>_./ _)"   10)
 | 
| 37 |   "_lam" :: "[pttrn, 'a set, 'a => 'b] => ('a=>'b)"  ("(3\<lambda>_\<in>_./ _)" [0,0,3] 3)
 | |
| 13586 | 38 | |
| 14565 | 39 | syntax (HTML output) | 
| 19736 | 40 |   "_Pi" :: "[pttrn, 'a set, 'b set] => ('a => 'b) set"  ("(3\<Pi> _\<in>_./ _)"   10)
 | 
| 41 |   "_lam" :: "[pttrn, 'a set, 'a => 'b] => ('a=>'b)"  ("(3\<lambda>_\<in>_./ _)" [0,0,3] 3)
 | |
| 14565 | 42 | |
| 13586 | 43 | translations | 
| 20770 | 44 | "PI x:A. B" == "CONST Pi A (%x. B)" | 
| 45 | "%x:A. f" == "CONST restrict (%x. f) A" | |
| 13586 | 46 | |
| 19736 | 47 | definition | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 48 |   "compose" :: "['a set, 'b => 'c, 'a => 'b] => ('a => 'c)" where
 | 
| 19736 | 49 | "compose A g f = (\<lambda>x\<in>A. g (f x))" | 
| 13586 | 50 | |
| 51 | ||
| 52 | subsection{*Basic Properties of @{term Pi}*}
 | |
| 53 | ||
| 31754 | 54 | lemma Pi_I[intro!]: "(!!x. x \<in> A ==> f x \<in> B x) ==> f \<in> Pi A B" | 
| 14706 | 55 | by (simp add: Pi_def) | 
| 13586 | 56 | |
| 31731 | 57 | lemma Pi_I'[simp]: "(!!x. x : A --> f x : B x) ==> f : Pi A B" | 
| 58 | by(simp add:Pi_def) | |
| 59 | ||
| 13586 | 60 | lemma funcsetI: "(!!x. x \<in> A ==> f x \<in> B) ==> f \<in> A -> B" | 
| 14706 | 61 | by (simp add: Pi_def) | 
| 13586 | 62 | |
| 63 | lemma Pi_mem: "[|f: Pi A B; x \<in> A|] ==> f x \<in> B x" | |
| 14706 | 64 | by (simp add: Pi_def) | 
| 13586 | 65 | |
| 47761 | 66 | lemma Pi_iff: "f \<in> Pi I X \<longleftrightarrow> (\<forall>i\<in>I. f i \<in> X i)" | 
| 67 | unfolding Pi_def by auto | |
| 68 | ||
| 31759 | 69 | lemma PiE [elim]: | 
| 31754 | 70 | "f : Pi A B ==> (f x : B x ==> Q) ==> (x ~: A ==> Q) ==> Q" | 
| 71 | by(auto simp: Pi_def) | |
| 72 | ||
| 38656 | 73 | lemma Pi_cong: | 
| 74 | "(\<And> w. w \<in> A \<Longrightarrow> f w = g w) \<Longrightarrow> f \<in> Pi A B \<longleftrightarrow> g \<in> Pi A B" | |
| 75 | by (auto simp: Pi_def) | |
| 76 | ||
| 31769 | 77 | lemma funcset_id [simp]: "(\<lambda>x. x) \<in> A \<rightarrow> A" | 
| 44382 | 78 | by auto | 
| 31769 | 79 | |
| 13586 | 80 | lemma funcset_mem: "[|f \<in> A -> B; x \<in> A|] ==> f x \<in> B" | 
| 14706 | 81 | by (simp add: Pi_def) | 
| 13586 | 82 | |
| 14762 | 83 | lemma funcset_image: "f \<in> A\<rightarrow>B ==> f ` A \<subseteq> B" | 
| 31754 | 84 | by auto | 
| 14762 | 85 | |
| 31754 | 86 | lemma Pi_eq_empty[simp]: "((PI x: A. B x) = {}) = (\<exists>x\<in>A. B(x) = {})"
 | 
| 13593 | 87 | apply (simp add: Pi_def, auto) | 
| 13586 | 88 | txt{*Converse direction requires Axiom of Choice to exhibit a function
 | 
| 89 | picking an element from each non-empty @{term "B x"}*}
 | |
| 13593 | 90 | apply (drule_tac x = "%u. SOME y. y \<in> B u" in spec, auto) | 
| 14706 | 91 | apply (cut_tac P= "%y. y \<in> B x" in some_eq_ex, auto) | 
| 13586 | 92 | done | 
| 93 | ||
| 13593 | 94 | lemma Pi_empty [simp]: "Pi {} B = UNIV"
 | 
| 31754 | 95 | by (simp add: Pi_def) | 
| 13593 | 96 | |
| 97 | lemma Pi_UNIV [simp]: "A -> UNIV = UNIV" | |
| 31754 | 98 | by (simp add: Pi_def) | 
| 31727 | 99 | (* | 
| 100 | lemma funcset_id [simp]: "(%x. x): A -> A" | |
| 101 | by (simp add: Pi_def) | |
| 102 | *) | |
| 13586 | 103 | text{*Covariance of Pi-sets in their second argument*}
 | 
| 104 | lemma Pi_mono: "(!!x. x \<in> A ==> B x <= C x) ==> Pi A B <= Pi A C" | |
| 31754 | 105 | by auto | 
| 13586 | 106 | |
| 107 | text{*Contravariance of Pi-sets in their first argument*}
 | |
| 108 | lemma Pi_anti_mono: "A' <= A ==> Pi A B <= Pi A' B" | |
| 31754 | 109 | by auto | 
| 13586 | 110 | |
| 33271 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: 
33057diff
changeset | 111 | lemma prod_final: | 
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: 
33057diff
changeset | 112 | assumes 1: "fst \<circ> f \<in> Pi A B" and 2: "snd \<circ> f \<in> Pi A C" | 
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: 
33057diff
changeset | 113 | shows "f \<in> (\<Pi> z \<in> A. B z \<times> C z)" | 
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: 
33057diff
changeset | 114 | proof (rule Pi_I) | 
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: 
33057diff
changeset | 115 | fix z | 
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: 
33057diff
changeset | 116 | assume z: "z \<in> A" | 
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: 
33057diff
changeset | 117 | have "f z = (fst (f z), snd (f z))" | 
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: 
33057diff
changeset | 118 | by simp | 
