author | wenzelm |
Mon, 28 Dec 2015 01:26:34 +0100 | |
changeset 61944 | 5d06ecfdb472 |
parent 61941 | 31f2105521ee |
child 61955 | e96292f32c3c |
permissions | -rw-r--r-- |
923 | 1 |
(* Title: HOL/HOL.thy |
11750 | 2 |
Author: Tobias Nipkow, Markus Wenzel, and Larry Paulson |
3 |
*) |
|
923 | 4 |
|
60758 | 5 |
section \<open>The basis of Higher-Order Logic\<close> |
923 | 6 |
|
15131 | 7 |
theory HOL |
30929
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents:
30927
diff
changeset
|
8 |
imports Pure "~~/src/Tools/Code_Generator" |
46950
d0181abdbdac
declare command keywords via theory header, including strict checking outside Pure;
wenzelm
parents:
46497
diff
changeset
|
9 |
keywords |
52432 | 10 |
"try" "solve_direct" "quickcheck" "print_coercions" "print_claset" |
11 |
"print_induct_rules" :: diag and |
|
47657
1ba213363d0c
moved modules with only vague relation to the code generator to theory HOL rather than theory Code_Generator
haftmann
parents:
46973
diff
changeset
|
12 |
"quickcheck_params" :: thy_decl |
15131 | 13 |
begin |
2260 | 14 |
|
48891 | 15 |
ML_file "~~/src/Tools/misc_legacy.ML" |
16 |
ML_file "~~/src/Tools/try.ML" |
|
17 |
ML_file "~~/src/Tools/quickcheck.ML" |
|
18 |
ML_file "~~/src/Tools/solve_direct.ML" |
|
19 |
ML_file "~~/src/Tools/IsaPlanner/zipper.ML" |
|
20 |
ML_file "~~/src/Tools/IsaPlanner/isand.ML" |
|
21 |
ML_file "~~/src/Tools/IsaPlanner/rw_inst.ML" |
|
22 |
ML_file "~~/src/Provers/hypsubst.ML" |
|
23 |
ML_file "~~/src/Provers/splitter.ML" |
|
24 |
ML_file "~~/src/Provers/classical.ML" |
|
25 |
ML_file "~~/src/Provers/blast.ML" |
|
26 |
ML_file "~~/src/Provers/clasimp.ML" |
|
27 |
ML_file "~~/src/Tools/eqsubst.ML" |
|
28 |
ML_file "~~/src/Provers/quantifier1.ML" |
|
29 |
ML_file "~~/src/Tools/atomize_elim.ML" |
|
30 |
ML_file "~~/src/Tools/cong_tac.ML" |
|
58826 | 31 |
ML_file "~~/src/Tools/intuitionistic.ML" setup \<open>Intuitionistic.method_setup @{binding iprover}\<close> |
48891 | 32 |
ML_file "~~/src/Tools/project_rule.ML" |
33 |
ML_file "~~/src/Tools/subtyping.ML" |
|
34 |
ML_file "~~/src/Tools/case_product.ML" |
|
35 |
||
30165
6ee87f67d9cd
moved generic intuitionistic prover to src/Tools/intuitionistic.ML;
wenzelm
parents:
30160
diff
changeset
|
36 |
|
58659
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
wenzelm
parents:
57964
diff
changeset
|
37 |
ML \<open>Plugin_Name.declare_setup @{binding extraction}\<close> |
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
wenzelm
parents:
57964
diff
changeset
|
38 |
|
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
wenzelm
parents:
57964
diff
changeset
|
39 |
ML \<open> |
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
wenzelm
parents:
57964
diff
changeset
|
40 |
Plugin_Name.declare_setup @{binding quickcheck_random}; |
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
wenzelm
parents:
57964
diff
changeset
|
41 |
Plugin_Name.declare_setup @{binding quickcheck_exhaustive}; |
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
wenzelm
parents:
57964
diff
changeset
|
42 |
Plugin_Name.declare_setup @{binding quickcheck_bounded_forall}; |
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
wenzelm
parents:
57964
diff
changeset
|
43 |
Plugin_Name.declare_setup @{binding quickcheck_full_exhaustive}; |
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
wenzelm
parents:
57964
diff
changeset
|
44 |
Plugin_Name.declare_setup @{binding quickcheck_narrowing}; |
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
wenzelm
parents:
57964
diff
changeset
|
45 |
\<close> |
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
wenzelm
parents:
57964
diff
changeset
|
46 |
ML \<open> |
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
wenzelm
parents:
57964
diff
changeset
|
47 |
Plugin_Name.define_setup @{binding quickcheck} |
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
wenzelm
parents:
57964
diff
changeset
|
48 |
[@{plugin quickcheck_exhaustive}, |
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
wenzelm
parents:
57964
diff
changeset
|
49 |
@{plugin quickcheck_random}, |
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
wenzelm
parents:
57964
diff
changeset
|
50 |
@{plugin quickcheck_bounded_forall}, |
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
wenzelm
parents:
57964
diff
changeset
|
51 |
@{plugin quickcheck_full_exhaustive}, |
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
wenzelm
parents:
57964
diff
changeset
|
52 |
@{plugin quickcheck_narrowing}] |
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
wenzelm
parents:
57964
diff
changeset
|
53 |
\<close> |
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
wenzelm
parents:
57964
diff
changeset
|
54 |
|
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
wenzelm
parents:
57964
diff
changeset
|
55 |
|
60758 | 56 |
subsection \<open>Primitive logic\<close> |
11750 | 57 |
|
60758 | 58 |
subsubsection \<open>Core syntax\<close> |
2260 | 59 |
|
60758 | 60 |
setup \<open>Axclass.class_axiomatization (@{binding type}, [])\<close> |
36452 | 61 |
default_sort type |
60758 | 62 |
setup \<open>Object_Logic.add_base_sort @{sort type}\<close> |
25460
b80087af2274
interpretation of typedecls: instantiation to class type
haftmann
parents:
25388
diff
changeset
|
63 |
|
55383 | 64 |
axiomatization where fun_arity: "OFCLASS('a \<Rightarrow> 'b, type_class)" |
65 |
instance "fun" :: (type, type) type by (rule fun_arity) |
|
66 |
||
67 |
axiomatization where itself_arity: "OFCLASS('a itself, type_class)" |
|
68 |
instance itself :: (type) type by (rule itself_arity) |
|
25460
b80087af2274
interpretation of typedecls: instantiation to class type
haftmann
parents:
25388
diff
changeset
|
69 |
|
7357 | 70 |
typedecl bool |
923 | 71 |
|
11750 | 72 |
judgment |
60759 | 73 |
Trueprop :: "bool \<Rightarrow> prop" ("(_)" 5) |
923 | 74 |
|
46973 | 75 |
axiomatization |
60759 | 76 |
implies :: "[bool, bool] \<Rightarrow> bool" (infixr "-->" 25) and |
77 |
eq :: "['a, 'a] \<Rightarrow> bool" (infixl "=" 50) and |
|
78 |
The :: "('a \<Rightarrow> bool) \<Rightarrow> 'a" |
|
46973 | 79 |
|
11750 | 80 |
consts |
7357 | 81 |
True :: bool |
82 |
False :: bool |
|
60759 | 83 |
Not :: "bool \<Rightarrow> bool" ("~ _" [40] 40) |
38795
848be46708dc
formerly unnamed infix conjunction and disjunction now named HOL.conj and HOL.disj
haftmann
parents:
38786
diff
changeset
|
84 |
|
60759 | 85 |
conj :: "[bool, bool] \<Rightarrow> bool" (infixr "&" 35) |
86 |
disj :: "[bool, bool] \<Rightarrow> bool" (infixr "|" 30) |
|
38555 | 87 |
|
60759 | 88 |
All :: "('a \<Rightarrow> bool) \<Rightarrow> bool" (binder "ALL " 10) |
89 |
Ex :: "('a \<Rightarrow> bool) \<Rightarrow> bool" (binder "EX " 10) |
|
90 |
Ex1 :: "('a \<Rightarrow> bool) \<Rightarrow> bool" (binder "EX! " 10) |
|
923 | 91 |
|
19656
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19607
diff
changeset
|
92 |
|
60758 | 93 |
subsubsection \<open>Additional concrete syntax\<close> |
2260 | 94 |
|
21210 | 95 |
notation (output) |
38864
4abe644fcea5
formerly unnamed infix equality now named HOL.eq
haftmann
parents:
38857
diff
changeset
|
96 |
eq (infix "=" 50) |
19656
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19607
diff
changeset
|
97 |
|
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19607
diff
changeset
|
98 |
abbreviation |
60759 | 99 |
not_equal :: "['a, 'a] \<Rightarrow> bool" (infixl "~=" 50) where |
100 |
"x ~= y \<equiv> ~ (x = y)" |
|
19656
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19607
diff
changeset
|
101 |
|
21210 | 102 |
notation (output) |
19656
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19607
diff
changeset
|
103 |
not_equal (infix "~=" 50) |
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19607
diff
changeset
|
104 |
|
21210 | 105 |
notation (xsymbols) |
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21250
diff
changeset
|
106 |
Not ("\<not> _" [40] 40) and |
38864
4abe644fcea5
formerly unnamed infix equality now named HOL.eq
haftmann
parents:
38857
diff
changeset
|
107 |
conj (infixr "\<and>" 35) and |
4abe644fcea5
formerly unnamed infix equality now named HOL.eq
haftmann
parents:
38857
diff
changeset
|
108 |
disj (infixr "\<or>" 30) and |
4abe644fcea5
formerly unnamed infix equality now named HOL.eq
haftmann
parents:
38857
diff
changeset
|
109 |
implies (infixr "\<longrightarrow>" 25) and |
50360
628b37b9e8a2
\<noteq> now has the same associativity as ~= and =
nipkow
parents:
49339
diff
changeset
|
110 |
not_equal (infixl "\<noteq>" 50) |
628b37b9e8a2
\<noteq> now has the same associativity as ~= and =
nipkow
parents:
49339
diff
changeset
|
111 |
|
628b37b9e8a2
\<noteq> now has the same associativity as ~= and =
nipkow
parents:
49339
diff
changeset
|
112 |
notation (xsymbols output) |
19656
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19607
diff
changeset
|
113 |
not_equal (infix "\<noteq>" 50) |
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19607
diff
changeset
|
114 |
|
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19607
diff
changeset
|
115 |
abbreviation (iff) |
61941 | 116 |
iff :: "[bool, bool] \<Rightarrow> bool" (infixr "\<longleftrightarrow>" 25) where |
117 |
"A \<longleftrightarrow> B \<equiv> A = B" |
|
19656
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19607
diff
changeset
|
118 |
|
60759 | 119 |
syntax "_The" :: "[pttrn, bool] \<Rightarrow> 'a" ("(3THE _./ _)" [0, 10] 10) |
120 |
translations "THE x. P" \<rightleftharpoons> "CONST The (\<lambda>x. P)" |
|
60758 | 121 |
print_translation \<open> |
52143 | 122 |
[(@{const_syntax The}, fn _ => fn [Abs abs] => |
46125
00cd193a48dc
improved case syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents:
45654
diff
changeset
|
123 |
let val (x, t) = Syntax_Trans.atomic_abs_tr' abs |
00cd193a48dc
improved case syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents:
45654
diff
changeset
|
124 |
in Syntax.const @{syntax_const "_The"} $ x $ t end)] |
61799 | 125 |
\<close> \<comment> \<open>To avoid eta-contraction of body\<close> |
923 | 126 |
|
46125
00cd193a48dc
improved case syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents:
45654
diff
changeset
|
127 |
nonterminal letbinds and letbind |
923 | 128 |
syntax |
60759 | 129 |
"_bind" :: "[pttrn, 'a] \<Rightarrow> letbind" ("(2_ =/ _)" 10) |
130 |
"" :: "letbind \<Rightarrow> letbinds" ("_") |
|
131 |
"_binds" :: "[letbind, letbinds] \<Rightarrow> letbinds" ("_;/ _") |
|
132 |
"_Let" :: "[letbinds, 'a] \<Rightarrow> 'a" ("(let (_)/ in (_))" [0, 10] 10) |
|
923 | 133 |
|
46125
00cd193a48dc
improved case syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents:
45654
diff
changeset
|
134 |
nonterminal case_syn and cases_syn |
00cd193a48dc
improved case syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents:
45654
diff
changeset
|
135 |
syntax |
60759 | 136 |
"_case_syntax" :: "['a, cases_syn] \<Rightarrow> 'b" ("(case _ of/ _)" 10) |
137 |
"_case1" :: "['a, 'b] \<Rightarrow> case_syn" ("(2_ =>/ _)" 10) |
|
138 |
"" :: "case_syn \<Rightarrow> cases_syn" ("_") |
|
139 |
"_case2" :: "[case_syn, cases_syn] \<Rightarrow> cases_syn" ("_/ | _") |
|
42057
3eba96ff3d3e
more selective strip_positions in case patterns -- reactivate translations based on "case _ of _" in HOL and special patterns in HOLCF;
wenzelm
parents:
41865
diff
changeset
|
140 |
syntax (xsymbols) |
60759 | 141 |
"_case1" :: "['a, 'b] \<Rightarrow> case_syn" ("(2_ \<Rightarrow>/ _)" 10) |
13763
f94b569cd610
added print translations tha avoid eta contraction for important binders.
