| author | Christian Sternagel | 
| Thu, 30 Aug 2012 13:06:04 +0900 | |
| changeset 49088 | 5cd8b4426a57 | 
| parent 48622 | caaa1a02c650 | 
| child 49834 | b27bbb021df1 | 
| permissions | -rw-r--r-- | 
| 48622 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 1 | (* Title: HOL/Library/RBT.thy | 
| 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 2 | Author: Lukas Bulwahn and Ondrej Kuncar | 
| 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 3 | *) | 
| 35617 | 4 | |
| 48622 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 5 | header {* Abstract type of RBT trees *}
 | 
| 35617 | 6 | |
| 48622 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 7 | theory RBT | 
| 43124 | 8 | imports Main RBT_Impl | 
| 35617 | 9 | begin | 
| 10 | ||
| 11 | subsection {* Type definition *}
 | |
| 12 | ||
| 36147 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 13 | typedef (open) ('a, 'b) rbt = "{t :: ('a\<Colon>linorder, 'b) RBT_Impl.rbt. is_rbt t}"
 | 
| 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 14 | morphisms impl_of RBT | 
| 48622 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 15 | proof - | 
| 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 16 | have "RBT_Impl.Empty \<in> ?rbt" by simp | 
| 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 17 | then show ?thesis .. | 
| 35617 | 18 | qed | 
| 19 | ||
| 39380 
5a2662c1e44a
established emerging canonical names *_eqI and *_eq_iff
 haftmann parents: 
39302diff
changeset | 20 | lemma rbt_eq_iff: | 
| 
5a2662c1e44a
established emerging canonical names *_eqI and *_eq_iff
 haftmann parents: 
39302diff
changeset | 21 | "t1 = t2 \<longleftrightarrow> impl_of t1 = impl_of t2" | 
| 
5a2662c1e44a
established emerging canonical names *_eqI and *_eq_iff
 haftmann parents: 
39302diff
changeset | 22 | by (simp add: impl_of_inject) | 
| 
5a2662c1e44a
established emerging canonical names *_eqI and *_eq_iff
 haftmann parents: 
39302diff
changeset | 23 | |
| 
5a2662c1e44a
established emerging canonical names *_eqI and *_eq_iff
 haftmann parents: 
39302diff
changeset | 24 | lemma rbt_eqI: | 
| 
5a2662c1e44a
established emerging canonical names *_eqI and *_eq_iff
 haftmann parents: 
39302diff
changeset | 25 | "impl_of t1 = impl_of t2 \<Longrightarrow> t1 = t2" | 
| 
5a2662c1e44a
established emerging canonical names *_eqI and *_eq_iff
 haftmann parents: 
39302diff
changeset | 26 | by (simp add: rbt_eq_iff) | 
| 
5a2662c1e44a
established emerging canonical names *_eqI and *_eq_iff
 haftmann parents: 
39302diff
changeset | 27 | |
| 36147 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 28 | lemma is_rbt_impl_of [simp, intro]: | 
| 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 29 | "is_rbt (impl_of t)" | 
| 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 30 | using impl_of [of t] by simp | 
| 35617 | 31 | |
| 39380 
5a2662c1e44a
established emerging canonical names *_eqI and *_eq_iff
 haftmann parents: 
39302diff
changeset | 32 | lemma RBT_impl_of [simp, code abstype]: | 
| 36147 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 33 | "RBT (impl_of t) = t" | 
| 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 34 | by (simp add: impl_of_inverse) | 
| 35617 | 35 | |
| 36 | subsection {* Primitive operations *}
 | |
| 37 | ||
| 48622 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 38 | setup_lifting type_definition_rbt | 
| 35617 | 39 | |
| 48622 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 40 | lift_definition lookup :: "('a\<Colon>linorder, 'b) rbt \<Rightarrow> 'a \<rightharpoonup> 'b" is "rbt_lookup" 
 | 
| 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 41 | by simp | 
| 35617 | 42 | |
| 48622 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 43 | lift_definition empty :: "('a\<Colon>linorder, 'b) rbt" is RBT_Impl.Empty 
 | 
| 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 44 | by (simp add: empty_def) | 
| 35617 | 45 | |
| 48622 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 46 | lift_definition insert :: "'a\<Colon>linorder \<Rightarrow> 'b \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt" is "rbt_insert" 
 | 
| 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 47 | by simp | 
| 35617 | 48 | |
| 48622 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 49 | lift_definition delete :: "'a\<Colon>linorder \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt" is "rbt_delete" 
 | 
| 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 50 | by simp | 
| 35617 | 51 | |
| 48622 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 52 | lift_definition entries :: "('a\<Colon>linorder, 'b) rbt \<Rightarrow> ('a \<times> 'b) list" is RBT_Impl.entries
 | 
| 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 53 | by simp | 
| 35617 | 54 | |
| 48622 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 55 | lift_definition keys :: "('a\<Colon>linorder, 'b) rbt \<Rightarrow> 'a list" is RBT_Impl.keys 
 | 
| 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 56 | by simp | 
| 35617 | 57 | |
| 48622 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 58 | lift_definition bulkload :: "('a\<Colon>linorder \<times> 'b) list \<Rightarrow> ('a, 'b) rbt" is "rbt_bulkload" 
 | 
| 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 59 | by simp | 