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: 
33057diff
changeset | 119 | also have "... \<in> B z \<times> C z" | 
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: 
33057diff
changeset | 120 | by (metis SigmaI PiE o_apply 1 2 z) | 
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: 
33057diff
changeset | 121 | finally show "f z \<in> B z \<times> C z" . | 
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: 
33057diff
changeset | 122 | qed | 
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: 
33057diff
changeset | 123 | |
| 13586 | 124 | |
| 125 | subsection{*Composition With a Restricted Domain: @{term compose}*}
 | |
| 126 | ||
| 14706 | 127 | lemma funcset_compose: | 
| 31754 | 128 | "[| f \<in> A -> B; g \<in> B -> C |]==> compose A g f \<in> A -> C" | 
| 129 | by (simp add: Pi_def compose_def restrict_def) | |
| 13586 | 130 | |
| 131 | lemma compose_assoc: | |
| 14706 | 132 | "[| f \<in> A -> B; g \<in> B -> C; h \<in> C -> D |] | 
| 13586 | 133 | ==> compose A h (compose A g f) = compose A (compose B h g) f" | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 134 | by (simp add: fun_eq_iff Pi_def compose_def restrict_def) | 
| 13586 | 135 | |
| 136 | lemma compose_eq: "x \<in> A ==> compose A g f x = g(f(x))" | |
| 31754 | 137 | by (simp add: compose_def restrict_def) | 
| 13586 | 138 | |
| 139 | lemma surj_compose: "[| f ` A = B; g ` B = C |] ==> compose A g f ` A = C" | |
| 14706 | 140 | by (auto simp add: image_def compose_eq) | 
| 13586 | 141 | |
| 142 | ||
| 143 | subsection{*Bounded Abstraction: @{term restrict}*}
 | |
| 144 | ||
| 145 | lemma restrict_in_funcset: "(!!x. x \<in> A ==> f x \<in> B) ==> (\<lambda>x\<in>A. f x) \<in> A -> B" | |
| 14706 | 146 | by (simp add: Pi_def restrict_def) | 
| 13586 | 147 | |
| 31754 | 148 | lemma restrictI[intro!]: "(!!x. x \<in> A ==> f x \<in> B x) ==> (\<lambda>x\<in>A. f x) \<in> Pi A B" | 
| 14706 | 149 | by (simp add: Pi_def restrict_def) | 
| 13586 | 150 | |
| 151 | lemma restrict_apply [simp]: | |
| 28524 | 152 | "(\<lambda>y\<in>A. f y) x = (if x \<in> A then f x else undefined)" | 
| 14706 | 153 | by (simp add: restrict_def) | 
| 13586 | 154 | |
| 14706 | 155 | lemma restrict_ext: | 
| 13586 | 156 | "(!!x. x \<in> A ==> f x = g x) ==> (\<lambda>x\<in>A. f x) = (\<lambda>x\<in>A. g x)" | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 157 | by (simp add: fun_eq_iff Pi_def restrict_def) | 
| 13586 | 158 | |
| 14853 | 159 | lemma inj_on_restrict_eq [simp]: "inj_on (restrict f A) A = inj_on f A" | 
| 14706 | 160 | by (simp add: inj_on_def restrict_def) | 
| 13586 | 161 | |
| 162 | lemma Id_compose: | |
| 14706 | 163 | "[|f \<in> A -> B; f \<in> extensional A|] ==> compose A (\<lambda>y\<in>B. y) f = f" | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 164 | by (auto simp add: fun_eq_iff compose_def extensional_def Pi_def) | 
| 13586 | 165 | |
| 166 | lemma compose_Id: | |
| 14706 | 167 | "[|g \<in> A -> B; g \<in> extensional A|] ==> compose A g (\<lambda>x\<in>A. x) = g" | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 168 | by (auto simp add: fun_eq_iff compose_def extensional_def Pi_def) | 
| 13586 | 169 | |
| 14853 | 170 | lemma image_restrict_eq [simp]: "(restrict f A) ` A = f ` A" | 
| 19736 | 171 | by (auto simp add: restrict_def) | 
| 13586 | 172 | |
| 14745 | 173 | |
| 14762 | 174 | subsection{*Bijections Between Sets*}
 | 
| 175 | ||
| 26106 
be52145f482d
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas
 nipkow parents: 
21404diff
changeset | 176 | text{*The definition of @{const bij_betw} is in @{text "Fun.thy"}, but most of
 | 
| 14762 | 177 | the theorems belong here, or need at least @{term Hilbert_Choice}.*}
 | 
| 178 | ||
| 39595 | 179 | lemma bij_betwI: | 
| 180 | assumes "f \<in> A \<rightarrow> B" and "g \<in> B \<rightarrow> A" | |
| 181 | and g_f: "\<And>x. x\<in>A \<Longrightarrow> g (f x) = x" and f_g: "\<And>y. y\<in>B \<Longrightarrow> f (g y) = y" | |
| 182 | shows "bij_betw f A B" | |
| 183 | unfolding bij_betw_def | |
| 184 | proof | |
| 185 | show "inj_on f A" by (metis g_f inj_on_def) | |
| 186 | next | |
| 187 | have "f ` A \<subseteq> B" using `f \<in> A \<rightarrow> B` by auto | |
| 188 | moreover | |
| 189 | have "B \<subseteq> f ` A" by auto (metis Pi_mem `g \<in> B \<rightarrow> A` f_g image_iff) | |
| 190 | ultimately show "f ` A = B" by blast | |
| 191 | qed | |
| 192 | ||
| 14762 | 193 | lemma bij_betw_imp_funcset: "bij_betw f A B \<Longrightarrow> f \<in> A \<rightarrow> B" | 
| 32988 | 194 | by (auto simp add: bij_betw_def) | 