nipkow
parents:
13723
diff
changeset
|
142 |
|
21524 | 143 |
notation (xsymbols) |
144 |
All (binder "\<forall>" 10) and |
|
145 |
Ex (binder "\<exists>" 10) and |
|
146 |
Ex1 (binder "\<exists>!" 10) |
|
2372 | 147 |
|
21524 | 148 |
notation (HOL) |
149 |
All (binder "! " 10) and |
|
150 |
Ex (binder "? " 10) and |
|
151 |
Ex1 (binder "?! " 10) |
|
7238
36e58620ffc8
replaced HOL_quantifiers flag by "HOL" print mode;
wenzelm
parents:
7220
diff
changeset
|
152 |
|
36e58620ffc8
replaced HOL_quantifiers flag by "HOL" print mode;
wenzelm
parents:
7220
diff
changeset
|
153 |
|
60758 | 154 |
subsubsection \<open>Axioms and basic definitions\<close> |
2260 | 155 |
|
46973 | 156 |
axiomatization where |
157 |
refl: "t = (t::'a)" and |
|
158 |
subst: "s = t \<Longrightarrow> P s \<Longrightarrow> P t" and |
|
60759 | 159 |
ext: "(\<And>x::'a. (f x ::'b) = g x) \<Longrightarrow> (\<lambda>x. f x) = (\<lambda>x. g x)" |
61799 | 160 |
\<comment> \<open>Extensionality is built into the meta-logic, and this rule expresses |
15380 | 161 |
a related property. It is an eta-expanded version of the traditional |
60758 | 162 |
rule, and similar to the ABS rule of HOL\<close> and |
6289 | 163 |
|
11432
8a203ae6efe3
added "The" (definite description operator) (by Larry);
wenzelm
parents:
10489
diff
changeset
|
164 |
the_eq_trivial: "(THE x. x = a) = (a::'a)" |
923 | 165 |
|
46973 | 166 |
axiomatization where |
60759 | 167 |
impI: "(P \<Longrightarrow> Q) \<Longrightarrow> P \<longrightarrow> Q" and |
168 |
mp: "\<lbrakk>P \<longrightarrow> Q; P\<rbrakk> \<Longrightarrow> Q" and |
|
15380 | 169 |
|
60759 | 170 |
iff: "(P \<longrightarrow> Q) \<longrightarrow> (Q \<longrightarrow> P) \<longrightarrow> (P = Q)" and |
171 |
True_or_False: "(P = True) \<or> (P = False)" |
|
15380 | 172 |
|
923 | 173 |
defs |
60759 | 174 |
True_def: "True \<equiv> ((\<lambda>x::bool. x) = (\<lambda>x. x))" |
175 |
All_def: "All P \<equiv> (P = (\<lambda>x. True))" |
|
176 |
Ex_def: "Ex P \<equiv> \<forall>Q. (\<forall>x. P x \<longrightarrow> Q) \<longrightarrow> Q" |
|
177 |
False_def: "False \<equiv> (\<forall>P. P)" |
|
178 |
not_def: "\<not> P \<equiv> P \<longrightarrow> False" |
|
179 |
and_def: "P \<and> Q \<equiv> \<forall>R. (P \<longrightarrow> Q \<longrightarrow> R) \<longrightarrow> R" |
|
180 |
or_def: "P \<or> Q \<equiv> \<forall>R. (P \<longrightarrow> R) \<longrightarrow> (Q \<longrightarrow> R) \<longrightarrow> R" |
|
181 |
Ex1_def: "Ex1 P \<equiv> \<exists>x. P x \<and> (\<forall>y. P y \<longrightarrow> y = x)" |
|
923 | 182 |
|
46973 | 183 |
definition If :: "bool \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'a" ("(if (_)/ then (_)/ else (_))" [0, 0, 10] 10) |
60759 | 184 |
where "If P x y \<equiv> (THE z::'a. (P = True \<longrightarrow> z = x) \<and> (P = False \<longrightarrow> z = y))" |
923 | 185 |
|
46973 | 186 |
definition Let :: "'a \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'b" |
187 |
where "Let s f \<equiv> f s" |
|
38525 | 188 |
|
189 |
translations |
|
60759 | 190 |
"_Let (_binds b bs) e" \<rightleftharpoons> "_Let b (_Let bs e)" |
191 |
"let x = a in e" \<rightleftharpoons> "CONST Let a (\<lambda>x. e)" |
|
38525 | 192 |
|
46973 | 193 |
axiomatization undefined :: 'a |
22481
79c2724c36b5
added class "default" and expansion axioms for undefined
haftmann
parents:
22473
diff
changeset
|
194 |
|
46973 | 195 |
class default = fixes default :: 'a |
4868 | 196 |
|
11750 | 197 |
|
60758 | 198 |
subsection \<open>Fundamental rules\<close> |
20944 | 199 |
|
60758 | 200 |
subsubsection \<open>Equality\<close> |
20944 | 201 |
|
60759 | 202 |
lemma sym: "s = t \<Longrightarrow> t = s" |
18457 | 203 |
by (erule subst) (rule refl) |
15411 | 204 |
|
60759 | 205 |
lemma ssubst: "t = s \<Longrightarrow> P s \<Longrightarrow> P t" |
18457 | 206 |
by (drule sym) (erule subst) |
15411 | 207 |
|
60759 | 208 |
lemma trans: "\<lbrakk>r = s; s = t\<rbrakk> \<Longrightarrow> r = t" |
18457 | 209 |
by (erule subst) |
15411 | 210 |
|
60759 | 211 |
lemma trans_sym [Pure.elim?]: "r = s \<Longrightarrow> t = s \<Longrightarrow> r = t" |
40715
3ba17f07b23c
lemma trans_sym allows single-step "normalization" in Isar, e.g. via moreover/ultimately;
wenzelm
parents:
40582
diff
changeset
|
212 |
by (rule trans [OF _ sym]) |
3ba17f07b23c
lemma trans_sym allows single-step "normalization" in Isar, e.g. via moreover/ultimately;
wenzelm
parents:
40582
diff
changeset
|
213 |
|
58826 | 214 |
lemma meta_eq_to_obj_eq: |
60759 | 215 |
assumes meq: "A \<equiv> B" |
20944 | 216 |
shows "A = B" |
217 |
by (unfold meq) (rule refl) |
|
15411 | 218 |
|
61799 | 219 |
text \<open>Useful with \<open>erule\<close> for proving equalities from known equalities.\<close> |
20944 | 220 |
(* a = b |
15411 | 221 |
| | |
222 |
c = d *) |
|
60759 | 223 |
lemma box_equals: "\<lbrakk>a = b; a = c; b = d\<rbrakk> \<Longrightarrow> c = d" |
15411 | 224 |
apply (rule trans) |
225 |
apply (rule trans) |
|
226 |
apply (rule sym) |
|
227 |
apply assumption+ |
|
228 |
done |
|
229 |
||
60758 | 230 |
text \<open>For calculational reasoning:\<close> |
15524
2ef571f80a55
Moved oderings from HOL into the new Orderings.thy
nipkow
parents:
15481
diff
changeset
|
231 |
|
60759 | 232 |
lemma forw_subst: "a = b \<Longrightarrow> P b \<Longrightarrow> P a" |
15524
2ef571f80a55
Moved oderings from HOL into the new Orderings.thy
nipkow
parents:
15481
diff
changeset
|
233 |
by (rule ssubst) |
2ef571f80a55
Moved oderings from HOL into the new Orderings.thy
nipkow
parents:
15481
diff
changeset
|
234 |
|
60759 | 235 |
lemma back_subst: "P a \<Longrightarrow> a = b \<Longrightarrow> P b" |
15524
2ef571f80a55
Moved oderings from HOL into the new Orderings.thy
nipkow
parents:
15481
diff
changeset
|
236 |
by (rule subst) |
2ef571f80a55
Moved oderings from HOL into the new Orderings.thy
nipkow
parents:
15481
diff
changeset
|
237 |
|
15411 | 238 |
|
60758 | 239 |
subsubsection \<open>Congruence rules for application\<close> |
15411 | 240 |
|
61799 | 241 |
text \<open>Similar to \<open>AP_THM\<close> in Gordon's HOL.\<close> |
60759 | 242 |
lemma fun_cong: "(f :: 'a \<Rightarrow> 'b) = g \<Longrightarrow> f x = g x" |
15411 | 243 |
apply (erule subst) |
244 |
apply (rule refl) |
|
245 |
done |
|
246 |
||
61799 | 247 |
text \<open>Similar to \<open>AP_TERM\<close> in Gordon's HOL and FOL's \<open>subst_context\<close>.\<close> |
60759 | 248 |
lemma arg_cong: "x = y \<Longrightarrow> f x = f y" |
15411 | 249 |
apply (erule subst) |
250 |
apply (rule refl) |
|
251 |
done |
|
252 |
||
60759 | 253 |
lemma arg_cong2: "\<lbrakk>a = b; c = d\<rbrakk> \<Longrightarrow> f a c = f b d" |
15655 | 254 |
apply (erule ssubst)+ |
255 |
apply (rule refl) |
|
256 |
done |
|
257 |
||
60759 | 258 |
lemma cong: "\<lbrakk>f = g; (x::'a) = y\<rbrakk> \<Longrightarrow> f x = g y" |
15411 | 259 |
apply (erule subst)+ |
260 |
apply (rule refl) |
|
261 |
done |
|
262 |
||
60758 | 263 |
ML \<open>fun cong_tac ctxt = Cong_Tac.cong_tac ctxt @{thm cong}\<close> |
15411 | 264 |
|
32733
71618deaf777
moved generic cong_tac from HOL/Tools/datatype_aux.ML to Tools/cong_tac.ML, proper subgoal selection (failure, not exception);
wenzelm
parents:
32668
diff
changeset
|
265 |
|
60758 | 266 |
subsubsection \<open>Equality of booleans -- iff\<close> |
15411 | 267 |
|
60759 | 268 |
lemma iffI: assumes "P \<Longrightarrow> Q" and "Q \<Longrightarrow> P" shows "P = Q" |
21504 | 269 |
by (iprover intro: iff [THEN mp, THEN mp] impI assms) |
15411 | 270 |
|
60759 | 271 |
lemma iffD2: "\<lbrakk>P = Q; Q\<rbrakk> \<Longrightarrow> P" |
18457 | 272 |
by (erule ssubst) |
15411 | 273 |
|
60759 | 274 |
lemma rev_iffD2: "\<lbrakk>Q; P = Q\<rbrakk> \<Longrightarrow> P" |
18457 | 275 |
by (erule iffD2) |
15411 | 276 |
|
21504 | 277 |
lemma iffD1: "Q = P \<Longrightarrow> Q \<Longrightarrow> P" |
278 |
by (drule sym) (rule iffD2) |
|
279 |
||
280 |
lemma rev_iffD1: "Q \<Longrightarrow> Q = P \<Longrightarrow> P" |
|
281 |
by (drule sym) (rule rev_iffD2) |
|
15411 | 282 |
|
283 |
lemma iffE: |
|
60759 | 284 |
assumes major: "P = Q" |
285 |
and minor: "\<lbrakk>P \<longrightarrow> Q; Q \<longrightarrow> P\<rbrakk> \<Longrightarrow> R" |
|
18457 | 286 |
shows R |
287 |
by (iprover intro: minor impI major [THEN iffD2] major [THEN iffD1]) |
|
15411 | 288 |
|
289 |
||
60758 | 290 |
subsubsection \<open>True\<close> |
15411 | 291 |
|
292 |
lemma TrueI: "True" |
|
21504 | 293 |
unfolding True_def by (rule refl) |
15411 | 294 |
|
60759 | 295 |
lemma eqTrueI: "P \<Longrightarrow> P = True" |
18457 | 296 |
by (iprover intro: iffI TrueI) |
15411 | 297 |
|
60759 | 298 |
lemma eqTrueE: "P = True \<Longrightarrow> P" |
21504 | 299 |
by (erule iffD2) (rule TrueI) |
15411 | 300 |
|
301 |
||
60758 | 302 |
subsubsection \<open>Universal quantifier\<close> |
15411 | 303 |
|
60759 | 304 |
lemma allI: assumes "\<And>x::'a. P x" shows "\<forall>x. P x" |
21504 | 305 |
unfolding All_def by (iprover intro: ext eqTrueI assms) |
15411 | 306 |
|
60759 | 307 |
lemma spec: "\<forall>x::'a. P x \<Longrightarrow> P x" |
15411 | 308 |
apply (unfold All_def) |
309 |
apply (rule eqTrueE) |
|
310 |
apply (erule fun_cong) |
|
311 |
done |
|
312 |
||
313 |
lemma allE: |
|
60759 | 314 |
assumes major: "\<forall>x. P x" |
315 |
and minor: "P x \<Longrightarrow> R" |
|
21504 | 316 |
shows R |
317 |
by (iprover intro: minor major [THEN spec]) |
|
15411 | 318 |
|
319 |
lemma all_dupE: |
|
60759 | 320 |
assumes major: "\<forall>x. P x" |
321 |
and minor: "\<lbrakk>P x; \<forall>x. P x\<rbrakk> \<Longrightarrow> R" |
|
21504 | 322 |
shows R |
323 |
by (iprover intro: minor major major [THEN spec]) |
|
15411 | 324 |
|
325 |
||
60758 | 326 |
subsubsection \<open>False\<close> |
21504 | 327 |
|
60758 | 328 |
text \<open> |
61799 | 329 |
Depends upon \<open>spec\<close>; it is impossible to do propositional |
21504 | 330 |
logic before quantifiers! |
60758 | 331 |
\<close> |
15411 | 332 |
|
60759 | 333 |
lemma FalseE: "False \<Longrightarrow> P" |
21504 | 334 |
apply (unfold False_def) |
335 |
apply (erule spec) |
|
336 |
done |
|
15411 | 337 |
|
60759 | 338 |
lemma False_neq_True: "False = True \<Longrightarrow> P" |
21504 | 339 |
by (erule eqTrueE [THEN FalseE]) |
15411 | 340 |
|
341 |
||
60758 | 342 |
subsubsection \<open>Negation\<close> |
15411 | 343 |
|
344 |
lemma notI: |
|
60759 | 345 |
assumes "P \<Longrightarrow> False" |
346 |
shows "\<not> P" |
|
21504 | 347 |
apply (unfold not_def) |
348 |
apply (iprover intro: impI assms) |
|
349 |
done |
|
15411 | 350 |
|
60759 | 351 |
lemma False_not_True: "False \<noteq> True" |
21504 | 352 |
apply (rule notI) |
353 |
apply (erule False_neq_True) |
|
354 |
done |
|
15411 | 355 |
|
60759 | 356 |
lemma True_not_False: "True \<noteq> False" |
21504 | 357 |
apply (rule notI) |
358 |
apply (drule sym) |
|
359 |
apply (erule False_neq_True) |
|
360 |
done |
|
15411 | 361 |
|
60759 | 362 |
lemma notE: "\<lbrakk>\<not> P; P\<rbrakk> \<Longrightarrow> R" |
21504 | 363 |
apply (unfold not_def) |
364 |
apply (erule mp [THEN FalseE]) |
|
365 |
apply assumption |
|
366 |
done |
|
15411 | 367 |
|
21504 | 368 |
lemma notI2: "(P \<Longrightarrow> \<not> Pa) \<Longrightarrow> (P \<Longrightarrow> Pa) \<Longrightarrow> \<not> P" |
369 |
by (erule notE [THEN notI]) (erule meta_mp) |
|
15411 | 370 |
|
371 |
||
60758 | 372 |
subsubsection \<open>Implication\<close> |
15411 | 373 |
|
374 |
lemma impE: |
|
60759 | 375 |
assumes "P \<longrightarrow> Q" P "Q \<Longrightarrow> R" |
376 |
shows R |
|
23553 | 377 |
by (iprover intro: assms mp) |
15411 | 378 |
|
60759 | 379 |
(* Reduces Q to P \<longrightarrow> Q, allowing substitution in P. *) |
380 |
lemma rev_mp: "\<lbrakk>P; P \<longrightarrow> Q\<rbrakk> \<Longrightarrow> Q" |
|
17589 | 381 |
by (iprover intro: mp) |
15411 | 382 |
|
383 |
lemma contrapos_nn: |
|
60759 | 384 |
assumes major: "\<not> Q" |
385 |
and minor: "P \<Longrightarrow> Q" |
|
386 |
shows "\<not> P" |
|
17589 | 387 |
by (iprover intro: notI minor major [THEN notE]) |
15411 | 388 |
|
389 |
(*not used at all, but we already have the other 3 combinations *) |
|
390 |
lemma contrapos_pn: |
|
391 |
assumes major: "Q" |
|
60759 | 392 |
and minor: "P \<Longrightarrow> \<not> Q" |
393 |
shows "\<not> P" |
|
17589 | 394 |
by (iprover intro: notI minor major notE) |
15411 | 395 |
|
60759 | 396 |
lemma not_sym: "t \<noteq> s \<Longrightarrow> s \<noteq> t" |
21250 | 397 |
by (erule contrapos_nn) (erule sym) |
398 |
||
60759 | 399 |
lemma eq_neq_eq_imp_neq: "\<lbrakk>x = a; a \<noteq> b; b = y\<rbrakk> \<Longrightarrow> x \<noteq> y" |
21250 | 400 |
by (erule subst, erule ssubst, assumption) |
15411 | 401 |
|
402 |
||
60758 | 403 |
subsubsection \<open>Existential quantifier\<close> |
15411 | 404 |
|
60759 | 405 |
lemma exI: "P x \<Longrightarrow> \<exists>x::'a. P x" |
15411 | 406 |
apply (unfold Ex_def) |
17589 | 407 |
apply (iprover intro: allI allE impI mp) |
15411 | 408 |
done |
409 |
||
410 |
lemma exE: |
|
60759 | 411 |
assumes major: "\<exists>x::'a. P x" |
412 |
and minor: "\<And>x. P x \<Longrightarrow> Q" |
|
15411 | 413 |
shows "Q" |
414 |
apply (rule major [unfolded Ex_def, THEN spec, THEN mp]) |
|
17589 | 415 |
apply (iprover intro: impI [THEN allI] minor) |
15411 | 416 |
done |
417 |
||
418 |
||
60758 | 419 |
subsubsection \<open>Conjunction\<close> |
15411 | 420 |
|
60759 | 421 |
lemma conjI: "\<lbrakk>P; Q\<rbrakk> \<Longrightarrow> P \<and> Q" |
15411 | 422 |
apply (unfold and_def) |
17589 | 423 |
apply (iprover intro: impI [THEN allI] mp) |
15411 | 424 |
done |
425 |
||
60759 | 426 |
lemma conjunct1: "\<lbrakk>P \<and> Q\<rbrakk> \<Longrightarrow> P" |
15411 | 427 |
apply (unfold and_def) |
17589 | 428 |
apply (iprover intro: impI dest: spec mp) |
15411 | 429 |
done |
430 |
||
60759 | 431 |
lemma conjunct2: "\<lbrakk>P \<and> Q\<rbrakk> \<Longrightarrow> Q" |
15411 | 432 |
apply (unfold and_def) |
17589 | 433 |
apply (iprover intro: impI dest: spec mp) |
15411 | 434 |
done |
435 |
||
436 |
lemma conjE: |
|
60759 | 437 |
assumes major: "P \<and> Q" |
438 |
and minor: "\<lbrakk>P; Q\<rbrakk> \<Longrightarrow> R" |
|
439 |
shows R |
|
15411 | 440 |
apply (rule minor) |
441 |
apply (rule major [THEN conjunct1]) |
|
442 |
apply (rule major [THEN conjunct2]) |
|
443 |
done |
|
444 |
||
445 |
lemma context_conjI: |
|
60759 | 446 |
assumes P "P \<Longrightarrow> Q" shows "P \<and> Q" |
23553 | 447 |
by (iprover intro: conjI assms) |
15411 | 448 |
|
449 |
||
60758 | 450 |
subsubsection \<open>Disjunction\<close> |
15411 | 451 |
|
60759 | 452 |
lemma disjI1: "P \<Longrightarrow> P \<or> Q" |
15411 | 453 |
apply (unfold or_def) |
17589 | 454 |
apply (iprover intro: allI impI mp) |
15411 | 455 |
done |
456 |
||
60759 | 457 |
lemma disjI2: "Q \<Longrightarrow> P \<or> Q" |
15411 | 458 |
apply (unfold or_def) |
17589 | 459 |
apply (iprover intro: allI impI mp) |
15411 | 460 |
done |
461 |
||
462 |
lemma disjE: |
|
60759 | 463 |
assumes major: "P \<or> Q" |
464 |
and minorP: "P \<Longrightarrow> R" |
|
465 |
and minorQ: "Q \<Longrightarrow> R" |
|
466 |
shows R |
|
17589 | 467 |
by (iprover intro: minorP minorQ impI |
15411 | 468 |
major [unfolded or_def, THEN spec, THEN mp, THEN mp]) |
469 |
||
470 |
||
60758 | 471 |
subsubsection \<open>Classical logic\<close> |
15411 | 472 |
|
473 |
lemma classical: |
|
60759 | 474 |
assumes prem: "\<not> P \<Longrightarrow> P" |
475 |
shows P |
|
15411 | 476 |
apply (rule True_or_False [THEN disjE, THEN eqTrueE]) |
477 |
apply assumption |
|
478 |
apply (rule notI [THEN prem, THEN eqTrueI]) |
|
479 |
apply (erule subst) |
|
480 |
apply assumption |
|
481 |
done |
|
482 |
||
45607 | 483 |
lemmas ccontr = FalseE [THEN classical] |
15411 | 484 |
|
60759 | 485 |
(*notE with premises exchanged; it discharges \<not> R so that it can be used to |
15411 | 486 |
make elimination rules*) |
487 |
lemma rev_notE: |
|
60759 | 488 |
assumes premp: P |
489 |
and premnot: "\<not> R \<Longrightarrow> \<not> P" |
|
490 |
shows R |
|
15411 | 491 |
apply (rule ccontr) |
492 |
apply (erule notE [OF premnot premp]) |
|
493 |
done |
|
494 |
||
495 |
(*Double negation law*) |
|
60759 | 496 |
lemma notnotD: "\<not>\<not> P \<Longrightarrow> P" |
15411 | 497 |
apply (rule classical) |
498 |
apply (erule notE) |
|
499 |
apply assumption |
|
500 |
done |
|
501 |
||
502 |
lemma contrapos_pp: |
|
60759 | 503 |
assumes p1: Q |
504 |
and p2: "\<not> P \<Longrightarrow> \<not> Q" |
|
505 |
shows P |
|
17589 | 506 |
by (iprover intro: classical p1 p2 notE) |
15411 | 507 |
|
508 |
||
60758 | 509 |
subsubsection \<open>Unique existence\<close> |
15411 | 510 |
|
511 |
lemma ex1I: |
|
60759 | 512 |
assumes "P a" "\<And>x. P x \<Longrightarrow> x = a" |
513 |
shows "\<exists>!x. P x" |
|
23553 | 514 |
by (unfold Ex1_def, iprover intro: assms exI conjI allI impI) |
15411 | 515 |
|
60758 | 516 |
text\<open>Sometimes easier to use: the premises have no shared variables. Safe!\<close> |
15411 | 517 |
lemma ex_ex1I: |
60759 | 518 |
assumes ex_prem: "\<exists>x. P x" |
519 |
and eq: "\<And>x y. \<lbrakk>P x; P y\<rbrakk> \<Longrightarrow> x = y" |
|
520 |
shows "\<exists>!x. P x" |
|
17589 | 521 |
by (iprover intro: ex_prem [THEN exE] ex1I eq) |
15411 | 522 |
|
523 |
lemma ex1E: |
|
60759 | 524 |