| 35617 | 60 | |
| 48622 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 61 | lift_definition map_entry :: "'a \<Rightarrow> ('b \<Rightarrow> 'b) \<Rightarrow> ('a\<Colon>linorder, 'b) rbt \<Rightarrow> ('a, 'b) rbt" is rbt_map_entry 
 | 
| 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 62 | by simp | 
| 35617 | 63 | |
| 48622 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 64 | lift_definition map :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> ('a\<Colon>linorder, 'b) rbt \<Rightarrow> ('a, 'b) rbt" is RBT_Impl.map
 | 
| 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 65 | by simp | 
| 35617 | 66 | |
| 48622 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 67 | lift_definition fold :: "('a \<Rightarrow> 'b \<Rightarrow> 'c \<Rightarrow> 'c) \<Rightarrow> ('a\<Colon>linorder, 'b) rbt \<Rightarrow> 'c \<Rightarrow> 'c"  is RBT_Impl.fold 
 | 
| 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 68 | by simp | 
| 35617 | 69 | |
| 48622 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 70 | lift_definition union :: "('a\<Colon>linorder, 'b) rbt \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt" is "rbt_union"
 | 
| 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 71 | by (simp add: rbt_union_is_rbt) | 
| 35617 | 72 | |
| 48622 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 73 | lift_definition foldi :: "('c \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'b \<Rightarrow> 'c \<Rightarrow> 'c) \<Rightarrow> ('a :: linorder, 'b) rbt \<Rightarrow> 'c \<Rightarrow> 'c"
 | 
| 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 74 | is RBT_Impl.foldi by simp | 
| 35617 | 75 | |
| 76 | subsection {* Derived operations *}
 | |
| 77 | ||
| 36147 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 78 | definition is_empty :: "('a\<Colon>linorder, 'b) rbt \<Rightarrow> bool" where
 | 
| 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 79 | [code]: "is_empty t = (case impl_of t of RBT_Impl.Empty \<Rightarrow> True | _ \<Rightarrow> False)" | 
| 35617 | 80 | |
| 81 | ||
| 82 | subsection {* Abstract lookup properties *}
 | |
| 83 | ||
| 36147 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 84 | lemma lookup_RBT: | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
46565diff
changeset | 85 | "is_rbt t \<Longrightarrow> lookup (RBT t) = rbt_lookup t" | 
| 36147 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 86 | by (simp add: lookup_def RBT_inverse) | 
| 35617 | 87 | |
| 36147 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 88 | lemma lookup_impl_of: | 
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
46565diff
changeset | 89 | "rbt_lookup (impl_of t) = lookup t" | 
| 48622 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 90 | by transfer (rule refl) | 
| 35617 | 91 | |
| 36147 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 92 | lemma entries_impl_of: | 
| 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 93 | "RBT_Impl.entries (impl_of t) = entries t" | 
| 48622 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 94 | by transfer (rule refl) | 
| 35617 | 95 | |
| 36147 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 96 | lemma keys_impl_of: | 
| 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 97 | "RBT_Impl.keys (impl_of t) = keys t" | 
| 48622 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 98 | by transfer (rule refl) | 
| 36111 | 99 | |
| 35617 | 100 | lemma lookup_empty [simp]: | 
| 101 | "lookup empty = Map.empty" | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 102 | by (simp add: empty_def lookup_RBT fun_eq_iff) | 
| 35617 | 103 | |
| 36147 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 104 | lemma lookup_insert [simp]: | 
| 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 105 | "lookup (insert k v t) = (lookup t)(k \<mapsto> v)" | 
| 48622 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 106 | by transfer (rule rbt_lookup_rbt_insert) | 
| 35617 | 107 | |
| 108 | lemma lookup_delete [simp]: | |
| 109 | "lookup (delete k t) = (lookup t)(k := None)" | |
| 48622 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 110 | by transfer (simp add: rbt_lookup_rbt_delete restrict_complement_singleton_eq) | 
| 35617 | 111 | |
| 112 | lemma map_of_entries [simp]: | |
| 113 | "map_of (entries t) = lookup t" | |
| 48622 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 114 | by transfer (simp add: map_of_entries) | 
| 35617 | 115 | |
| 36111 | 116 | lemma entries_lookup: | 
| 117 | "entries t1 = entries t2 \<longleftrightarrow> lookup t1 = lookup t2" | |
| 48622 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 118 | by transfer (simp add: entries_rbt_lookup) | 
| 36111 | 119 | |
| 35617 | 120 | lemma lookup_bulkload [simp]: | 
| 121 | "lookup (bulkload xs) = map_of xs" | |
| 48622 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 122 | by transfer (rule rbt_lookup_rbt_bulkload) | 
| 35617 | 123 | |
| 124 | lemma lookup_map_entry [simp]: | |
| 125 | "lookup (map_entry k f t) = (lookup t)(k := Option.map f (lookup t k))" | |
| 48622 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 126 | by transfer (rule rbt_lookup_rbt_map_entry) | 
| 35617 | 127 | |
| 128 | lemma lookup_map [simp]: | |