| 14762 | 195 | |
| 14853 | 196 | lemma inj_on_compose: | 
| 31754 | 197 | "[| bij_betw f A B; inj_on g B |] ==> inj_on (compose A g f) A" | 
| 198 | by (auto simp add: bij_betw_def inj_on_def compose_eq) | |
| 14853 | 199 | |
| 14762 | 200 | lemma bij_betw_compose: | 
| 31754 | 201 | "[| bij_betw f A B; bij_betw g B C |] ==> bij_betw (compose A g f) A C" | 
| 202 | apply (simp add: bij_betw_def compose_eq inj_on_compose) | |
| 203 | apply (auto simp add: compose_def image_def) | |
| 204 | done | |
| 14762 | 205 | |
| 14853 | 206 | lemma bij_betw_restrict_eq [simp]: | 
| 31754 | 207 | "bij_betw (restrict f A) A B = bij_betw f A B" | 
| 208 | by (simp add: bij_betw_def) | |
| 14853 | 209 | |
| 210 | ||
| 211 | subsection{*Extensionality*}
 | |
| 212 | ||
| 28524 | 213 | lemma extensional_arb: "[|f \<in> extensional A; x\<notin> A|] ==> f x = undefined" | 
| 31754 | 214 | by (simp add: extensional_def) | 
| 14853 | 215 | |
| 216 | lemma restrict_extensional [simp]: "restrict f A \<in> extensional A" | |
| 31754 | 217 | by (simp add: restrict_def extensional_def) | 
| 14853 | 218 | |
| 219 | lemma compose_extensional [simp]: "compose A f g \<in> extensional A" | |
| 31754 | 220 | by (simp add: compose_def) | 
| 14853 | 221 | |
| 222 | lemma extensionalityI: | |
| 31754 | 223 | "[| f \<in> extensional A; g \<in> extensional A; | 
| 14853 | 224 | !!x. x\<in>A ==> f x = g x |] ==> f = g" | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 225 | by (force simp add: fun_eq_iff extensional_def) | 
| 14853 | 226 | |
| 39595 | 227 | lemma extensional_restrict: "f \<in> extensional A \<Longrightarrow> restrict f A = f" | 
| 228 | by(rule extensionalityI[OF restrict_extensional]) auto | |
| 229 | ||
| 33057 | 230 | lemma inv_into_funcset: "f ` A = B ==> (\<lambda>x\<in>B. inv_into A f x) : B -> A" | 
| 231 | by (unfold inv_into_def) (fast intro: someI2) | |
| 14853 | 232 | |
| 33057 | 233 | lemma compose_inv_into_id: | 
| 234 | "bij_betw f A B ==> compose A (\<lambda>y\<in>B. inv_into A f y) f = (\<lambda>x\<in>A. x)" | |
| 31754 | 235 | apply (simp add: bij_betw_def compose_def) | 
| 236 | apply (rule restrict_ext, auto) | |
| 237 | done | |
| 14853 | 238 | |
| 33057 | 239 | lemma compose_id_inv_into: | 
| 240 | "f ` A = B ==> compose B f (\<lambda>y\<in>B. inv_into A f y) = (\<lambda>x\<in>B. x)" | |
| 31754 | 241 | apply (simp add: compose_def) | 
| 242 | apply (rule restrict_ext) | |
| 33057 | 243 | apply (simp add: f_inv_into_f) | 
| 31754 | 244 | done | 
| 14853 | 245 | |
| 14762 | 246 | |
| 14745 | 247 | subsection{*Cardinality*}
 | 
| 248 | ||
| 249 | lemma card_inj: "[|f \<in> A\<rightarrow>B; inj_on f A; finite B|] ==> card(A) \<le> card(B)" | |
| 31754 | 250 | by (rule card_inj_on_le) auto | 
| 14745 | 251 | |
| 252 | lemma card_bij: | |
| 31754 | 253 | "[|f \<in> A\<rightarrow>B; inj_on f A; | 
| 254 | g \<in> B\<rightarrow>A; inj_on g B; finite A; finite B|] ==> card(A) = card(B)" | |
| 255 | by (blast intro: card_inj order_antisym) | |
| 14745 | 256 | |
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 257 | subsection {* Extensional Function Spaces *} 
 | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 258 | |
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 259 | definition extensional_funcset | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 260 | where "extensional_funcset S T = (S -> T) \<inter> (extensional S)" | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 261 | |
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 262 | lemma extensional_empty[simp]: "extensional {} = {%x. undefined}"
 | 
| 44382 | 263 | unfolding extensional_def by auto | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 264 | |
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 265 | lemma extensional_funcset_empty_domain: "extensional_funcset {} T = {%x. undefined}"
 | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 266 | unfolding extensional_funcset_def by simp | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 267 | |
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 268 | lemma extensional_funcset_empty_range: | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 269 |   assumes "S \<noteq> {}"
 | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 270 |   shows "extensional_funcset S {} = {}"
 | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 271 | using assms unfolding extensional_funcset_def by auto | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 272 | |