assumes major: "\<exists>!x. P x" |
525 |
and minor: "\<And>x. \<lbrakk>P x; \<forall>y. P y \<longrightarrow> y = x\<rbrakk> \<Longrightarrow> R" |
|
526 |
shows R |
|
15411 | 527 |
apply (rule major [unfolded Ex1_def, THEN exE]) |
528 |
apply (erule conjE) |
|
17589 | 529 |
apply (iprover intro: minor) |
15411 | 530 |
done |
531 |
||
60759 | 532 |
lemma ex1_implies_ex: "\<exists>!x. P x \<Longrightarrow> \<exists>x. P x" |
15411 | 533 |
apply (erule ex1E) |
534 |
apply (rule exI) |
|
535 |
apply assumption |
|
536 |
done |
|
537 |
||
538 |
||
60758 | 539 |
subsubsection \<open>Classical intro rules for disjunction and existential quantifiers\<close> |
15411 | 540 |
|
541 |
lemma disjCI: |
|
60759 | 542 |
assumes "\<not> Q \<Longrightarrow> P" shows "P \<or> Q" |
15411 | 543 |
apply (rule classical) |
23553 | 544 |
apply (iprover intro: assms disjI1 disjI2 notI elim: notE) |
15411 | 545 |
done |
546 |
||
60759 | 547 |
lemma excluded_middle: "\<not> P \<or> P" |
17589 | 548 |
by (iprover intro: disjCI) |
15411 | 549 |
|
60758 | 550 |
text \<open> |
20944 | 551 |
case distinction as a natural deduction rule. |
60759 | 552 |
Note that @{term "\<not> P"} is the second case, not the first |
60758 | 553 |
\<close> |
27126
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
wenzelm
parents:
27107
diff
changeset
|
554 |
lemma case_split [case_names True False]: |
60759 | 555 |
assumes prem1: "P \<Longrightarrow> Q" |
556 |
and prem2: "\<not> P \<Longrightarrow> Q" |
|
557 |
shows Q |
|
15411 | 558 |
apply (rule excluded_middle [THEN disjE]) |
559 |
apply (erule prem2) |
|
560 |
apply (erule prem1) |
|
561 |
done |
|
27126
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
wenzelm
parents:
27107
diff
changeset
|
562 |
|
60759 | 563 |
(*Classical implies (\<longrightarrow>) elimination. *) |
15411 | 564 |
lemma impCE: |
60759 | 565 |
assumes major: "P \<longrightarrow> Q" |
566 |
and minor: "\<not> P \<Longrightarrow> R" "Q \<Longrightarrow> R" |
|
567 |
shows R |
|
15411 | 568 |
apply (rule excluded_middle [of P, THEN disjE]) |
17589 | 569 |
apply (iprover intro: minor major [THEN mp])+ |
15411 | 570 |
done |
571 |
||
60759 | 572 |
(*This version of \<longrightarrow> elimination works on Q before P. It works best for |
15411 | 573 |
those cases in which P holds "almost everywhere". Can't install as |
574 |
default: would break old proofs.*) |
|
575 |
lemma impCE': |
|
60759 | 576 |
assumes major: "P \<longrightarrow> Q" |
577 |
and minor: "Q \<Longrightarrow> R" "\<not> P \<Longrightarrow> R" |
|
578 |
shows R |
|
15411 | 579 |
apply (rule excluded_middle [of P, THEN disjE]) |
17589 | 580 |
apply (iprover intro: minor major [THEN mp])+ |
15411 | 581 |
done |
582 |
||
583 |
(*Classical <-> elimination. *) |
|
584 |
lemma iffCE: |
|
60759 | 585 |
assumes major: "P = Q" |
586 |
and minor: "\<lbrakk>P; Q\<rbrakk> \<Longrightarrow> R" "\<lbrakk>\<not> P; \<not> Q\<rbrakk> \<Longrightarrow> R" |
|
587 |
shows R |
|
15411 | 588 |
apply (rule major [THEN iffE]) |
17589 | 589 |
apply (iprover intro: minor elim: impCE notE) |
15411 | 590 |
done |
591 |
||
592 |
lemma exCI: |
|
60759 | 593 |
assumes "\<forall>x. \<not> P x \<Longrightarrow> P a" |
594 |
shows "\<exists>x. P x" |
|
15411 | 595 |
apply (rule ccontr) |
23553 | 596 |
apply (iprover intro: assms exI allI notI notE [of "\<exists>x. P x"]) |
15411 | 597 |
done |
598 |
||
599 |
||
60758 | 600 |
subsubsection \<open>Intuitionistic Reasoning\<close> |
12386 | 601 |
|
602 |
lemma impE': |
|
60759 | 603 |
assumes 1: "P \<longrightarrow> Q" |
604 |
and 2: "Q \<Longrightarrow> R" |
|
605 |
and 3: "P \<longrightarrow> Q \<Longrightarrow> P" |
|
12937
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents:
12892
diff
changeset
|
606 |
shows R |
12386 | 607 |
proof - |
608 |
from 3 and 1 have P . |
|
609 |
with 1 have Q by (rule impE) |
|
610 |
with 2 show R . |
|
611 |
qed |
|
612 |
||
613 |
lemma allE': |
|
60759 | 614 |
assumes 1: "\<forall>x. P x" |
615 |
and 2: "P x \<Longrightarrow> \<forall>x. P x \<Longrightarrow> Q" |
|
12937
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents:
12892
diff
changeset
|
616 |
shows Q |
12386 | 617 |
proof - |
618 |
from 1 have "P x" by (rule spec) |
|
619 |
from this and 1 show Q by (rule 2) |
|
620 |
qed |
|
621 |
||
12937
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents:
12892
diff
changeset
|
622 |
lemma notE': |
60759 | 623 |
assumes 1: "\<not> P" |
624 |
and 2: "\<not> P \<Longrightarrow> P" |
|
12937
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents:
12892
diff
changeset
|
625 |
shows R |
12386 | 626 |
proof - |
627 |
from 2 and 1 have P . |
|
628 |
with 1 show R by (rule notE) |
|
629 |
qed |
|
630 |
||
60759 | 631 |
lemma TrueE: "True \<Longrightarrow> P \<Longrightarrow> P" . |
632 |
lemma notFalseE: "\<not> False \<Longrightarrow> P \<Longrightarrow> P" . |
|
22444
fb80fedd192d
added safe intro rules for removing "True" subgoals as well as "~ False" ones.
dixon
parents:
22377
diff
changeset
|
633 |
|
22467
c9357ef01168
TrueElim and notTrueElim tested and added as safe elim rules.
dixon
parents:
22445
diff
changeset
|
634 |
lemmas [Pure.elim!] = disjE iffE FalseE conjE exE TrueE notFalseE |
15801 | 635 |
and [Pure.intro!] = iffI conjI impI TrueI notI allI refl |
636 |
and [Pure.elim 2] = allE notE' impE' |
|
637 |
and [Pure.intro] = exI disjI2 disjI1 |
|
12386 | 638 |
|
639 |
lemmas [trans] = trans |
|
640 |
and [sym] = sym not_sym |
|
15801 | 641 |
and [Pure.elim?] = iffD1 iffD2 impE |
11750 | 642 |
|
11438
3d9222b80989
declare trans [trans] (*overridden in theory Calculation*);
wenzelm
parents:
11432
diff
changeset
|
643 |
|
60758 | 644 |
subsubsection \<open>Atomizing meta-level connectives\<close> |
11750 | 645 |
|
28513 | 646 |
axiomatization where |
647 |
eq_reflection: "x = y \<Longrightarrow> x \<equiv> y" (*admissible axiom*) |
|
648 |
||
60759 | 649 |
lemma atomize_all [atomize]: "(\<And>x. P x) \<equiv> Trueprop (\<forall>x. P x)" |
12003 | 650 |
proof |
60759 | 651 |
assume "\<And>x. P x" |
652 |
then show "\<forall>x. P x" .. |
|
9488 | 653 |
next |
60759 | 654 |
assume "\<forall>x. P x" |
655 |
then show "\<And>x. P x" by (rule allE) |
|
9488 | 656 |
qed |
657 |
||
60759 | 658 |
lemma atomize_imp [atomize]: "(A \<Longrightarrow> B) \<equiv> Trueprop (A \<longrightarrow> B)" |
12003 | 659 |
proof |
60759 | 660 |
assume r: "A \<Longrightarrow> B" |
661 |
show "A \<longrightarrow> B" by (rule impI) (rule r) |
|
9488 | 662 |
next |
60759 | 663 |
assume "A \<longrightarrow> B" and A |
23553 | 664 |
then show B by (rule mp) |
9488 | 665 |
qed |
666 |
||
60759 | 667 |
lemma atomize_not: "(A \<Longrightarrow> False) \<equiv> Trueprop (\<not> A)" |
14749 | 668 |
proof |
60759 | 669 |
assume r: "A \<Longrightarrow> False" |
670 |
show "\<not> A" by (rule notI) (rule r) |
|
14749 | 671 |
next |
60759 | 672 |
assume "\<not> A" and A |
23553 | 673 |
then show False by (rule notE) |
14749 | 674 |
qed |
675 |
||
60759 | 676 |
lemma atomize_eq [atomize, code]: "(x \<equiv> y) \<equiv> Trueprop (x = y)" |
12003 | 677 |
proof |
60759 | 678 |
assume "x \<equiv> y" |
679 |
show "x = y" by (unfold \<open>x \<equiv> y\<close>) (rule refl) |
|
10432
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
wenzelm
parents:
10383
diff
changeset
|
680 |
next |
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
wenzelm
parents:
10383
diff
changeset
|
681 |
assume "x = y" |
60759 | 682 |
then show "x \<equiv> y" by (rule eq_reflection) |
10432
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
wenzelm
parents:
10383
diff
changeset
|
683 |
qed |
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
wenzelm
parents:
10383
diff
changeset
|
684 |
|
60759 | 685 |
lemma atomize_conj [atomize]: "(A &&& B) \<equiv> Trueprop (A \<and> B)" |
12003 | 686 |
proof |
28856
5e009a80fe6d
Pure syntax: more coherent treatment of aprop, permanent TERM and &&&;
wenzelm
parents:
28741
diff
changeset
|
687 |
assume conj: "A &&& B" |
60759 | 688 |
show "A \<and> B" |
19121 | 689 |
proof (rule conjI) |
690 |
from conj show A by (rule conjunctionD1) |
|
691 |
from conj show B by (rule conjunctionD2) |
|
692 |
qed |
|
11953 | 693 |
next |
60759 | 694 |
assume conj: "A \<and> B" |
28856
5e009a80fe6d
Pure syntax: more coherent treatment of aprop, permanent TERM and &&&;
wenzelm
parents:
28741
diff
changeset
|
695 |
show "A &&& B" |
19121 | 696 |
proof - |
697 |
from conj show A .. |
|
698 |
from conj show B .. |
|
11953 | 699 |
qed |
700 |
qed |
|
701 |
||
12386 | 702 |
lemmas [symmetric, rulify] = atomize_all atomize_imp |
18832 | 703 |
and [symmetric, defn] = atomize_all atomize_imp atomize_eq |
12386 | 704 |
|
11750 | 705 |
|
60758 | 706 |
subsubsection \<open>Atomizing elimination rules\<close> |
26580
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
krauss
parents:
26555
diff
changeset
|
707 |
|
60759 | 708 |
lemma atomize_exL[atomize_elim]: "(\<And>x. P x \<Longrightarrow> Q) \<equiv> ((\<exists>x. P x) \<Longrightarrow> Q)" |
26580
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
krauss
parents:
26555
diff
changeset
|
709 |
by rule iprover+ |
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
krauss
parents:
26555
diff
changeset
|
710 |
|
60759 | 711 |
lemma atomize_conjL[atomize_elim]: "(A \<Longrightarrow> B \<Longrightarrow> C) \<equiv> (A \<and> B \<Longrightarrow> C)" |
26580
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
krauss
parents:
26555
diff
changeset
|
712 |
by rule iprover+ |
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
krauss
parents:
26555
diff
changeset
|
713 |
|
60759 | 714 |
lemma atomize_disjL[atomize_elim]: "((A \<Longrightarrow> C) \<Longrightarrow> (B \<Longrightarrow> C) \<Longrightarrow> C) \<equiv> ((A \<or> B \<Longrightarrow> C) \<Longrightarrow> C)" |
26580
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
krauss
parents:
26555
diff
changeset
|
715 |
by rule iprover+ |
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
krauss
parents:
26555
diff
changeset
|
716 |
|
60759 | 717 |
lemma atomize_elimL[atomize_elim]: "(\<And>B. (A \<Longrightarrow> B) \<Longrightarrow> B) \<equiv> Trueprop A" .. |
26580
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
krauss
parents:
26555
diff
changeset
|
718 |
|
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
krauss
parents:
26555
diff
changeset
|
719 |
|
60758 | 720 |
subsection \<open>Package setup\<close> |
20944 | 721 |
|
51314
eac4bb5adbf9
just one HOLogic.Trueprop_conv, with regular exception CTERM;
wenzelm
parents:
51304
diff
changeset
|
722 |
ML_file "Tools/hologic.ML" |
eac4bb5adbf9
just one HOLogic.Trueprop_conv, with regular exception CTERM;
wenzelm
parents:
51304
diff
changeset
|
723 |
|
eac4bb5adbf9
just one HOLogic.Trueprop_conv, with regular exception CTERM;
wenzelm
parents:
51304
diff
changeset
|
724 |
|
60758 | 725 |
subsubsection \<open>Sledgehammer setup\<close> |
35828
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents:
35808
diff
changeset
|
726 |
|
60758 | 727 |
text \<open> |
35828
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents:
35808
diff
changeset
|
728 |
Theorems blacklisted to Sledgehammer. These theorems typically produce clauses |
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents:
35808
diff
changeset
|
729 |
that are prolific (match too many equality or membership literals) and relate to |
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents:
35808
diff
changeset
|
730 |
seldom-used facts. Some duplicate other rules. |
60758 | 731 |
\<close> |
35828
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents:
35808
diff
changeset
|
732 |
|
57963 | 733 |
named_theorems no_atp "theorems that should be filtered out by Sledgehammer" |
35828
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents:
35808
diff
changeset
|
734 |
|
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents:
35808
diff
changeset
|
735 |
|
60758 | 736 |
subsubsection \<open>Classical Reasoner setup\<close> |
9529 | 737 |
|
60759 | 738 |
lemma imp_elim: "P \<longrightarrow> Q \<Longrightarrow> (\<not> R \<Longrightarrow> P) \<Longrightarrow> (Q \<Longrightarrow> R) \<Longrightarrow> R" |
26411 | 739 |
by (rule classical) iprover |
740 |
||
60759 | 741 |
lemma swap: "\<not> P \<Longrightarrow> (\<not> R \<Longrightarrow> P) \<Longrightarrow> R" |
26411 | 742 |
by (rule classical) iprover |
743 |
||
60759 | 744 |
lemma thin_refl: "\<And>X. \<lbrakk>x = x; PROP W\<rbrakk> \<Longrightarrow> PROP W" . |
20944 | 745 |
|
60758 | 746 |
ML \<open> |
42799 | 747 |
structure Hypsubst = Hypsubst |
748 |
( |
|
21218 | 749 |
val dest_eq = HOLogic.dest_eq |
21151 | 750 |
val dest_Trueprop = HOLogic.dest_Trueprop |
751 |
val dest_imp = HOLogic.dest_imp |
|
26411 | 752 |
val eq_reflection = @{thm eq_reflection} |
753 |
val rev_eq_reflection = @{thm meta_eq_to_obj_eq} |
|
754 |
val imp_intr = @{thm impI} |
|
755 |
val rev_mp = @{thm rev_mp} |
|
756 |
val subst = @{thm subst} |
|
757 |
val sym = @{thm sym} |
|
22129 | 758 |
val thin_refl = @{thm thin_refl}; |
42799 | 759 |
); |
21671 | 760 |
open Hypsubst; |
21151 | 761 |
|
42799 | 762 |
structure Classical = Classical |
763 |
( |
|
26411 | 764 |
val imp_elim = @{thm imp_elim} |
765 |
val not_elim = @{thm notE} |
|
766 |
val swap = @{thm swap} |
|
767 |
val classical = @{thm classical} |
|
21151 | 768 |
val sizef = Drule.size_of_thm |
769 |
val hyp_subst_tacs = [Hypsubst.hyp_subst_tac] |
|
42799 | 770 |
); |
21151 | 771 |
|
58826 | 772 |
structure Basic_Classical: BASIC_CLASSICAL = Classical; |
33308
cf62d1690d04
separate ResBlacklist, based on scalable persistent data -- avoids inefficient hashing later on;
wenzelm
parents:
33185
diff
changeset
|
773 |
open Basic_Classical; |
60758 | 774 |
\<close> |
22129 | 775 |
|
60758 | 776 |
setup \<open> |
35389 | 777 |
(*prevent substitution on bool*) |
58826 | 778 |
let |
779 |
fun non_bool_eq (@{const_name HOL.eq}, Type (_, [T, _])) = T <> @{typ bool} |
|
780 |
| non_bool_eq _ = false; |
|
781 |
fun hyp_subst_tac' ctxt = |
|
782 |
SUBGOAL (fn (goal, i) => |
|
783 |
if Term.exists_Const non_bool_eq goal |
|
784 |
then Hypsubst.hyp_subst_tac ctxt i |
|
785 |
else no_tac); |
|
786 |
in |
|
787 |
Context_Rules.addSWrapper (fn ctxt => fn tac => hyp_subst_tac' ctxt ORELSE' tac) |
|
788 |
end |
|
60758 | 789 |
\<close> |
21009 | 790 |
|
791 |
declare iffI [intro!] |
|
792 |
and notI [intro!] |
|
793 |
and impI [intro!] |
|
794 |
and disjCI [intro!] |
|
795 |
and conjI [intro!] |
|
796 |
and TrueI [intro!] |
|
797 |
and refl [intro!] |
|
798 |
||
799 |
declare iffCE [elim!] |
|
800 |
and FalseE [elim!] |
|
801 |
and impCE [elim!] |
|
802 |
and disjE [elim!] |
|
803 |
and conjE [elim!] |
|
804 |
||
805 |
declare ex_ex1I [intro!] |
|
806 |
and allI [intro!] |
|
807 |
and exI [intro] |
|
808 |
||
809 |
declare exE [elim!] |
|
810 |
allE [elim] |
|
811 |
||
60758 | 812 |
ML \<open>val HOL_cs = claset_of @{context}\<close> |
19162 | 813 |
|
60759 | 814 |
lemma contrapos_np: "\<not> Q \<Longrightarrow> (\<not> P \<Longrightarrow> Q) \<Longrightarrow> P" |
20223 | 815 |
apply (erule swap) |
816 |
apply (erule (1) meta_mp) |
|
817 |
done |
|
10383 | 818 |
|
18689
a50587cd8414
prefer ex1I over ex_ex1I in single-step reasoning;
wenzelm
parents:
18595
diff
changeset
|
819 |
declare ex_ex1I [rule del, intro! 2] |
a50587cd8414
prefer ex1I over ex_ex1I in single-step reasoning;
wenzelm
parents:
18595
diff
changeset
|
820 |
and ex1I [intro] |
a50587cd8414
prefer ex1I over ex_ex1I in single-step reasoning;
wenzelm
parents:
18595
diff
changeset
|
821 |
|
41865
4e8483cc2cc5
declare ext [intro]: Extensionality now available by default
paulson
parents:
41827
diff
changeset
|
822 |
declare ext [intro] |
4e8483cc2cc5
declare ext [intro]: Extensionality now available by default
paulson
parents:
41827
diff
changeset
|
823 |
|
12386 | 824 |
lemmas [intro?] = ext |
825 |
and [elim?] = ex1_implies_ex |
|
11977 | 826 |
|
20944 | 827 |
(*Better then ex1E for classical reasoner: needs no quantifier duplication!*) |
20973 | 828 |
lemma alt_ex1E [elim!]: |
20944 | 829 |
assumes major: "\<exists>!x. P x" |
830 |
and prem: "\<And>x. \<lbrakk> P x; \<forall>y y'. P y \<and> P y' \<longrightarrow> y = y' \<rbrakk> \<Longrightarrow> R" |
|
831 |
shows R |
|
832 |
apply (rule ex1E [OF major]) |
|
833 |
apply (rule prem) |
|
59499 | 834 |
apply assumption |
835 |
apply (rule allI)+ |
|
60758 | 836 |
apply (tactic \<open>eresolve_tac @{context} [Classical.dup_elim @{context} @{thm allE}] 1\<close>) |
22129 | 837 |
apply iprover |
838 |
done |
|
20944 | 839 |
|
60758 | 840 |
ML \<open> |
42477 | 841 |
structure Blast = Blast |
842 |
( |
|
843 |
structure Classical = Classical |
|
42802 | 844 |
val Trueprop_const = dest_Const @{const Trueprop} |
42477 | 845 |
val equality_name = @{const_name HOL.eq} |
846 |
val not_name = @{const_name Not} |
|
847 |
val notE = @{thm notE} |
|
848 |
val ccontr = @{thm ccontr} |
|
849 |
val hyp_subst_tac = Hypsubst.blast_hyp_subst_tac |
|
850 |
); |
|
851 |
val blast_tac = Blast.blast_tac; |
|
60758 | 852 |
\<close> |
20944 | 853 |
|
854 |
||
60758 | 855 |
subsubsection \<open>THE: definite description operator\<close> |
59504
8c6747dba731
New lemmas and a bit of tidying up.