| 129 | "lookup (map f t) k = Option.map (f k) (lookup t k)" | |
| 48622 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 130 | by transfer (rule rbt_lookup_map) | 
| 35617 | 131 | |
| 132 | lemma fold_fold: | |
| 46133 
d9fe85d3d2cd
incorporated canonical fold combinator on lists into body of List theory; refactored passages on List.fold(l/r)
 haftmann parents: 
45928diff
changeset | 133 | "fold f t = List.fold (prod_case f) (entries t)" | 
| 48622 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 134 | by transfer (rule RBT_Impl.fold_def) | 
| 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 135 | |
| 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 136 | lemma impl_of_empty: | 
| 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 137 | "impl_of empty = RBT_Impl.Empty" | 
| 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 138 | by transfer (rule refl) | 
| 35617 | 139 | |
| 36111 | 140 | lemma is_empty_empty [simp]: | 
| 141 | "is_empty t \<longleftrightarrow> t = empty" | |
| 48622 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 142 | unfolding is_empty_def by transfer (simp split: rbt.split) | 
| 36111 | 143 | |
| 144 | lemma RBT_lookup_empty [simp]: (*FIXME*) | |
| 47450 
2ada2be850cb
move RBT implementation into type class contexts
 Andreas Lochbihler parents: 
46565diff
changeset | 145 | "rbt_lookup t = Map.empty \<longleftrightarrow> t = RBT_Impl.Empty" | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 146 | by (cases t) (auto simp add: fun_eq_iff) | 
| 36111 | 147 | |
| 148 | lemma lookup_empty_empty [simp]: | |
| 149 | "lookup t = Map.empty \<longleftrightarrow> t = empty" | |
| 48622 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 150 | by transfer (rule RBT_lookup_empty) | 
| 36111 | 151 | |
| 152 | lemma sorted_keys [iff]: | |
| 153 | "sorted (keys t)" | |
| 48622 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 154 | by transfer (simp add: RBT_Impl.keys_def rbt_sorted_entries) | 
| 36111 | 155 | |
| 156 | lemma distinct_keys [iff]: | |
| 157 | "distinct (keys t)" | |
| 48622 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 158 | by transfer (simp add: RBT_Impl.keys_def distinct_entries) | 
| 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 159 | |
| 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 160 | lemma finite_dom_lookup [simp, intro!]: "finite (dom (lookup t))" | 
| 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 161 | by transfer simp | 
| 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 162 | |
| 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 163 | lemma lookup_union: "lookup (union s t) = lookup s ++ lookup t" | 
| 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 164 | by transfer (simp add: rbt_lookup_rbt_union) | 
| 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 165 | |
| 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 166 | lemma lookup_in_tree: "(lookup t k = Some v) = ((k, v) \<in> set (entries t))" | 
| 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 167 | by transfer (simp add: rbt_lookup_in_tree) | 
| 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 168 | |
| 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 169 | lemma keys_entries: "(k \<in> set (keys t)) = (\<exists>v. (k, v) \<in> set (entries t))" | 
| 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 170 | by transfer (simp add: keys_entries) | 
| 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 171 | |
| 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 172 | lemma fold_def_alt: | 
| 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 173 | "fold f t = List.fold (prod_case f) (entries t)" | 
| 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 174 | by transfer (auto simp: RBT_Impl.fold_def) | 
| 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 175 | |
| 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 176 | lemma distinct_entries: "distinct (List.map fst (entries t))" | 
| 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 177 | by transfer (simp add: distinct_entries) | 
| 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 178 | |
| 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 179 | lemma non_empty_keys: "t \<noteq> empty \<Longrightarrow> keys t \<noteq> []" | 
| 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 180 | by transfer (simp add: non_empty_rbt_keys) | 
| 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 181 | |
| 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 182 | lemma keys_def_alt: | 
| 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 183 | "keys t = List.map fst (entries t)" | 
| 
caaa1a02c650
use lifting/transfer formalization of RBT from Lift_RBT
 kuncar parents: 
47450diff
changeset | 184 | by transfer (simp add: RBT_Impl.keys_def) | 
| 36111 | 185 | |
| 45928 
874845660119
adding quickcheck generators in some HOL-Library theories
 bulwahn parents: 
45694diff
changeset | 186 | subsection {* Quickcheck generators *}
 | 
| 
874845660119
adding quickcheck generators in some HOL-Library theories
 bulwahn parents: 
45694diff
changeset | 187 | |
| 46565 | 188 | quickcheck_generator rbt predicate: is_rbt constructors: empty, insert | 
| 36111 | 189 | |
| 35617 | 190 | end |