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 273 | lemma extensional_funcset_arb: | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 274 | assumes "f \<in> extensional_funcset S T" "x \<notin> S" | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 275 | shows "f x = undefined" | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 276 | using assms | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 277 | unfolding extensional_funcset_def by auto (auto dest!: extensional_arb) | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 278 | |
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 279 | lemma extensional_funcset_mem: "f \<in> extensional_funcset S T \<Longrightarrow> x \<in> S \<Longrightarrow> f x \<in> T" | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 280 | unfolding extensional_funcset_def by auto | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 281 | |
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 282 | lemma extensional_subset: "f : extensional A ==> A <= B ==> f : extensional B" | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 283 | unfolding extensional_def by auto | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 284 | |
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 285 | lemma extensional_funcset_extend_domainI: "\<lbrakk> y \<in> T; f \<in> extensional_funcset S T\<rbrakk> \<Longrightarrow> f(x := y) \<in> extensional_funcset (insert x S) T" | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 286 | unfolding extensional_funcset_def extensional_def by auto | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 287 | |
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 288 | lemma extensional_funcset_restrict_domain: | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 289 | "x \<notin> S \<Longrightarrow> f \<in> extensional_funcset (insert x S) T \<Longrightarrow> f(x := undefined) \<in> extensional_funcset S T" | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 290 | unfolding extensional_funcset_def extensional_def by auto | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 291 | |
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 292 | lemma extensional_funcset_extend_domain_eq: | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 293 | assumes "x \<notin> S" | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 294 | shows | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 295 |     "extensional_funcset (insert x S) T = (\<lambda>(y, g). g(x := y)) ` {(y, g). y \<in> T \<and> g \<in> extensional_funcset S T}"
 | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 296 | using assms | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 297 | proof - | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 298 |   {
 | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 299 | fix f | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 300 | assume "f : extensional_funcset (insert x S) T" | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 301 | from this assms have "f : (%(y, g). g(x := y)) ` (T <*> extensional_funcset S T)" | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 302 | unfolding image_iff | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 303 | apply (rule_tac x="(f x, f(x := undefined))" in bexI) | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 304 | apply (auto intro: extensional_funcset_extend_domainI extensional_funcset_restrict_domain extensional_funcset_mem) done | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 305 | } | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 306 | moreover | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 307 |   {
 | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 308 | fix f | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 309 | assume "f : (%(y, g). g(x := y)) ` (T <*> extensional_funcset S T)" | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 310 | from this assms have "f : extensional_funcset (insert x S) T" | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 311 | by (auto intro: extensional_funcset_extend_domainI) | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 312 | } | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 313 | ultimately show ?thesis by auto | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 314 | qed | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 315 | |
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 316 | lemma extensional_funcset_fun_upd_restricts_rangeI:  "\<forall> y \<in> S. f x \<noteq> f y ==> f : extensional_funcset (insert x S) T ==> f(x := undefined) : extensional_funcset S (T - {f x})"
 | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 317 | unfolding extensional_funcset_def extensional_def | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 318 | apply auto | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 319 | apply (case_tac "x = xa") | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 320 | apply auto done | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 321 | |
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 322 | lemma extensional_funcset_fun_upd_extends_rangeI: | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 323 |   assumes "a \<in> T" "f : extensional_funcset S (T - {a})"
 | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 324 | shows "f(x := a) : extensional_funcset (insert x S) T" | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 325 | using assms unfolding extensional_funcset_def extensional_def by auto | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 326 | |
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 327 | subsubsection {* Injective Extensional Function Spaces *}
 | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 328 | |
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 329 | lemma extensional_funcset_fun_upd_inj_onI: | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 330 |   assumes "f \<in> extensional_funcset S (T - {a})" "inj_on f S"
 | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 331 | shows "inj_on (f(x := a)) S" | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 332 | using assms unfolding extensional_funcset_def by (auto intro!: inj_on_fun_updI) | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 333 | |
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 334 | lemma extensional_funcset_extend_domain_inj_on_eq: | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 335 | assumes "x \<notin> S" | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 336 |   shows"{f. f \<in> extensional_funcset (insert x S) T \<and> inj_on f (insert x S)} =
 | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 337 |     (%(y, g). g(x:=y)) ` {(y, g). y \<in> T \<and> g \<in> extensional_funcset S (T - {y}) \<and> inj_on g S}"
 | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 338 | proof - | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 339 | from assms show ?thesis | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 340 | apply auto | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 341 | apply (auto intro: extensional_funcset_fun_upd_inj_onI extensional_funcset_fun_upd_extends_rangeI) | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 342 | apply (auto simp add: image_iff inj_on_def) | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 343 | apply (rule_tac x="xa x" in exI) | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 344 | apply (auto intro: extensional_funcset_mem) | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 345 | apply (rule_tac x="xa(x := undefined)" in exI) | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 346 | apply (auto intro!: extensional_funcset_fun_upd_restricts_rangeI) | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 347 | apply (auto dest!: extensional_funcset_mem split: split_if_asm) | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 348 | done | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 349 | qed | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 350 | |
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 351 | lemma extensional_funcset_extend_domain_inj_onI: | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 352 | assumes "x \<notin> S" | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 353 |   shows "inj_on (\<lambda>(y, g). g(x := y)) {(y, g). y \<in> T \<and> g \<in> extensional_funcset S (T - {y}) \<and> inj_on g S}"
 | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 354 | proof - | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 355 | from assms show ?thesis | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 356 | apply (auto intro!: inj_onI) | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 357 | apply (metis fun_upd_same) | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 358 | by (metis assms extensional_funcset_arb fun_upd_triv fun_upd_upd) | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 359 | qed | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 360 | |