paulson <lp15@cam.ac.uk>
parents:
59028
diff
changeset
|
856 |
|
8c6747dba731
New lemmas and a bit of tidying up.
paulson <lp15@cam.ac.uk>
parents:
59028
diff
changeset
|
857 |
lemma the_equality [intro]: |
8c6747dba731
New lemmas and a bit of tidying up.
paulson <lp15@cam.ac.uk>
parents:
59028
diff
changeset
|
858 |
assumes "P a" |
60759 | 859 |
and "\<And>x. P x \<Longrightarrow> x = a" |
59504
8c6747dba731
New lemmas and a bit of tidying up.
paulson <lp15@cam.ac.uk>
parents:
59028
diff
changeset
|
860 |
shows "(THE x. P x) = a" |
8c6747dba731
New lemmas and a bit of tidying up.
paulson <lp15@cam.ac.uk>
parents:
59028
diff
changeset
|
861 |
by (blast intro: assms trans [OF arg_cong [where f=The] the_eq_trivial]) |
8c6747dba731
New lemmas and a bit of tidying up.
paulson <lp15@cam.ac.uk>
parents:
59028
diff
changeset
|
862 |
|
8c6747dba731
New lemmas and a bit of tidying up.
paulson <lp15@cam.ac.uk>
parents:
59028
diff
changeset
|
863 |
lemma theI: |
60759 | 864 |
assumes "P a" and "\<And>x. P x \<Longrightarrow> x = a" |
59504
8c6747dba731
New lemmas and a bit of tidying up.
paulson <lp15@cam.ac.uk>
parents:
59028
diff
changeset
|
865 |
shows "P (THE x. P x)" |
8c6747dba731
New lemmas and a bit of tidying up.
paulson <lp15@cam.ac.uk>
parents:
59028
diff
changeset
|
866 |
by (iprover intro: assms the_equality [THEN ssubst]) |
8c6747dba731
New lemmas and a bit of tidying up.
paulson <lp15@cam.ac.uk>
parents:
59028
diff
changeset
|
867 |
|
60759 | 868 |
lemma theI': "\<exists>!x. P x \<Longrightarrow> P (THE x. P x)" |
59504
8c6747dba731
New lemmas and a bit of tidying up.
paulson <lp15@cam.ac.uk>
parents:
59028
diff
changeset
|
869 |
by (blast intro: theI) |
8c6747dba731
New lemmas and a bit of tidying up.
paulson <lp15@cam.ac.uk>
parents:
59028
diff
changeset
|
870 |
|
8c6747dba731
New lemmas and a bit of tidying up.
paulson <lp15@cam.ac.uk>
parents:
59028
diff
changeset
|
871 |
(*Easier to apply than theI: only one occurrence of P*) |
8c6747dba731
New lemmas and a bit of tidying up.
paulson <lp15@cam.ac.uk>
parents:
59028
diff
changeset
|
872 |
lemma theI2: |
60759 | 873 |
assumes "P a" "\<And>x. P x \<Longrightarrow> x = a" "\<And>x. P x \<Longrightarrow> Q x" |
59504
8c6747dba731
New lemmas and a bit of tidying up.
paulson <lp15@cam.ac.uk>
parents:
59028
diff
changeset
|
874 |
shows "Q (THE x. P x)" |
8c6747dba731
New lemmas and a bit of tidying up.
paulson <lp15@cam.ac.uk>
parents:
59028
diff
changeset
|
875 |
by (iprover intro: assms theI) |
8c6747dba731
New lemmas and a bit of tidying up.
paulson <lp15@cam.ac.uk>
parents:
59028
diff
changeset
|
876 |
|
60759 | 877 |
lemma the1I2: assumes "\<exists>!x. P x" "\<And>x. P x \<Longrightarrow> Q x" shows "Q (THE x. P x)" |
59504
8c6747dba731
New lemmas and a bit of tidying up.
paulson <lp15@cam.ac.uk>
parents:
59028
diff
changeset
|
878 |
by(iprover intro:assms(2) theI2[where P=P and Q=Q] ex1E[OF assms(1)] |
8c6747dba731
New lemmas and a bit of tidying up.
paulson <lp15@cam.ac.uk>
parents:
59028
diff
changeset
|
879 |
elim:allE impE) |
8c6747dba731
New lemmas and a bit of tidying up.
paulson <lp15@cam.ac.uk>
parents:
59028
diff
changeset
|
880 |
|
60759 | 881 |
lemma the1_equality [elim?]: "\<lbrakk>\<exists>!x. P x; P a\<rbrakk> \<Longrightarrow> (THE x. P x) = a" |
59504
8c6747dba731
New lemmas and a bit of tidying up.
paulson <lp15@cam.ac.uk>
parents:
59028
diff
changeset
|
882 |
by blast |
8c6747dba731
New lemmas and a bit of tidying up.
paulson <lp15@cam.ac.uk>
parents:
59028
diff
changeset
|
883 |
|
60759 | 884 |
lemma the_sym_eq_trivial: "(THE y. x = y) = x" |
59504
8c6747dba731
New lemmas and a bit of tidying up.
paulson <lp15@cam.ac.uk>
parents:
59028
diff
changeset
|
885 |
by blast |
8c6747dba731
New lemmas and a bit of tidying up.
paulson <lp15@cam.ac.uk>
parents:
59028
diff
changeset
|
886 |
|
8c6747dba731
New lemmas and a bit of tidying up.
paulson <lp15@cam.ac.uk>
parents:
59028
diff
changeset
|
887 |
|
60758 | 888 |
subsubsection \<open>Simplifier\<close> |
12281 | 889 |
|
60759 | 890 |
lemma eta_contract_eq: "(\<lambda>s. f s) = f" .. |
12281 | 891 |
|
892 |
lemma simp_thms: |
|
60759 | 893 |
shows not_not: "(\<not> \<not> P) = P" |
894 |
and Not_eq_iff: "((\<not> P) = (\<not> Q)) = (P = Q)" |
|
12937
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents:
12892
diff
changeset
|
895 |
and |
60759 | 896 |
"(P \<noteq> Q) = (P = (\<not> Q))" |
897 |
"(P \<or> \<not>P) = True" "(\<not> P \<or> P) = True" |
|
12281 | 898 |
"(x = x) = True" |
32068 | 899 |
and not_True_eq_False [code]: "(\<not> True) = False" |
900 |
and not_False_eq_True [code]: "(\<not> False) = True" |
|
20944 | 901 |
and |
60759 | 902 |
"(\<not> P) \<noteq> P" "P \<noteq> (\<not> P)" |
903 |
"(True = P) = P" |
|
20944 | 904 |
and eq_True: "(P = True) = P" |
60759 | 905 |
and "(False = P) = (\<not> P)" |
20944 | 906 |
and eq_False: "(P = False) = (\<not> P)" |
907 |
and |
|
60759 | 908 |
"(True \<longrightarrow> P) = P" "(False \<longrightarrow> P) = True" |
909 |
"(P \<longrightarrow> True) = True" "(P \<longrightarrow> P) = True" |
|
910 |
"(P \<longrightarrow> False) = (\<not> P)" "(P \<longrightarrow> \<not> P) = (\<not> P)" |
|
911 |
"(P \<and> True) = P" "(True \<and> P) = P" |
|
912 |
"(P \<and> False) = False" "(False \<and> P) = False" |
|
913 |
"(P \<and> P) = P" "(P \<and> (P \<and> Q)) = (P \<and> Q)" |
|
914 |
"(P \<and> \<not> P) = False" "(\<not> P \<and> P) = False" |
|
915 |
"(P \<or> True) = True" "(True \<or> P) = True" |
|
916 |
"(P \<or> False) = P" "(False \<or> P) = P" |
|
917 |
"(P \<or> P) = P" "(P \<or> (P \<or> Q)) = (P \<or> Q)" and |
|
918 |
"(\<forall>x. P) = P" "(\<exists>x. P) = P" "\<exists>x. x = t" "\<exists>x. t = x" |
|
31166
a90fe83f58ea
"{x. P x & x=t & Q x}" is now rewritten to "if P t & Q t then {t} else {}"
nipkow
parents:
31156
diff
changeset
|
919 |
and |
60759 | 920 |
"\<And>P. (\<exists>x. x = t \<and> P x) = P t" |
921 |
"\<And>P. (\<exists>x. t = x \<and> P x) = P t" |
|
922 |
"\<And>P. (\<forall>x. x = t \<longrightarrow> P x) = P t" |
|
923 |
"\<And>P. (\<forall>x. t = x \<longrightarrow> P x) = P t" |
|
17589 | 924 |
by (blast, blast, blast, blast, blast, iprover+) |
13421 | 925 |
|
60759 | 926 |
lemma disj_absorb: "(A \<or> A) = A" |
14201 | 927 |
by blast |
928 |
||
60759 | 929 |
lemma disj_left_absorb: "(A \<or> (A \<or> B)) = (A \<or> B)" |
14201 | 930 |
by blast |
931 |
||
60759 | 932 |
lemma conj_absorb: "(A \<and> A) = A" |
14201 | 933 |
by blast |
934 |
||
60759 | 935 |
lemma conj_left_absorb: "(A \<and> (A \<and> B)) = (A \<and> B)" |
14201 | 936 |
by blast |
937 |
||
12281 | 938 |
lemma eq_ac: |
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
56941
diff
changeset
|
939 |
shows eq_commute: "a = b \<longleftrightarrow> b = a" |
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
56941
diff
changeset
|
940 |
and iff_left_commute: "(P \<longleftrightarrow> (Q \<longleftrightarrow> R)) \<longleftrightarrow> (Q \<longleftrightarrow> (P \<longleftrightarrow> R))" |
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
56941
diff
changeset
|
941 |
and iff_assoc: "((P \<longleftrightarrow> Q) \<longleftrightarrow> R) \<longleftrightarrow> (P \<longleftrightarrow> (Q \<longleftrightarrow> R))" by (iprover, blast+) |
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
56941
diff
changeset
|
942 |
lemma neq_commute: "a \<noteq> b \<longleftrightarrow> b \<noteq> a" by iprover |
12281 | 943 |
|
944 |
lemma conj_comms: |
|
60759 | 945 |
shows conj_commute: "(P \<and> Q) = (Q \<and> P)" |
946 |
and conj_left_commute: "(P \<and> (Q \<and> R)) = (Q \<and> (P \<and> R))" by iprover+ |
|
947 |
lemma conj_assoc: "((P \<and> Q) \<and> R) = (P \<and> (Q \<and> R))" by iprover |
|
12281 | 948 |
|
19174 | 949 |
lemmas conj_ac = conj_commute conj_left_commute conj_assoc |
950 |
||
12281 | 951 |
lemma disj_comms: |
60759 | 952 |
shows disj_commute: "(P \<or> Q) = (Q \<or> P)" |
953 |
and disj_left_commute: "(P \<or> (Q \<or> R)) = (Q \<or> (P \<or> R))" by iprover+ |
|
954 |
lemma disj_assoc: "((P \<or> Q) \<or> R) = (P \<or> (Q \<or> R))" by iprover |
|
12281 | 955 |
|
19174 | 956 |
lemmas disj_ac = disj_commute disj_left_commute disj_assoc |
957 |
||
60759 | 958 |
lemma conj_disj_distribL: "(P \<and> (Q \<or> R)) = (P \<and> Q \<or> P \<and> R)" by iprover |
959 |
lemma conj_disj_distribR: "((P \<or> Q) \<and> R) = (P \<and> R \<or> Q \<and> R)" by iprover |
|
12281 | 960 |
|
60759 | 961 |
lemma disj_conj_distribL: "(P \<or> (Q \<and> R)) = ((P \<or> Q) \<and> (P \<or> R))" by iprover |
962 |
lemma disj_conj_distribR: "((P \<and> Q) \<or> R) = ((P \<or> R) \<and> (Q \<or> R))" by iprover |
|
12281 | 963 |
|
60759 | 964 |
lemma imp_conjR: "(P \<longrightarrow> (Q \<and> R)) = ((P \<longrightarrow> Q) \<and> (P \<longrightarrow> R))" by iprover |
965 |
lemma imp_conjL: "((P \<and> Q) \<longrightarrow> R) = (P \<longrightarrow> (Q \<longrightarrow> R))" by iprover |
|
966 |
lemma imp_disjL: "((P \<or> Q) \<longrightarrow> R) = ((P \<longrightarrow> R) \<and> (Q \<longrightarrow> R))" by iprover |
|
12281 | 967 |
|
61799 | 968 |
text \<open>These two are specialized, but \<open>imp_disj_not1\<close> is useful in \<open>Auth/Yahalom\<close>.\<close> |
60759 | 969 |
lemma imp_disj_not1: "(P \<longrightarrow> Q \<or> R) = (\<not> Q \<longrightarrow> P \<longrightarrow> R)" by blast |
970 |
lemma imp_disj_not2: "(P \<longrightarrow> Q \<or> R) = (\<not> R \<longrightarrow> P \<longrightarrow> Q)" by blast |
|
12281 | 971 |
|
60759 | 972 |
lemma imp_disj1: "((P \<longrightarrow> Q) \<or> R) = (P \<longrightarrow> Q \<or> R)" by blast |
973 |
lemma imp_disj2: "(Q \<or> (P \<longrightarrow> R)) = (P \<longrightarrow> Q \<or> R)" by blast |
|
12281 | 974 |
|
60759 | 975 |
lemma imp_cong: "(P = P') \<Longrightarrow> (P' \<Longrightarrow> (Q = Q')) \<Longrightarrow> ((P \<longrightarrow> Q) = (P' \<longrightarrow> Q'))" |
21151 | 976 |
by iprover |
977 |
||
60759 | 978 |
lemma de_Morgan_disj: "(\<not> (P \<or> Q)) = (\<not> P \<and> \<not> Q)" by iprover |
979 |
lemma de_Morgan_conj: "(\<not> (P \<and> Q)) = (\<not> P \<or> \<not> Q)" by blast |
|
980 |
lemma not_imp: "(\<not> (P \<longrightarrow> Q)) = (P \<and> \<not> Q)" by blast |
|
981 |
lemma not_iff: "(P \<noteq> Q) = (P = (\<not> Q))" by blast |
|
982 |
lemma disj_not1: "(\<not> P \<or> Q) = (P \<longrightarrow> Q)" by blast |
|
61799 | 983 |
lemma disj_not2: "(P \<or> \<not> Q) = (Q \<longrightarrow> P)" \<comment> \<open>changes orientation :-(\<close> |
12281 | 984 |
by blast |
60759 | 985 |
lemma imp_conv_disj: "(P \<longrightarrow> Q) = ((\<not> P) \<or> Q)" by blast |
12281 | 986 |
|
60759 | 987 |
lemma iff_conv_conj_imp: "(P = Q) = ((P \<longrightarrow> Q) \<and> (Q \<longrightarrow> P))" by iprover |
12281 | 988 |
|
989 |
||
60759 | 990 |
lemma cases_simp: "((P \<longrightarrow> Q) \<and> (\<not> P \<longrightarrow> Q)) = Q" |
61799 | 991 |
\<comment> \<open>Avoids duplication of subgoals after \<open>split_if\<close>, when the true and false\<close> |
992 |
\<comment> \<open>cases boil down to the same thing.\<close> |
|
12281 | 993 |
by blast |
994 |
||
60759 | 995 |
lemma not_all: "(\<not> (\<forall>x. P x)) = (\<exists>x. \<not> P x)" by blast |
996 |
lemma imp_all: "((\<forall>x. P x) \<longrightarrow> Q) = (\<exists>x. P x \<longrightarrow> Q)" by blast |
|
997 |
lemma not_ex: "(\<not> (\<exists>x. P x)) = (\<forall>x. \<not> P x)" by iprover |
|
998 |
lemma imp_ex: "((\<exists>x. P x) \<longrightarrow> Q) = (\<forall>x. P x \<longrightarrow> Q)" by iprover |
|
999 |
lemma all_not_ex: "(\<forall>x. P x) = (\<not> (\<exists>x. \<not> P x ))" by blast |
|
12281 | 1000 |
|
35828
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents:
35808
diff
changeset
|
1001 |
declare All_def [no_atp] |
24286
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
paulson
parents:
24280
diff
changeset
|
1002 |
|
60759 | 1003 |
lemma ex_disj_distrib: "(\<exists>x. P x \<or> Q x) = ((\<exists>x. P x) \<or> (\<exists>x. Q x))" by iprover |
1004 |
lemma all_conj_distrib: "(\<forall>x. P x \<and> Q x) = ((\<forall>x. P x) \<and> (\<forall>x. Q x))" by iprover |
|
12281 | 1005 |
|
60758 | 1006 |
text \<open> |
61799 | 1007 |
\medskip The \<open>\<and>\<close> congruence rule: not included by default! |
60758 | 1008 |
May slow rewrite proofs down by as much as 50\%\<close> |
12281 | 1009 |
|
1010 |
lemma conj_cong: |
|
60759 | 1011 |
"(P = P') \<Longrightarrow> (P' \<Longrightarrow> (Q = Q')) \<Longrightarrow> ((P \<and> Q) = (P' \<and> Q'))" |
17589 | 1012 |
by iprover |
12281 | 1013 |
|
1014 |
lemma rev_conj_cong: |
|
60759 | 1015 |
"(Q = Q') \<Longrightarrow> (Q' \<Longrightarrow> (P = P')) \<Longrightarrow> ((P \<and> Q) = (P' \<and> Q'))" |
17589 | 1016 |
by iprover |
12281 | 1017 |
|
61799 | 1018 |
text \<open>The \<open>|\<close> congruence rule: not included by default!\<close> |
12281 | 1019 |
|
1020 |
lemma disj_cong: |
|
60759 | 1021 |
"(P = P') \<Longrightarrow> (\<not> P' \<Longrightarrow> (Q = Q')) \<Longrightarrow> ((P \<or> Q) = (P' \<or> Q'))" |
12281 | 1022 |
by blast |
1023 |
||
1024 |
||
60758 | 1025 |
text \<open>\medskip if-then-else rules\<close> |
12281 | 1026 |
|
32068 | 1027 |
lemma if_True [code]: "(if True then x else y) = x" |
38525 | 1028 |
by (unfold If_def) blast |
12281 | 1029 |
|
32068 | 1030 |
lemma if_False [code]: "(if False then x else y) = y" |
38525 | 1031 |
by (unfold If_def) blast |
12281 | 1032 |
|
60759 | 1033 |
lemma if_P: "P \<Longrightarrow> (if P then x else y) = x" |
38525 | 1034 |
by (unfold If_def) blast |
12281 | 1035 |
|
60759 | 1036 |
lemma if_not_P: "\<not> P \<Longrightarrow> (if P then x else y) = y" |
38525 | 1037 |
by (unfold If_def) blast |
12281 | 1038 |
|
60759 | 1039 |
lemma split_if: "P (if Q then x else y) = ((Q \<longrightarrow> P x) \<and> (\<not> Q \<longrightarrow> P y))" |
12281 | 1040 |
apply (rule case_split [of Q]) |
15481 | 1041 |
apply (simplesubst if_P) |
1042 |
prefer 3 apply (simplesubst if_not_P, blast+) |
|
12281 | 1043 |
done |
1044 |
||
60759 | 1045 |
lemma split_if_asm: "P (if Q then x else y) = (\<not> ((Q \<and> \<not> P x) \<or> (\<not> Q \<and> \<not> P y)))" |
15481 | 1046 |
by (simplesubst split_if, blast) |
12281 | 1047 |
|
35828
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents:
35808
diff
changeset
|
1048 |
lemmas if_splits [no_atp] = split_if split_if_asm |
12281 | 1049 |
|
1050 |
lemma if_cancel: "(if c then x else x) = x" |
|
15481 | 1051 |
by (simplesubst split_if, blast) |
12281 | 1052 |
|
1053 |
lemma if_eq_cancel: "(if x = y then y else x) = x" |
|
15481 | 1054 |
by (simplesubst split_if, blast) |
12281 | 1055 |
|
60759 | 1056 |
lemma if_bool_eq_conj: "(if P then Q else R) = ((P \<longrightarrow> Q) \<and> (\<not> P \<longrightarrow> R))" |
61799 | 1057 |
\<comment> \<open>This form is useful for expanding \<open>if\<close>s on the RIGHT of the \<open>\<Longrightarrow>\<close> symbol.\<close> |
12281 | 1058 |
by (rule split_if) |
1059 |
||
60759 | 1060 |
lemma if_bool_eq_disj: "(if P then Q else R) = ((P \<and> Q) \<or> (\<not> P \<and> R))" |
61799 | 1061 |
\<comment> \<open>And this form is useful for expanding \<open>if\<close>s on the LEFT.\<close> |
59504
8c6747dba731
New lemmas and a bit of tidying up.