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 361 | |
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 362 | subsubsection {* Cardinality *}
 | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 363 | |
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 364 | lemma card_extensional_funcset: | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 365 | assumes "finite S" | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 366 | shows "card (extensional_funcset S T) = (card T) ^ (card S)" | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 367 | using assms | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 368 | proof (induct rule: finite_induct) | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 369 | case empty | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 370 | show ?case | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 371 | by (auto simp add: extensional_funcset_empty_domain) | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 372 | next | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 373 | case (insert x S) | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 374 |   {
 | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 375 | fix g g' y y' | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 376 | assume assms: "g \<in> extensional_funcset S T" | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 377 | "g' \<in> extensional_funcset S T" | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 378 | "y \<in> T" "y' \<in> T" | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 379 | "g(x := y) = g'(x := y')" | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 380 | from this have "y = y'" | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 381 | by (metis fun_upd_same) | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 382 | have "g = g'" | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 383 | by (metis assms(1) assms(2) assms(5) extensional_funcset_arb fun_upd_triv fun_upd_upd insert(2)) | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 384 | from `y = y'` `g = g'` have "y = y' & g = g'" by simp | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 385 | } | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 386 | from this have "inj_on (\<lambda>(y, g). g (x := y)) (T \<times> extensional_funcset S T)" | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 387 | by (auto intro: inj_onI) | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 388 | from this insert.hyps show ?case | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 389 | by (simp add: extensional_funcset_extend_domain_eq card_image card_cartesian_product) | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 390 | qed | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 391 | |
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 392 | lemma finite_extensional_funcset: | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 393 | assumes "finite S" "finite T" | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 394 | shows "finite (extensional_funcset S T)" | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 395 | proof - | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 396 | from card_extensional_funcset[OF assms(1), of T] assms(2) | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 397 |   have "(card (extensional_funcset S T) \<noteq> 0) \<or> (S \<noteq> {} \<and> T = {})"
 | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 398 | by auto | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 399 | from this show ?thesis | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 400 | proof | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 401 | assume "card (extensional_funcset S T) \<noteq> 0" | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 402 | from this show ?thesis | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 403 | by (auto intro: card_ge_0_finite) | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 404 | next | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 405 |     assume "S \<noteq> {} \<and> T = {}"
 | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 406 | from this show ?thesis | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 407 | by (auto simp add: extensional_funcset_empty_range) | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 408 | qed | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 409 | qed | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 410 | |
| 13586 | 411 | end |