paulson <lp15@cam.ac.uk>
parents:
59028
diff
changeset
|
1062 |
by (simplesubst split_if) blast |
12281 | 1063 |
|
60759 | 1064 |
lemma Eq_TrueI: "P \<Longrightarrow> P \<equiv> True" by (unfold atomize_eq) iprover |
1065 |
lemma Eq_FalseI: "\<not> P \<Longrightarrow> P \<equiv> False" by (unfold atomize_eq) iprover |
|
12281 | 1066 |
|
60758 | 1067 |
text \<open>\medskip let rules for simproc\<close> |
15423 | 1068 |
|
60759 | 1069 |
lemma Let_folded: "f x \<equiv> g x \<Longrightarrow> Let x f \<equiv> Let x g" |
15423 | 1070 |
by (unfold Let_def) |
1071 |
||
60759 | 1072 |
lemma Let_unfold: "f x \<equiv> g \<Longrightarrow> Let x f \<equiv> g" |
15423 | 1073 |
by (unfold Let_def) |
1074 |
||
60758 | 1075 |
text \<open> |
16999 | 1076 |
The following copy of the implication operator is useful for |
1077 |
fine-tuning congruence rules. It instructs the simplifier to simplify |
|
1078 |
its premise. |
|
60758 | 1079 |
\<close> |
16633
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1080 |
|
60759 | 1081 |
definition simp_implies :: "[prop, prop] \<Rightarrow> prop" (infixr "=simp=>" 1) where |
1082 |
"simp_implies \<equiv> op \<Longrightarrow>" |
|
16633
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1083 |
|
18457 | 1084 |
lemma simp_impliesI: |
16633
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1085 |
assumes PQ: "(PROP P \<Longrightarrow> PROP Q)" |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1086 |
shows "PROP P =simp=> PROP Q" |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1087 |
apply (unfold simp_implies_def) |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1088 |
apply (rule PQ) |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1089 |
apply assumption |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1090 |
done |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1091 |
|
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1092 |
lemma simp_impliesE: |
25388 | 1093 |
assumes PQ: "PROP P =simp=> PROP Q" |
16633
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1094 |
and P: "PROP P" |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1095 |
and QR: "PROP Q \<Longrightarrow> PROP R" |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1096 |
shows "PROP R" |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1097 |
apply (rule QR) |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1098 |
apply (rule PQ [unfolded simp_implies_def]) |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1099 |
apply (rule P) |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1100 |
done |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1101 |
|
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1102 |
lemma simp_implies_cong: |
60759 | 1103 |
assumes PP' :"PROP P \<equiv> PROP P'" |
1104 |
and P'QQ': "PROP P' \<Longrightarrow> (PROP Q \<equiv> PROP Q')" |
|
1105 |
shows "(PROP P =simp=> PROP Q) \<equiv> (PROP P' =simp=> PROP Q')" |
|
16633
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1106 |
proof (unfold simp_implies_def, rule equal_intr_rule) |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1107 |
assume PQ: "PROP P \<Longrightarrow> PROP Q" |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1108 |
and P': "PROP P'" |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1109 |
from PP' [symmetric] and P' have "PROP P" |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1110 |
by (rule equal_elim_rule1) |
23553 | 1111 |
then have "PROP Q" by (rule PQ) |
16633
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1112 |
with P'QQ' [OF P'] show "PROP Q'" by (rule equal_elim_rule1) |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1113 |
next |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1114 |
assume P'Q': "PROP P' \<Longrightarrow> PROP Q'" |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1115 |
and P: "PROP P" |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1116 |
from PP' and P have P': "PROP P'" by (rule equal_elim_rule1) |
23553 | 1117 |
then have "PROP Q'" by (rule P'Q') |
16633
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1118 |
with P'QQ' [OF P', symmetric] show "PROP Q" |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1119 |
by (rule equal_elim_rule1) |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1120 |
qed |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1121 |
|
20944 | 1122 |
lemma uncurry: |
1123 |
assumes "P \<longrightarrow> Q \<longrightarrow> R" |
|
1124 |
shows "P \<and> Q \<longrightarrow> R" |
|
23553 | 1125 |
using assms by blast |
20944 | 1126 |
|
1127 |
lemma iff_allI: |
|
1128 |
assumes "\<And>x. P x = Q x" |
|
1129 |
shows "(\<forall>x. P x) = (\<forall>x. Q x)" |
|
23553 | 1130 |
using assms by blast |
20944 | 1131 |
|
1132 |
lemma iff_exI: |
|
1133 |
assumes "\<And>x. P x = Q x" |
|
1134 |
shows "(\<exists>x. P x) = (\<exists>x. Q x)" |
|
23553 | 1135 |
using assms by blast |
20944 | 1136 |
|
1137 |
lemma all_comm: |
|
1138 |
"(\<forall>x y. P x y) = (\<forall>y x. P x y)" |
|
1139 |
by blast |
|
1140 |
||
1141 |
lemma ex_comm: |
|
1142 |
"(\<exists>x y. P x y) = (\<exists>y x. P x y)" |
|
1143 |
by blast |
|
1144 |
||
48891 | 1145 |
ML_file "Tools/simpdata.ML" |
60758 | 1146 |
ML \<open>open Simpdata\<close> |
42455 | 1147 |
|
60758 | 1148 |
setup \<open> |
58826 | 1149 |
map_theory_simpset (put_simpset HOL_basic_ss) #> |
1150 |
Simplifier.method_setup Splitter.split_modifiers |
|
60758 | 1151 |
\<close> |
42455 | 1152 |
|
60759 | 1153 |
simproc_setup defined_Ex ("\<exists>x. P x") = \<open>fn _ => Quantifier1.rearrange_ex\<close> |
1154 |
simproc_setup defined_All ("\<forall>x. P x") = \<open>fn _ => Quantifier1.rearrange_all\<close> |
|
21671 | 1155 |
|
61799 | 1156 |
text \<open>Simproc for proving \<open>(y = x) \<equiv> False\<close> from premise \<open>\<not> (x = y)\<close>:\<close> |
24035 | 1157 |
|
60758 | 1158 |
simproc_setup neq ("x = y") = \<open>fn _ => |
24035 | 1159 |
let |
1160 |
val neq_to_EQ_False = @{thm not_sym} RS @{thm Eq_FalseI}; |
|
1161 |
fun is_neq eq lhs rhs thm = |
|
1162 |
(case Thm.prop_of thm of |
|
1163 |
_ $ (Not $ (eq' $ l' $ r')) => |
|
1164 |
Not = HOLogic.Not andalso eq' = eq andalso |
|
1165 |
r' aconv lhs andalso l' aconv rhs |
|
1166 |
| _ => false); |
|
1167 |
fun proc ss ct = |
|
1168 |
(case Thm.term_of ct of |
|
1169 |
eq $ lhs $ rhs => |
|
43597 | 1170 |
(case find_first (is_neq eq lhs rhs) (Simplifier.prems_of ss) of |
24035 | 1171 |
SOME thm => SOME (thm RS neq_to_EQ_False) |
1172 |
| NONE => NONE) |
|
1173 |
| _ => NONE); |
|
1174 |
in proc end; |
|
60758 | 1175 |
\<close> |
24035 | 1176 |
|
60758 | 1177 |
simproc_setup let_simp ("Let x f") = \<open> |
24035 | 1178 |
let |
28741 | 1179 |
fun count_loose (Bound i) k = if i >= k then 1 else 0 |
1180 |
| count_loose (s $ t) k = count_loose s k + count_loose t k |
|
1181 |
| count_loose (Abs (_, _, t)) k = count_loose t (k + 1) |
|
1182 |
| count_loose _ _ = 0; |
|
1183 |
fun is_trivial_let (Const (@{const_name Let}, _) $ x $ t) = |
|
59628 | 1184 |
(case t of |
1185 |
Abs (_, _, t') => count_loose t' 0 <= 1 |
|
1186 |
| _ => true); |
|
1187 |
in |
|
1188 |
fn _ => fn ctxt => fn ct => |
|
1189 |
if is_trivial_let (Thm.term_of ct) |
|
1190 |
then SOME @{thm Let_def} (*no or one ocurrence of bound variable*) |
|
1191 |
else |
|
1192 |
let (*Norbert Schirmer's case*) |
|
1193 |
val t = Thm.term_of ct; |
|
1194 |
val ([t'], ctxt') = Variable.import_terms false [t] ctxt; |
|
1195 |
in |
|
1196 |
Option.map (hd o Variable.export ctxt' ctxt o single) |
|
1197 |
(case t' of Const (@{const_name Let},_) $ x $ f => (* x and f are already in normal form *) |
|
1198 |
if is_Free x orelse is_Bound x orelse is_Const x |
|
1199 |
then SOME @{thm Let_def} |
|
1200 |
else |
|
1201 |
let |
|
1202 |
val n = case f of (Abs (x, _, _)) => x | _ => "x"; |
|
1203 |
val cx = Thm.cterm_of ctxt x; |
|
1204 |
val xT = Thm.typ_of_cterm cx; |
|
1205 |
val cf = Thm.cterm_of ctxt f; |
|
1206 |
val fx_g = Simplifier.rewrite ctxt (Thm.apply cf cx); |
|
1207 |
val (_ $ _ $ g) = Thm.prop_of fx_g; |
|
1208 |
val g' = abstract_over (x, g); |
|
1209 |
val abs_g'= Abs (n, xT, g'); |
|
1210 |
in |
|
1211 |
if g aconv g' then |
|
1212 |
let |
|
1213 |
val rl = |
|
60781 | 1214 |
infer_instantiate ctxt [(("f", 0), cf), (("x", 0), cx)] @{thm Let_unfold}; |
59628 | 1215 |
in SOME (rl OF [fx_g]) end |
1216 |
else if (Envir.beta_eta_contract f) aconv (Envir.beta_eta_contract abs_g') |
|
1217 |
then NONE (*avoid identity conversion*) |
|
1218 |
else |
|
1219 |
let |
|
1220 |
val g'x = abs_g' $ x; |
|
1221 |
val g_g'x = Thm.symmetric (Thm.beta_conversion false (Thm.cterm_of ctxt g'x)); |
|
1222 |
val rl = |
|
60781 | 1223 |
@{thm Let_folded} |> infer_instantiate ctxt |
1224 |
[(("f", 0), Thm.cterm_of ctxt f), |
|
1225 |
(("x", 0), cx), |
|
1226 |
(("g", 0), Thm.cterm_of ctxt abs_g')]; |
|
59628 | 1227 |
in SOME (rl OF [Thm.transitive fx_g g_g'x]) end |
1228 |
end |
|
1229 |
| _ => NONE) |
|
1230 |
end |
|
60758 | 1231 |
end\<close> |
24035 | 1232 |
|
21151 | 1233 |
lemma True_implies_equals: "(True \<Longrightarrow> PROP P) \<equiv> PROP P" |
1234 |
proof |
|
23389 | 1235 |
assume "True \<Longrightarrow> PROP P" |
1236 |
from this [OF TrueI] show "PROP P" . |
|
21151 | 1237 |
next |
1238 |
assume "PROP P" |
|
23389 | 1239 |
then show "PROP P" . |
21151 | 1240 |
qed |
1241 |
||
59864 | 1242 |
lemma implies_True_equals: "(PROP P \<Longrightarrow> True) \<equiv> Trueprop True" |
61169 | 1243 |
by standard (intro TrueI) |
59864 | 1244 |
|
1245 |
lemma False_implies_equals: "(False \<Longrightarrow> P) \<equiv> Trueprop True" |
|
61169 | 1246 |
by standard simp_all |
59864 | 1247 |
|
60183
4cd4c204578c
undid 6d7b7a037e8d because it does not help but slows simplification down by up to 5% (AODV)
nipkow
parents:
60169
diff
changeset
|
1248 |
(* This is not made a simp rule because it does not improve any proofs |
4cd4c204578c
undid 6d7b7a037e8d because it does not help but slows simplification down by up to 5% (AODV)
nipkow
parents:
60169
diff
changeset
|
1249 |
but slows some AFP entries down by 5% (cpu time). May 2015 *) |
60169
5ef8ed685965
swap False to the right in assumptions to be eliminated at the right end
nipkow
parents:
60151
diff
changeset
|
1250 |
lemma implies_False_swap: "NO_MATCH (Trueprop False) P \<Longrightarrow> |
5ef8ed685965
swap False to the right in assumptions to be eliminated at the right end
nipkow
parents:
60151
diff
changeset
|
1251 |
(False \<Longrightarrow> PROP P \<Longrightarrow> PROP Q) \<equiv> (PROP P \<Longrightarrow> False \<Longrightarrow> PROP Q)" |
5ef8ed685965
swap False to the right in assumptions to be eliminated at the right end
nipkow
parents:
60151
diff
changeset
|
1252 |
by(rule swap_prems_eq) |
5ef8ed685965
swap False to the right in assumptions to be eliminated at the right end
nipkow
parents:
60151
diff
changeset
|
1253 |
|
21151 | 1254 |
lemma ex_simps: |
60759 | 1255 |
"\<And>P Q. (\<exists>x. P x \<and> Q) = ((\<exists>x. P x) \<and> Q)" |
1256 |
"\<And>P Q. (\<exists>x. P \<and> Q x) = (P \<and> (\<exists>x. Q x))" |
|
1257 |
"\<And>P Q. (\<exists>x. P x \<or> Q) = ((\<exists>x. P x) \<or> Q)" |
|
1258 |
"\<And>P Q. (\<exists>x. P \<or> Q x) = (P \<or> (\<exists>x. Q x))" |
|
1259 |
"\<And>P Q. (\<exists>x. P x \<longrightarrow> Q) = ((\<forall>x. P x) \<longrightarrow> Q)" |
|
1260 |
"\<And>P Q. (\<exists>x. P \<longrightarrow> Q x) = (P \<longrightarrow> (\<exists>x. Q x))" |
|
61799 | 1261 |
\<comment> \<open>Miniscoping: pushing in existential quantifiers.\<close> |
21151 | 1262 |
by (iprover | blast)+ |
1263 |
||
1264 |
lemma all_simps: |
|
60759 | 1265 |
"\<And>P Q. (\<forall>x. P x \<and> Q) = ((\<forall>x. P x) \<and> Q)" |
1266 |
"\<And>P Q. (\<forall>x. P \<and> Q x) = (P \<and> (\<forall>x. Q x))" |
|
1267 |
"\<And>P Q. (\<forall>x. P x \<or> Q) = ((\<forall>x. P x) \<or> Q)" |
|
1268 |
"\<And>P Q. (\<forall>x. P \<or> Q x) = (P \<or> (\<forall>x. Q x))" |
|
1269 |
"\<And>P Q. (\<forall>x. P x \<longrightarrow> Q) = ((\<exists>x. P x) \<longrightarrow> Q)" |
|
1270 |
"\<And>P Q. (\<forall>x. P \<longrightarrow> Q x) = (P \<longrightarrow> (\<forall>x. Q x))" |
|
61799 | 1271 |
\<comment> \<open>Miniscoping: pushing in universal quantifiers.\<close> |
21151 | 1272 |
by (iprover | blast)+ |
15481 | 1273 |
|
21671 | 1274 |
lemmas [simp] = |
1275 |
triv_forall_equality (*prunes params*) |
|
60143 | 1276 |
True_implies_equals implies_True_equals (*prune True in asms*) |
60183
4cd4c204578c
undid 6d7b7a037e8d because it does not help but slows simplification down by up to 5% (AODV)
nipkow
parents:
60169
diff
changeset
|
1277 |
False_implies_equals (*prune False in asms*) |
21671 | 1278 |
if_True |
1279 |
if_False |
|
1280 |
if_cancel |
|
1281 |
if_eq_cancel |
|
1282 |
imp_disjL |
|
20973 | 1283 |
(*In general it seems wrong to add distributive laws by default: they |
1284 |
might cause exponential blow-up. But imp_disjL has been in for a while |
|
1285 |
and cannot be removed without affecting existing proofs. Moreover, |
|
60759 | 1286 |
rewriting by "(P \<or> Q \<longrightarrow> R) = ((P \<longrightarrow> R) \<and> (Q \<longrightarrow> R))" might be justified on the |
20973 | 1287 |
grounds that it allows simplification of R in the two cases.*) |
21671 | 1288 |
conj_assoc |
1289 |
disj_assoc |
|
1290 |
de_Morgan_conj |
|
1291 |
de_Morgan_disj |
|
1292 |
imp_disj1 |
|
1293 |
imp_disj2 |
|
1294 |
not_imp |
|
1295 |
disj_not1 |
|
1296 |
not_all |
|
1297 |
not_ex |
|
1298 |
cases_simp |
|
1299 |
the_eq_trivial |
|
1300 |
the_sym_eq_trivial |
|
1301 |
ex_simps |
|
1302 |
all_simps |
|
1303 |
simp_thms |
|
1304 |
||
1305 |
lemmas [cong] = imp_cong simp_implies_cong |
|
1306 |
lemmas [split] = split_if |
|
20973 | 1307 |
|
60758 | 1308 |
ML \<open>val HOL_ss = simpset_of @{context}\<close> |
20973 | 1309 |
|
60761 | 1310 |
text \<open>Simplifies @{term x} assuming @{prop c} and @{term y} assuming @{prop "\<not> c"}\<close> |
20944 | 1311 |
lemma if_cong: |
1312 |
assumes "b = c" |
|
1313 |
and "c \<Longrightarrow> x = u" |
|
1314 |
and "\<not> c \<Longrightarrow> y = v" |
|
1315 |
shows "(if b then x else y) = (if c then u else v)" |
|
38525 | 1316 |
using assms by simp |
20944 | 1317 |
|
60758 | 1318 |
text \<open>Prevents simplification of x and y: |
1319 |
faster and allows the execution of functional programs.\<close> |
|
20944 | 1320 |
lemma if_weak_cong [cong]: |
1321 |
assumes "b = c" |
|
1322 |
shows "(if b then x else y) = (if c then x else y)" |
|
23553 | 1323 |
using assms by (rule arg_cong) |
20944 | 1324 |
|
60758 | 1325 |
text \<open>Prevents simplification of t: much faster\<close> |
20944 | 1326 |
lemma let_weak_cong: |
1327 |
assumes "a = b" |
|
1328 |
shows "(let x = a in t x) = (let x = b in t x)" |
|
23553 | 1329 |
using assms by (rule arg_cong) |
20944 | 1330 |
|
60758 | 1331 |
text \<open>To tidy up the result of a simproc. Only the RHS will be simplified.\<close> |
20944 | 1332 |
lemma eq_cong2: |
1333 |
assumes "u = u'" |
|
1334 |
shows "(t \<equiv> u) \<equiv> (t \<equiv> u')" |
|
23553 | 1335 |
using assms by simp |
20944 | 1336 |
|
1337 |
lemma if_distrib: |
|
1338 |
"f (if c then x else y) = (if c then f x else f y)" |
|
1339 |
by simp |
|
1340 |
||
60758 | 1341 |
text\<open>As a simplification rule, it replaces all function equalities by |
1342 |
first-order equalities.\<close> |
|
44277
bcb696533579
moved fundamental lemma fun_eq_iff to theory HOL; tuned whitespace
haftmann
parents:
44121
diff
changeset
|
1343 |
lemma fun_eq_iff: "f = g \<longleftrightarrow> (\<forall>x. f x = g x)" |
bcb696533579
moved fundamental lemma fun_eq_iff to theory HOL; tuned whitespace
haftmann
parents:
44121
diff
changeset
|
1344 |
by auto |
bcb696533579
moved fundamental lemma fun_eq_iff to theory HOL; tuned whitespace
haftmann
parents:
44121
diff
changeset
|
1345 |
|
17459 | 1346 |
|
60758 | 1347 |
subsubsection \<open>Generic cases and induction\<close> |
17459 | 1348 |
|
60758 | 1349 |
text \<open>Rule projections:\<close> |
1350 |
ML \<open> |
|
32172 | 1351 |
structure Project_Rule = Project_Rule |
25388 | 1352 |
( |
27126
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
wenzelm
parents:
27107
diff
changeset
|
1353 |
val conjunct1 = @{thm conjunct1} |
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
wenzelm
parents:
27107
diff
changeset
|
1354 |
val conjunct2 = @{thm conjunct2} |
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
wenzelm
parents:
27107
diff
changeset
|
1355 |
val mp = @{thm mp} |
59929 | 1356 |
); |
60758 | 1357 |
\<close> |
17459 | 1358 |
|
59940
087d81f5213e
local setup of induction tools, with restricted access to auxiliary consts;
wenzelm
parents:
59929
diff
changeset
|
1359 |
context |
087d81f5213e
local setup of induction tools, with restricted access to auxiliary consts;
wenzelm
parents:
59929
diff
changeset
|
1360 |
begin |
087d81f5213e
local setup of induction tools, with restricted access to auxiliary consts;
wenzelm
parents:
59929
diff
changeset
|
1361 |
|
59990
a81dc82ecba3
clarified keyword 'qualified' in accordance to a similar keyword from Haskell (despite unrelated Binding.qualified in Isabelle/ML);
wenzelm
parents:
59970
diff
changeset
|
1362 |
qualified definition "induct_forall P \<equiv> \<forall>x. P x" |
a81dc82ecba3
clarified keyword 'qualified' in accordance to a similar keyword from Haskell (despite unrelated Binding.qualified in Isabelle/ML);
wenzelm
parents:
59970
diff
changeset
|
1363 |
qualified definition "induct_implies A B \<equiv> A \<longrightarrow> B" |
a81dc82ecba3
clarified keyword 'qualified' in accordance to a similar keyword from Haskell (despite unrelated Binding.qualified in Isabelle/ML);
wenzelm
parents:
59970
diff
changeset
|
1364 |
qualified definition "induct_equal x y \<equiv> x = y" |
a81dc82ecba3
clarified keyword 'qualified' in accordance to a similar keyword from Haskell (despite unrelated Binding.qualified in Isabelle/ML);
wenzelm
parents:
59970
diff
changeset
|
1365 |
qualified definition "induct_conj A B \<equiv> A \<and> B" |
a81dc82ecba3
clarified keyword 'qualified' in accordance to a similar keyword from Haskell (despite unrelated Binding.qualified in Isabelle/ML);
wenzelm
parents:
59970
diff
changeset
|
1366 |
qualified definition "induct_true \<equiv> True" |
a81dc82ecba3
clarified keyword 'qualified' in accordance to a similar keyword from Haskell (despite unrelated Binding.qualified in Isabelle/ML);
wenzelm
parents:
59970
diff
changeset
|
1367 |
qualified definition "induct_false \<equiv> False" |
35416
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents:
35115
diff
changeset
|
1368 |
|
59929 | 1369 |
lemma induct_forall_eq: "(\<And>x. P x) \<equiv> Trueprop (induct_forall (\<lambda>x. P x))" |
18457 | 1370 |
by (unfold atomize_all induct_forall_def) |
11824
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
wenzelm
parents:
11770
diff
changeset
|
1371 |
|
59929 | 1372 |
lemma induct_implies_eq: "(A \<Longrightarrow> B) \<equiv> Trueprop (induct_implies A B)" |
18457 | 1373 |
by (unfold atomize_imp induct_implies_def) |
11824
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
wenzelm
parents:
11770
diff
changeset
|
1374 |
|
59929 | 1375 |
lemma induct_equal_eq: "(x \<equiv> y) \<equiv> Trueprop (induct_equal x y)" |
18457 | 1376 |
by (unfold atomize_eq induct_equal_def) |
1377 |
||
59929 | 1378 |
lemma induct_conj_eq: "(A &&& B) \<equiv> Trueprop (induct_conj A B)" |
18457 | 1379 |
by (unfold atomize_conj induct_conj_def) |
1380 |
||
34908
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
berghofe
parents:
34294
diff
changeset
|
1381 |
lemmas induct_atomize' = induct_forall_eq induct_implies_eq induct_conj_eq |
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
berghofe
parents:
34294
diff
changeset
|
1382 |
lemmas induct_atomize = induct_atomize' induct_equal_eq |
45607 | 1383 |
lemmas induct_rulify' [symmetric] = induct_atomize' |
1384 |
lemmas induct_rulify [symmetric] = induct_atomize |
|
18457 | 1385 |
lemmas induct_rulify_fallback = |
1386 |
induct_forall_def induct_implies_def induct_equal_def induct_conj_def |
|
34908
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
berghofe
parents:
34294
diff
changeset
|
1387 |
induct_true_def induct_false_def |
18457 | 1388 |
|
11989 | 1389 |
lemma induct_forall_conj: "induct_forall (\<lambda>x. induct_conj (A x) (B x)) = |
1390 |
induct_conj (induct_forall A) (induct_forall B)" |
|
17589 | 1391 |
by (unfold induct_forall_def induct_conj_def) iprover |
11824
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
wenzelm
parents:
11770
diff
changeset
|
1392 |
|
11989 | 1393 |
lemma induct_implies_conj: "induct_implies C (induct_conj A B) = |
1394 |
induct_conj (induct_implies C A) (induct_implies C B)" |
|
17589 | 1395 |
by (unfold induct_implies_def induct_conj_def) iprover |
11989 | 1396 |
|
59929 | 1397 |
lemma induct_conj_curry: "(induct_conj A B \<Longrightarrow> PROP C) \<equiv> (A \<Longrightarrow> B \<Longrightarrow> PROP C)" |
13598
8bc77b17f59f
Fixed problem with induct_conj_curry: variable C should have type prop.
berghofe
parents:
13596
diff
changeset
|
1398 |
proof |
59929 | 1399 |
assume r: "induct_conj A B \<Longrightarrow> PROP C" |
1400 |
assume ab: A B |
|
1401 |
show "PROP C" by (rule r) (simp add: induct_conj_def ab) |
|
13598
8bc77b17f59f
Fixed problem with induct_conj_curry: variable C should have type prop.
berghofe
parents:
13596
diff
changeset
|
1402 |
next |
59929 | 1403 |
assume r: "A \<Longrightarrow> B \<Longrightarrow> PROP C" |
1404 |
assume ab: "induct_conj A B" |
|
1405 |
show "PROP C" by (rule r) (simp_all add: ab [unfolded induct_conj_def]) |
|
13598
8bc77b17f59f
Fixed problem with induct_conj_curry: variable C should have type prop.
berghofe
parents:
13596
diff
changeset
|
1406 |
qed |
11824
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
wenzelm
parents:
11770
diff
changeset
|
1407 |
|
11989 | 1408 |
lemmas induct_conj = induct_forall_conj induct_implies_conj induct_conj_curry |
11824
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
wenzelm
parents:
11770
diff
changeset
|
1409 |
|
34908
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
berghofe
parents:
34294
diff
changeset
|
1410 |
lemma induct_trueI: "induct_true" |
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
berghofe
parents:
34294
diff
changeset
|
1411 |
by (simp add: induct_true_def) |
11824
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
wenzelm
parents:
11770
diff
changeset
|
1412 |
|
60758 | 1413 |
text \<open>Method setup.\<close> |
11824
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
wenzelm
parents:
11770
diff
changeset
|
1414 |
|
58826 | 1415 |
ML_file "~~/src/Tools/induct.ML" |
60758 | 1416 |
ML \<open> |
32171 | 1417 |
structure Induct = Induct |
27126
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
wenzelm
parents:
27107
diff
changeset
|
1418 |
( |
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
wenzelm
parents:
27107
diff
changeset
|
1419 |
val cases_default = @{thm case_split} |
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
wenzelm
parents:
27107
diff
changeset
|
1420 |
val atomize = @{thms induct_atomize} |
34908
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
berghofe
parents:
34294
diff
changeset
|
1421 |
val rulify = @{thms induct_rulify'} |
27126
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
wenzelm
parents:
27107
diff
changeset
|
1422 |
val rulify_fallback = @{thms induct_rulify_fallback} |
34988
cca208c8d619
Added setup for simplification of equality constraints in cases rules.
berghofe
parents:
34917
diff
changeset
|
1423 |
val equal_def = @{thm induct_equal_def} |
34908
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
berghofe
parents:
34294
diff
changeset
|
1424 |
fun dest_def (Const (@{const_name induct_equal}, _) $ t $ u) = SOME (t, u) |
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
berghofe
parents:
34294
diff
changeset
|
1425 |
| dest_def _ = NONE |
58957 | 1426 |
fun trivial_tac ctxt = match_tac ctxt @{thms induct_trueI} |
27126
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
wenzelm
parents:
27107
diff
changeset
|
1427 |
) |
60758 | 1428 |
\<close> |
11824
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
wenzelm
parents:
11770
diff
changeset
|
1429 |
|
48891 | 1430 |
ML_file "~~/src/Tools/induction.ML" |
45014
0e847655b2d8
New proof method "induction" that gives induction hypotheses the name IH.
nipkow
parents:
44921
diff
changeset
|
1431 |
|
60758 | 1432 |
declaration \<open> |
59940
087d81f5213e
local setup of induction tools, with restricted access to auxiliary consts;
wenzelm
parents:
59929
diff
changeset
|
1433 |
fn _ => Induct.map_simpset (fn ss => ss |
34908
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
berghofe
parents:
34294
diff
changeset
|
1434 |
addsimprocs |
61144 | 1435 |
[Simplifier.make_simproc @{context} "swap_induct_false" |
1436 |
{lhss = [@{term "induct_false \<Longrightarrow> PROP P \<Longrightarrow> PROP Q"}], |
|
1437 |
proc = fn _ => fn _ => fn ct => |
|
1438 |
(case Thm.term_of ct of |
|
1439 |
_ $ (P as _ $ @{const induct_false}) $ (_ $ Q $ _) => |
|
1440 |
if P <> Q then SOME Drule.swap_prems_eq else NONE |
|
1441 |
| _ => NONE), |
|
1442 |
identifier = []}, |
|
1443 |
Simplifier.make_simproc @{context} "induct_equal_conj_curry" |
|
1444 |
{lhss = [@{term "induct_conj P Q \<Longrightarrow> PROP R"}], |
|
1445 |
proc = fn _ => fn _ => fn ct => |
|
1446 |
(case Thm.term_of ct of |
|
1447 |
_ $ (_ $ P) $ _ => |
|
1448 |
let |
|
1449 |
fun is_conj (@{const induct_conj} $ P $ Q) = |
|
1450 |
is_conj P andalso is_conj Q |
|
1451 |
| is_conj (Const (@{const_name induct_equal}, _) $ _ $ _) = true |
|
1452 |
| is_conj @{const induct_true} = true |
|
1453 |
| is_conj @{const induct_false} = true |
|
1454 |
| is_conj _ = false |
|
1455 |
in if is_conj P then SOME @{thm induct_conj_curry} else NONE end |
|
1456 |
| _ => NONE), |
|
1457 |
identifier = []}] |
|
54742
7a86358a3c0b
proper context for basic Simplifier operations: rewrite_rule, rewrite_goals_rule, rewrite_goals_tac etc.;
wenzelm
parents:
53146
diff
changeset
|
1458 |
|> Simplifier.set_mksimps (fn ctxt => |
7a86358a3c0b
proper context for basic Simplifier operations: rewrite_rule, rewrite_goals_rule, rewrite_goals_tac etc.;
wenzelm
parents:
53146
diff
changeset
|
1459 |
Simpdata.mksimps Simpdata.mksimps_pairs ctxt #> |
59940
087d81f5213e
local setup of induction tools, with restricted access to auxiliary consts;
wenzelm
parents:
59929
diff
changeset
|
1460 |
map (rewrite_rule ctxt (map Thm.symmetric @{thms induct_rulify_fallback})))) |
60758 | 1461 |
\<close> |
34908
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
berghofe
parents:
34294
diff
changeset
|
1462 |
|
60758 | 1463 |
text \<open>Pre-simplification of induction and cases rules\<close> |
34908
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
berghofe
parents:
34294
diff
changeset
|
1464 |
|
59929 | 1465 |
lemma [induct_simp]: "(\<And>x. induct_equal x t \<Longrightarrow> PROP P x) \<equiv> PROP P t" |
34908
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
berghofe
parents:
34294
diff
changeset
|
1466 |
unfolding induct_equal_def |
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
berghofe
parents:
34294
diff
changeset
|
1467 |
proof |
59929 | 1468 |
assume r: "\<And>x. x = t \<Longrightarrow> PROP P x" |
1469 |
show "PROP P t" by (rule r [OF refl]) |
|
34908
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
berghofe
parents:
34294
diff
changeset
|
1470 |
next |
59929 | 1471 |
fix x |
1472 |
assume "PROP P t" "x = t" |
|
34908
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
berghofe
parents:
34294
diff
changeset
|
1473 |
then show "PROP P x" by simp |
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
berghofe
parents:
34294
diff
changeset
|
1474 |
qed |
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
berghofe
parents:
34294
diff
changeset
|
1475 |
|
59929 | 1476 |
lemma [induct_simp]: "(\<And>x. induct_equal t x \<Longrightarrow> PROP P x) \<equiv> PROP P t" |
34908
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
berghofe
parents:
34294
diff
changeset
|
1477 |
unfolding induct_equal_def |
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
berghofe
parents:
34294
diff
changeset
|
1478 |
proof |
59929 | 1479 |
assume r: "\<And>x. t = x \<Longrightarrow> PROP P x" |
1480 |
show "PROP P t" by (rule r [OF refl]) |
|
34908
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
berghofe
parents:
34294
diff
changeset
|
1481 |
next |
59929 | 1482 |
fix x |
1483 |
assume "PROP P t" "t = x" |
|
34908
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
berghofe
parents:
34294
diff
changeset
|
1484 |
then show "PROP P x" by simp |
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
berghofe
parents:
34294
diff
changeset
|
1485 |
qed |
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
berghofe
parents:
34294
diff
changeset
|
1486 |
|
59929 | 1487 |
lemma [induct_simp]: "(induct_false \<Longrightarrow> P) \<equiv> Trueprop induct_true" |
34908
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
berghofe
parents:
34294
diff
changeset
|
1488 |
unfolding induct_false_def induct_true_def |
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
berghofe
parents:
34294
diff
changeset
|
1489 |
by (iprover intro: equal_intr_rule) |
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
berghofe
parents:
34294
diff
changeset
|
1490 |
|
59929 | 1491 |
lemma [induct_simp]: "(induct_true \<Longrightarrow> PROP P) \<equiv> PROP P" |
34908
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
berghofe
parents:
34294
diff
changeset
|
1492 |
unfolding induct_true_def |
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
berghofe
parents:
34294
diff
changeset
|
1493 |
proof |
59929 | 1494 |
assume "True \<Longrightarrow> PROP P" |
1495 |
then show "PROP P" using TrueI . |
|
34908
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
berghofe
parents:
34294
diff
changeset
|
1496 |
next |
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
berghofe
parents:
34294
diff
changeset
|
1497 |
assume "PROP P" |
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
berghofe
parents:
34294
diff
changeset
|
1498 |
then show "PROP P" . |
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
berghofe
parents:
34294
diff
changeset
|
1499 |
qed |
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
berghofe
parents:
34294
diff
changeset
|
1500 |
|
59929 | 1501 |
lemma [induct_simp]: "(PROP P \<Longrightarrow> induct_true) \<equiv> Trueprop induct_true" |
34908
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
berghofe
parents:
34294
diff
changeset
|
1502 |
unfolding induct_true_def |
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
berghofe
parents:
34294
diff
changeset
|
1503 |
by (iprover intro: equal_intr_rule) |
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
berghofe
parents:
34294
diff
changeset
|
1504 |
|
59929 | 1505 |
lemma [induct_simp]: "(\<And>x. induct_true) \<equiv> Trueprop induct_true" |
34908
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
berghofe
parents:
34294
diff
changeset
|
1506 |
unfolding induct_true_def |
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
berghofe
parents:
34294
diff
changeset
|
1507 |
by (iprover intro: equal_intr_rule) |
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
berghofe
parents:
34294
diff
changeset
|
1508 |
|
59929 | 1509 |
lemma [induct_simp]: "induct_implies induct_true P \<equiv> P" |
34908
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
berghofe
parents:
34294
diff
changeset
|
1510 |
by (simp add: induct_implies_def induct_true_def) |
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
berghofe
parents:
34294
diff
changeset
|
1511 |
|
59929 | 1512 |
lemma [induct_simp]: "x = x \<longleftrightarrow> True" |
34908
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
berghofe
parents:
34294
diff
changeset
|
1513 |
by (rule simp_thms) |
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
berghofe
parents:
34294
diff
changeset
|
1514 |
|
59940
087d81f5213e
local setup of induction tools, with restricted access to auxiliary consts;
wenzelm
parents:
59929
diff
changeset
|
1515 |
end |
18457 | 1516 |
|
48891 | 1517 |
ML_file "~~/src/Tools/induct_tacs.ML" |
27126
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
wenzelm
parents:
27107
diff
changeset
|
1518 |
|
20944 | 1519 |
|
60758 | 1520 |
subsubsection \<open>Coherent logic\<close> |
28325 | 1521 |
|
55632 | 1522 |
ML_file "~~/src/Tools/coherent.ML" |
60758 | 1523 |
ML \<open> |
32734 | 1524 |
structure Coherent = Coherent |
28325 | 1525 |
( |
55632 | 1526 |
val atomize_elimL = @{thm atomize_elimL}; |
1527 |
val atomize_exL = @{thm atomize_exL}; |
|
1528 |
val atomize_conjL = @{thm atomize_conjL}; |
|
1529 |
val atomize_disjL = @{thm atomize_disjL}; |
|
1530 |
val operator_names = [@{const_name HOL.disj}, @{const_name HOL.conj}, @{const_name Ex}]; |
|
28325 | 1531 |
); |
60758 | 1532 |
\<close> |
28325 | 1533 |
|
1534 |
||
60758 | 1535 |
subsubsection \<open>Reorienting equalities\<close> |
31024
0fdf666e08bf
reimplement reorientation simproc using theory data
huffman
parents:
30980
diff
changeset
|
1536 |
|
60758 | 1537 |
ML \<open> |
31024
0fdf666e08bf
reimplement reorientation simproc using theory data
huffman
parents:
30980
diff
changeset
|
1538 |
signature REORIENT_PROC = |
0fdf666e08bf
reimplement reorientation simproc using theory data
huffman
parents:
30980
diff
changeset
|
1539 |
sig |
0fdf666e08bf
reimplement reorientation simproc using theory data
huffman
parents:
30980
diff
changeset
|
1540 |
val add : (term -> bool) -> theory -> theory |
51717
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
wenzelm
parents:
51692
diff
changeset
|
1541 |
val proc : morphism -> Proof.context -> cterm -> thm option |
31024
0fdf666e08bf
reimplement reorientation simproc using theory data
huffman
parents:
30980
diff
changeset
|
1542 |
end; |
0fdf666e08bf
reimplement reorientation simproc using theory data
huffman
parents:
30980
diff
changeset
|
1543 |
|
33523 | 1544 |
structure Reorient_Proc : REORIENT_PROC = |
31024
0fdf666e08bf
reimplement reorientation simproc using theory data
huffman
parents:
30980
diff
changeset
|
1545 |
struct |
33523 | 1546 |
structure Data = Theory_Data |
31024
0fdf666e08bf
reimplement reorientation simproc using theory data
huffman
parents:
30980
diff
changeset
|
1547 |
( |
33523 | 1548 |
type T = ((term -> bool) * stamp) list; |
1549 |
val empty = []; |
|
31024
0fdf666e08bf
reimplement reorientation simproc using theory data
huffman
parents:
30980
diff
changeset
|
1550 |
val extend = I; |
33523 | 1551 |
fun merge data : T = Library.merge (eq_snd op =) data; |
1552 |
); |
|
1553 |
fun add m = Data.map (cons (m, stamp ())); |
|
1554 |
fun matches thy t = exists (fn (m, _) => m t) (Data.get thy); |
|
31024
0fdf666e08bf
reimplement reorientation simproc using theory data
huffman
parents:
30980
diff
changeset
|
1555 |
|
0fdf666e08bf
reimplement reorientation simproc using theory data
huffman
parents:
30980
diff
changeset
|
1556 |
val meta_reorient = @{thm eq_commute [THEN eq_reflection]}; |
51717
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
wenzelm
parents:
51692
diff
changeset
|
1557 |
fun proc phi ctxt ct = |
31024
0fdf666e08bf
reimplement reorientation simproc using theory data
huffman
parents:
30980
diff
changeset
|
1558 |
let |
42361 | 1559 |
val thy = Proof_Context.theory_of ctxt; |
31024
0fdf666e08bf
reimplement reorientation simproc using theory data
huffman
parents:
30980
diff
changeset
|
1560 |
in |
0fdf666e08bf
reimplement reorientation simproc using theory data
huffman
parents:
30980
diff
changeset
|
1561 |
case Thm.term_of ct of |
33523 | 1562 |
(_ $ t $ u) => if matches thy u then NONE else SOME meta_reorient |
31024
0fdf666e08bf
reimplement reorientation simproc using theory data
huffman
parents:
30980
diff
changeset
|
1563 |
| _ => NONE |
0fdf666e08bf
reimplement reorientation simproc using theory data
huffman
parents:
30980
diff
changeset
|
1564 |
end; |
0fdf666e08bf
reimplement reorientation simproc using theory data
huffman
parents:
30980
diff
changeset
|
1565 |
end; |
60758 | 1566 |
\<close> |
31024
0fdf666e08bf
reimplement reorientation simproc using theory data
huffman
parents:
30980
diff
changeset
|
1567 |
|
0fdf666e08bf
reimplement reorientation simproc using theory data
huffman
parents:
30980
diff
changeset
|
1568 |
|
60758 | 1569 |
subsection \<open>Other simple lemmas and lemma duplicates\<close> |
20944 | 1570 |
|
60759 | 1571 |
lemma ex1_eq [iff]: "\<exists>!x. x = t" "\<exists>!x. t = x" |
20944 | 1572 |
by blast+ |
1573 |
||
60759 | 1574 |
lemma choice_eq: "(\<forall>x. \<exists>!y. P x y) = (\<exists>!f. \<forall>x. P x (f x))" |
20944 | 1575 |
apply (rule iffI) |
60759 | 1576 |
apply (rule_tac a = "\<lambda>x. THE y. P x y" in ex1I) |
20944 | 1577 |
apply (fast dest!: theI') |
44921 | 1578 |
apply (fast intro: the1_equality [symmetric]) |
20944 | 1579 |
apply (erule ex1E) |
1580 |
apply (rule allI) |
|
1581 |
apply (rule ex1I) |
|
1582 |
apply (erule spec) |
|
60759 | 1583 |
apply (erule_tac x = "\<lambda>z. if z = x then y else f z" in allE) |
20944 | 1584 |
apply (erule impE) |
1585 |
apply (rule allI) |
|
27126
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
wenzelm
parents:
27107
diff
changeset
|
1586 |
apply (case_tac "xa = x") |
20944 | 1587 |
apply (drule_tac [3] x = x in fun_cong, simp_all) |
1588 |
done |
|
1589 |
||
22218 | 1590 |
lemmas eq_sym_conv = eq_commute |
1591 |
||
23037
6c72943a71b1
added a set of NNF normalization lemmas and nnf_conv
chaieb
parents:
22993
diff
changeset
|
1592 |
lemma nnf_simps: |
58826 | 1593 |
"(\<not>(P \<and> Q)) = (\<not> P \<or> \<not> Q)" "(\<not> (P \<or> Q)) = (\<not> P \<and> \<not>Q)" "(P \<longrightarrow> Q) = (\<not>P \<or> Q)" |
1594 |
"(P = Q) = ((P \<and> Q) \<or> (\<not>P \<and> \<not> Q))" "(\<not>(P = Q)) = ((P \<and> \<not> Q) \<or> (\<not>P \<and> Q))" |
|
23037
6c72943a71b1
added a set of NNF normalization lemmas and nnf_conv
chaieb
parents:
22993
diff
changeset
|
1595 |
"(\<not> \<not>(P)) = P" |
6c72943a71b1
added a set of NNF normalization lemmas and nnf_conv
chaieb
parents:
22993
diff
changeset
|
1596 |
by blast+ |
6c72943a71b1
added a set of NNF normalization lemmas and nnf_conv
chaieb
parents:
22993
diff
changeset
|
1597 |
|
60758 | 1598 |
subsection \<open>Basic ML bindings\<close> |
21671 | 1599 |
|
60758 | 1600 |
ML \<open> |
22129 | 1601 |
val FalseE = @{thm FalseE} |
1602 |
val Let_def = @{thm Let_def} |
|
1603 |
val TrueI = @{thm TrueI} |
|
1604 |
val allE = @{thm allE} |
|
1605 |
val allI = @{thm allI} |
|
1606 |
val all_dupE = @{thm all_dupE} |
|
1607 |
val arg_cong = @{thm arg_cong} |
|
1608 |
val box_equals = @{thm box_equals} |
|
1609 |
val ccontr = @{thm ccontr} |
|
1610 |
val classical = @{thm classical} |
|
1611 |
val conjE = @{thm conjE} |
|
1612 |
val conjI = @{thm conjI} |
|
1613 |
val conjunct1 = @{thm conjunct1} |
|
1614 |
val conjunct2 = @{thm conjunct2} |
|
1615 |
val disjCI = @{thm disjCI} |
|
1616 |
val disjE = @{thm disjE} |
|
1617 |
val disjI1 = @{thm disjI1} |
|
1618 |
val disjI2 = @{thm disjI2} |
|
1619 |
val eq_reflection = @{thm eq_reflection} |
|
1620 |
val ex1E = @{thm ex1E} |
|
1621 |
val ex1I = @{thm ex1I} |
|
1622 |
val ex1_implies_ex = @{thm ex1_implies_ex} |
|
1623 |
val exE = @{thm exE} |
|
1624 |
val exI = @{thm exI} |
|
1625 |
val excluded_middle = @{thm excluded_middle} |
|
1626 |
val ext = @{thm ext} |
|
1627 |
val fun_cong = @{thm fun_cong} |
|
1628 |
val iffD1 = @{thm iffD1} |
|
1629 |
val iffD2 = @{thm iffD2} |
|
1630 |
val iffI = @{thm iffI} |
|
1631 |
val impE = @{thm impE} |
|
1632 |
val impI = @{thm impI} |
|
1633 |
val meta_eq_to_obj_eq = @{thm meta_eq_to_obj_eq} |
|
1634 |
val mp = @{thm mp} |
|
1635 |
val notE = @{thm notE} |
|
1636 |
val notI = @{thm notI} |
|
1637 |
val not_all = @{thm not_all} |
|
1638 |
val not_ex = @{thm not_ex} |
|
1639 |
val not_iff = @{thm not_iff} |
|
1640 |
val not_not = @{thm not_not} |
|
1641 |
val not_sym = @{thm not_sym} |
|
1642 |
val refl = @{thm refl} |
|
1643 |
val rev_mp = @{thm rev_mp} |
|
1644 |
val spec = @{thm spec} |
|
1645 |
val ssubst = @{thm ssubst} |
|
1646 |
val subst = @{thm subst} |
|
1647 |
val sym = @{thm sym} |
|
1648 |
val trans = @{thm trans} |
|
60758 | 1649 |
\<close> |
21671 | 1650 |
|
55239 | 1651 |
ML_file "Tools/cnf.ML" |
1652 |
||
21671 | 1653 |
|
61799 | 1654 |
section \<open>\<open>NO_MATCH\<close> simproc\<close> |
58775
9cd64a66a765
move NO_MATCH simproc from the AFP entry Graph_Theory to HOL
hoelzl
parents:
58659
diff
changeset
|
1655 |
|
60758 | 1656 |
text \<open> |
58775
9cd64a66a765
move NO_MATCH simproc from the AFP entry Graph_Theory to HOL
hoelzl
parents:
58659
diff
changeset
|
1657 |
The simplification procedure can be used to avoid simplification of terms of a certain form |
60758 | 1658 |
\<close> |
58775
9cd64a66a765
move NO_MATCH simproc from the AFP entry Graph_Theory to HOL
hoelzl
parents:
58659
diff
changeset
|
1659 |
|
59779 | 1660 |
definition NO_MATCH :: "'a \<Rightarrow> 'b \<Rightarrow> bool" where "NO_MATCH pat val \<equiv> True" |
58830 | 1661 |
|
59779 | 1662 |
lemma NO_MATCH_cong[cong]: "NO_MATCH pat val = NO_MATCH pat val" by (rule refl) |
58775
9cd64a66a765
move NO_MATCH simproc from the AFP entry Graph_Theory to HOL
hoelzl
parents:
58659
diff
changeset
|
1663 |
|
58830 | 1664 |
declare [[coercion_args NO_MATCH - -]] |
1665 |
||
60758 | 1666 |
simproc_setup NO_MATCH ("NO_MATCH pat val") = \<open>fn _ => fn ctxt => fn ct => |
58775
9cd64a66a765
move NO_MATCH simproc from the AFP entry Graph_Theory to HOL
hoelzl
parents:
58659
diff
changeset
|
1667 |
let |
9cd64a66a765
move NO_MATCH simproc from the AFP entry Graph_Theory to HOL
hoelzl
parents:
58659
diff
changeset
|
1668 |
val thy = Proof_Context.theory_of ctxt |
9cd64a66a765
move NO_MATCH simproc from the AFP entry Graph_Theory to HOL
hoelzl
parents:
58659
diff
changeset
|
1669 |
val dest_binop = Term.dest_comb #> apfst (Term.dest_comb #> snd) |
9cd64a66a765
move NO_MATCH simproc from the AFP entry Graph_Theory to HOL
hoelzl
parents:
58659
diff
changeset
|
1670 |
val m = Pattern.matches thy (dest_binop (Thm.term_of ct)) |
9cd64a66a765
move NO_MATCH simproc from the AFP entry Graph_Theory to HOL
hoelzl
parents:
58659
diff
changeset
|
1671 |
in if m then NONE else SOME @{thm NO_MATCH_def} end |
60758 | 1672 |
\<close> |
58775
9cd64a66a765
move NO_MATCH simproc from the AFP entry Graph_Theory to HOL
hoelzl
parents:
58659
diff
changeset
|
1673 |
|
60758 | 1674 |
text \<open> |
59779 | 1675 |
This setup ensures that a rewrite rule of the form @{term "NO_MATCH pat val \<Longrightarrow> t"} |
58775
9cd64a66a765
move NO_MATCH simproc from the AFP entry Graph_Theory to HOL
hoelzl
parents:
58659
diff
changeset
|
1676 |
is only applied, if the pattern @{term pat} does not match the value @{term val}. |
60758 | 1677 |
\<close> |
58775
9cd64a66a765
move NO_MATCH simproc from the AFP entry Graph_Theory to HOL
hoelzl
parents:
58659
diff
changeset
|
1678 |
|
9cd64a66a765
move NO_MATCH simproc from the AFP entry Graph_Theory to HOL
hoelzl
parents:
58659
diff
changeset
|
1679 |
|
61222 | 1680 |
text\<open>Tagging a premise of a simp rule with ASSUMPTION forces the simplifier |
1681 |
not to simplify the argument and to solve it by an assumption.\<close> |
|
61202 | 1682 |
|
1683 |
definition ASSUMPTION :: "bool \<Rightarrow> bool" where |
|
1684 |
"ASSUMPTION A \<equiv> A" |
|
1685 |
||
1686 |
lemma ASSUMPTION_cong[cong]: "ASSUMPTION A = ASSUMPTION A" |
|
1687 |
by (rule refl) |
|
1688 |
||
1689 |
lemma ASSUMPTION_I: "A \<Longrightarrow> ASSUMPTION A" |
|
1690 |
by(simp add: ASSUMPTION_def) |
|
1691 |
||
1692 |
lemma ASSUMPTION_D: "ASSUMPTION A \<Longrightarrow> A" |
|
1693 |
by(simp add: ASSUMPTION_def) |
|
1694 |
||
61222 | 1695 |
setup \<open> |
61202 | 1696 |
let |
1697 |
val asm_sol = mk_solver "ASSUMPTION" (fn ctxt => |
|
1698 |
resolve_tac ctxt [@{thm ASSUMPTION_I}] THEN' |
|
1699 |
resolve_tac ctxt (Simplifier.prems_of ctxt)) |
|
1700 |
in |
|
1701 |
map_theory_simpset (fn ctxt => Simplifier.addSolver (ctxt,asm_sol)) |
|
1702 |
end |
|
61222 | 1703 |
\<close> |
61202 | 1704 |
|
1705 |
||
60758 | 1706 |
subsection \<open>Code generator setup\<close> |
30929
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents:
30927
diff
changeset
|
1707 |
|
60758 | 1708 |
subsubsection \<open>Generic code generator preprocessor setup\<close> |
31151 | 1709 |
|
53146
3a93bc5d3370
congruence rules for code_simp to mimic typical non-strict behaviour of conj and disj
haftmann
parents:
52654
diff
changeset
|
1710 |
lemma conj_left_cong: |
3a93bc5d3370
congruence rules for code_simp to mimic typical non-strict behaviour of conj and disj
haftmann
parents:
52654
diff
changeset
|
1711 |
"P \<longleftrightarrow> Q \<Longrightarrow> P \<and> R \<longleftrightarrow> Q \<and> R" |
3a93bc5d3370
congruence rules for code_simp to mimic typical non-strict behaviour of conj and disj
haftmann
parents:
52654
diff
changeset
|
1712 |
by (fact arg_cong) |
3a93bc5d3370
congruence rules for code_simp to mimic typical non-strict behaviour of conj and disj
haftmann
parents:
52654
diff
changeset
|
1713 |
|
3a93bc5d3370
congruence rules for code_simp to mimic typical non-strict behaviour of conj and disj
haftmann
parents:
52654
diff
changeset
|
1714 |
lemma disj_left_cong: |
3a93bc5d3370
congruence rules for code_simp to mimic typical non-strict behaviour of conj and disj
haftmann
parents:
52654
diff
changeset
|
1715 |
"P \<longleftrightarrow> Q \<Longrightarrow> P \<or> R \<longleftrightarrow> Q \<or> R" |
3a93bc5d3370
congruence rules for code_simp to mimic typical non-strict behaviour of conj and disj
haftmann
parents:
52654
diff
changeset
|
1716 |
by (fact arg_cong) |
3a93bc5d3370
congruence rules for code_simp to mimic typical non-strict behaviour of conj and disj
haftmann
parents:
52654
diff
changeset
|
1717 |
|
60758 | 1718 |
setup \<open> |
58826 | 1719 |
Code_Preproc.map_pre (put_simpset HOL_basic_ss) #> |
1720 |
Code_Preproc.map_post (put_simpset HOL_basic_ss) #> |
|
1721 |
Code_Simp.map_ss (put_simpset HOL_basic_ss #> |
|
1722 |
Simplifier.add_cong @{thm conj_left_cong} #> |
|
1723 |
Simplifier.add_cong @{thm disj_left_cong}) |
|
60758 | 1724 |
\<close> |
31151 | 1725 |
|
53146
3a93bc5d3370
congruence rules for code_simp to mimic typical non-strict behaviour of conj and disj
haftmann
parents:
52654
diff
changeset
|
1726 |
|
60758 | 1727 |
subsubsection \<open>Equality\<close> |
24844
98c006a30218
certificates for code generator case expressions
haftmann
parents:
24842
diff
changeset
|
1728 |
|
38857
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
haftmann
parents:
38795
diff
changeset
|
1729 |
class equal = |
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
haftmann
parents:
38795
diff
changeset
|
1730 |
fixes equal :: "'a \<Rightarrow> 'a \<Rightarrow> bool" |
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
haftmann
parents:
38795
diff
changeset
|
1731 |
assumes equal_eq: "equal x y \<longleftrightarrow> x = y" |
26513 | 1732 |
begin |
1733 |
||
45231
d85a2fdc586c
replacing code_inline by code_unfold, removing obsolete code_unfold, code_inline del now that the ancient code generator is removed
bulwahn
parents:
45171
diff
changeset
|
1734 |
lemma equal: "equal = (op =)" |
38857
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
haftmann
parents:
38795
diff
changeset
|
1735 |
by (rule ext equal_eq)+ |
28346
b8390cd56b8f
discontinued special treatment of op = vs. eq_class.eq
haftmann
parents:
28325
diff
changeset
|
1736 |
|
38857
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
haftmann
parents:
38795
diff
changeset
|
1737 |
lemma equal_refl: "equal x x \<longleftrightarrow> True" |
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
haftmann
parents:
38795
diff
changeset
|
1738 |
unfolding equal by rule+ |
28346
b8390cd56b8f
discontinued special treatment of op = vs. eq_class.eq
haftmann
parents:
28325
diff
changeset
|
1739 |
|
38857
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
haftmann
parents:
38795
diff
changeset
|
1740 |
lemma eq_equal: "(op =) \<equiv> equal" |
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
haftmann
parents:
38795
diff
changeset
|
1741 |
by (rule eq_reflection) (rule ext, rule ext, rule sym, rule equal_eq) |
30929
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents:
30927
diff
changeset
|
1742 |
|
26513 | 1743 |
end |
1744 |
||
38857
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
haftmann
parents:
38795
diff
changeset
|
1745 |
declare eq_equal [symmetric, code_post] |
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
haftmann
parents:
38795
diff
changeset
|
1746 |
declare eq_equal [code] |
30966 | 1747 |
|
60758 | 1748 |
setup \<open> |
51717
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
wenzelm
parents:
51692
diff
changeset
|
1749 |
Code_Preproc.map_pre (fn ctxt => |
61144 | 1750 |
ctxt addsimprocs |
1751 |
[Simplifier.make_simproc @{context} "equal" |
|
1752 |
{lhss = [@{term HOL.eq}], |
|
1753 |
proc = fn _ => fn _ => fn ct => |
|
1754 |
(case Thm.term_of ct of |
|
1755 |
Const (_, Type (@{type_name fun}, [Type _, _])) => SOME @{thm eq_equal} |
|
1756 |
| _ => NONE), |
|
1757 |
identifier = []}]) |
|
60758 | 1758 |
\<close> |
31151 | 1759 |
|
30966 | 1760 |
|
60758 | 1761 |
subsubsection \<open>Generic code generator foundation\<close> |
30929
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents:
30927
diff
changeset
|
1762 |
|
60758 | 1763 |
text \<open>Datatype @{typ bool}\<close> |
30929
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents:
30927
diff
changeset
|
1764 |
|
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents:
30927
diff
changeset
|
1765 |
code_datatype True False |
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents:
30927
diff
changeset
|
1766 |
|
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents:
30927
diff
changeset
|
1767 |
lemma [code]: |
33185
247f6c6969d9
tuned code setup for primitive boolean connectors
haftmann
parents:
33084
diff
changeset
|
1768 |
shows "False \<and> P \<longleftrightarrow> False" |
247f6c6969d9
tuned code setup for primitive boolean connectors
haftmann
parents:
33084
diff
changeset
|
1769 |
and "True \<and> P \<longleftrightarrow> P" |
247f6c6969d9
tuned code setup for primitive boolean connectors
haftmann
parents:
33084
diff
changeset
|
1770 |
and "P \<and> False \<longleftrightarrow> False" |
247f6c6969d9
tuned code setup for primitive boolean connectors
haftmann
parents:
33084
diff
changeset
|
1771 |
and "P \<and> True \<longleftrightarrow> P" by simp_all |
30929
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents:
30927
diff
changeset
|
1772 |
|
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents:
30927
diff
changeset
|
1773 |
lemma [code]: |
33185
247f6c6969d9
tuned code setup for primitive boolean connectors
haftmann
parents:
33084
diff
changeset
|
1774 |
shows "False \<or> P \<longleftrightarrow> P" |
247f6c6969d9
tuned code setup for primitive boolean connectors
haftmann
parents:
33084
diff
changeset
|
1775 |
and "True \<or> P \<longleftrightarrow> True" |
247f6c6969d9
tuned code setup for primitive boolean connectors
haftmann
parents:
33084
diff
changeset
|
1776 |
and "P \<or> False \<longleftrightarrow> P" |
247f6c6969d9
tuned code setup for primitive boolean connectors
haftmann
parents:
33084
diff
changeset
|
1777 |
and "P \<or> True \<longleftrightarrow> True" by simp_all |
30929
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents:
30927
diff
changeset
|
1778 |
|
33185
247f6c6969d9
tuned code setup for primitive boolean connectors
haftmann
parents:
33084
diff
changeset
|
1779 |
lemma [code]: |
247f6c6969d9
tuned code setup for primitive boolean connectors
haftmann
parents:
33084
diff
changeset
|
1780 |
shows "(False \<longrightarrow> P) \<longleftrightarrow> True" |
247f6c6969d9
tuned code setup for primitive boolean connectors
haftmann
parents:
33084
diff
changeset
|
1781 |
and "(True \<longrightarrow> P) \<longleftrightarrow> P" |
247f6c6969d9
tuned code setup for primitive boolean connectors
haftmann
parents:
33084
diff
changeset
|
1782 |
and "(P \<longrightarrow> False) \<longleftrightarrow> \<not> P" |
247f6c6969d9
tuned code setup for primitive boolean connectors
haftmann
parents:
33084
diff
changeset
|
1783 |
and "(P \<longrightarrow> True) \<longleftrightarrow> True" by simp_all |
30929
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents:
30927
diff
changeset
|
1784 |
|
60758 | 1785 |
text \<open>More about @{typ prop}\<close> |
39421
b6a77cffc231
introduced "holds" as synthetic datatype constructor for "prop"; moved Pure code generator setup to Code_Generator.thy
haftmann
parents:
39403
diff
changeset
|
1786 |
|
b6a77cffc231
introduced "holds" as synthetic datatype constructor for "prop"; moved Pure code generator setup to Code_Generator.thy
haftmann
parents:
39403
diff
changeset
|
1787 |
lemma [code nbe]: |
58826 | 1788 |
shows "(True \<Longrightarrow> PROP Q) \<equiv> PROP Q" |
39421
b6a77cffc231
introduced "holds" as synthetic datatype constructor for "prop"; moved Pure code generator setup to Code_Generator.thy
haftmann
parents:
39403
diff
changeset
|
1789 |
and "(PROP Q \<Longrightarrow> True) \<equiv> Trueprop True" |
b6a77cffc231
introduced "holds" as synthetic datatype constructor for "prop"; moved Pure code generator setup to Code_Generator.thy
haftmann
parents:
39403
diff
changeset
|
1790 |
and "(P \<Longrightarrow> R) \<equiv> Trueprop (P \<longrightarrow> R)" by (auto intro!: equal_intr_rule) |
b6a77cffc231
introduced "holds" as synthetic datatype constructor for "prop"; moved Pure code generator setup to Code_Generator.thy
haftmann
parents:
39403
diff
changeset
|
1791 |
|
b6a77cffc231
introduced "holds" as synthetic datatype constructor for "prop"; moved Pure code generator setup to Code_Generator.thy
haftmann
parents:
39403
diff
changeset
|
1792 |
lemma Trueprop_code [code]: |
b6a77cffc231
introduced "holds" as synthetic datatype constructor for "prop"; moved Pure code generator setup to Code_Generator.thy
haftmann
parents:
39403
diff
changeset
|
1793 |
"Trueprop True \<equiv> Code_Generator.holds" |
b6a77cffc231
introduced "holds" as synthetic datatype constructor for "prop"; moved Pure code generator setup to Code_Generator.thy
haftmann
parents:
39403
diff
changeset
|
1794 |
by (auto intro!: equal_intr_rule holds) |
b6a77cffc231
introduced "holds" as synthetic datatype constructor for "prop"; moved Pure code generator setup to Code_Generator.thy
haftmann
parents:
39403
diff
changeset
|
1795 |
|
b6a77cffc231
introduced "holds" as synthetic datatype constructor for "prop"; moved Pure code generator setup to Code_Generator.thy
haftmann
parents:
39403
diff
changeset
|
1796 |
declare Trueprop_code [symmetric, code_post] |
b6a77cffc231
introduced "holds" as synthetic datatype constructor for "prop"; moved Pure code generator setup to Code_Generator.thy
haftmann
parents:
39403
diff
changeset
|
1797 |
|
60758 | 1798 |
text \<open>Equality\<close> |
39421
b6a77cffc231
introduced "holds" as synthetic datatype constructor for "prop"; moved Pure code generator setup to Code_Generator.thy
haftmann
parents:
39403
diff
changeset
|
1799 |
|
b6a77cffc231
introduced "holds" as synthetic datatype constructor for "prop"; moved Pure code generator setup to Code_Generator.thy
haftmann
parents:
39403
diff
changeset
|
1800 |
declare simp_thms(6) [code nbe] |
b6a77cffc231
introduced "holds" as synthetic datatype constructor for "prop"; moved Pure code generator setup to Code_Generator.thy
haftmann
parents:
39403
diff
changeset
|
1801 |
|
38857
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
haftmann
parents:
38795
diff
changeset
|
1802 |
instantiation itself :: (type) equal |
31132 | 1803 |
begin |
1804 |
||
38857
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
haftmann
parents:
38795
diff
changeset
|
1805 |
definition equal_itself :: "'a itself \<Rightarrow> 'a itself \<Rightarrow> bool" where |
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
haftmann
parents:
38795
diff
changeset
|
1806 |
"equal_itself x y \<longleftrightarrow> x = y" |
31132 | 1807 |
|
1808 |
instance proof |
|
38857
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
haftmann
parents:
38795
diff
changeset
|
1809 |
qed (fact equal_itself_def) |
31132 | 1810 |
|
1811 |
end |
|
1812 |
||
38857
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
haftmann
parents:
38795
diff
changeset
|
1813 |
lemma equal_itself_code [code]: |
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
haftmann
parents:
38795
diff
changeset
|
1814 |
"equal TYPE('a) TYPE('a) \<longleftrightarrow> True" |
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
haftmann
parents:
38795
diff
changeset
|
1815 |
by (simp add: equal) |
31132 | 1816 |
|
61076 | 1817 |
setup \<open>Sign.add_const_constraint (@{const_name equal}, SOME @{typ "'a::type \<Rightarrow> 'a \<Rightarrow> bool"})\<close> |
31956
c3844c4d0c2c
more accurate certificates for constant aliasses
haftmann
parents:
31902
diff
changeset
|
1818 |
|
38857
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
haftmann
parents:
38795
diff
changeset
|
1819 |
lemma equal_alias_cert: "OFCLASS('a, equal_class) \<equiv> ((op = :: 'a \<Rightarrow> 'a \<Rightarrow> bool) \<equiv> equal)" (is "?ofclass \<equiv> ?equal") |
31956
c3844c4d0c2c
more accurate certificates for constant aliasses
haftmann
parents:
31902
diff
changeset
|
1820 |
proof |
c3844c4d0c2c
more accurate certificates for constant aliasses
haftmann
parents:
31902
diff
changeset
|
1821 |
assume "PROP ?ofclass" |
38857
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
haftmann
parents:
38795
diff
changeset
|
1822 |
show "PROP ?equal" |
60758 | 1823 |
by (tactic \<open>ALLGOALS (resolve_tac @{context} [Thm.unconstrainT @{thm eq_equal}])\<close>) |
1824 |
(fact \<open>PROP ?ofclass\<close>) |
|
31956
c3844c4d0c2c
more accurate certificates for constant aliasses
haftmann
parents:
31902
diff
changeset
|
1825 |
next |
38857
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
haftmann
parents:
38795
diff
changeset
|
1826 |
assume "PROP ?equal" |
31956
c3844c4d0c2c
more accurate certificates for constant aliasses
haftmann
parents:
31902
diff
changeset
|
1827 |
show "PROP ?ofclass" proof |
60758 | 1828 |
qed (simp add: \<open>PROP ?equal\<close>) |
31956
c3844c4d0c2c
more accurate certificates for constant aliasses
haftmann
parents:
31902
diff
changeset
|
1829 |
qed |
c3844c4d0c2c
more accurate certificates for constant aliasses
haftmann
parents:
31902
diff
changeset
|
1830 |
|
61076 | 1831 |
setup \<open>Sign.add_const_constraint (@{const_name equal}, SOME @{typ "'a::equal \<Rightarrow> 'a \<Rightarrow> bool"})\<close> |
58826 | 1832 |
|
60758 | 1833 |
setup \<open>Nbe.add_const_alias @{thm equal_alias_cert}\<close> |
30929
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents:
30927
diff
changeset
|
1834 |
|
60758 | 1835 |
text \<open>Cases\<close> |
30929
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents:
30927
diff
changeset
|
1836 |
|
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents:
30927
diff
changeset
|
1837 |
lemma Let_case_cert: |
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents:
30927
diff
changeset
|
1838 |
assumes "CASE \<equiv> (\<lambda>x. Let x f)" |
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents:
30927
diff
changeset
|
1839 |
shows "CASE x \<equiv> f x" |
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents:
30927
diff
changeset
|
1840 |
using assms by simp_all |
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents:
30927
diff
changeset
|
1841 |
|
60758 | 1842 |
setup \<open> |
58826 | 1843 |
Code.add_case @{thm Let_case_cert} #> |
1844 |
Code.add_undefined @{const_name undefined} |
|
60758 | 1845 |
\<close> |
30929
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents:
30927
diff
changeset
|
1846 |
|
54890
cb892d835803
fundamental treatment of undefined vs. universally partial replaces code_abort
haftmann
parents:
54742
diff
changeset
|
1847 |
declare [[code abort: undefined]] |
30929
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents:
30927
diff
changeset
|
1848 |
|
38972 | 1849 |
|
60758 | 1850 |
subsubsection \<open>Generic code generator target languages\<close> |
30929
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents:
30927
diff
changeset
|
1851 |
|
60758 | 1852 |
text \<open>type @{typ bool}\<close> |
30929
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents:
30927
diff
changeset
|
1853 |
|
52435
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents:
52432
diff
changeset
|
1854 |
code_printing |
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents:
52432
diff
changeset
|
1855 |
type_constructor bool \<rightharpoonup> |
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents:
52432
diff
changeset
|
1856 |
(SML) "bool" and (OCaml) "bool" and (Haskell) "Bool" and (Scala) "Boolean" |
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents:
52432
diff
changeset
|
1857 |
| constant True \<rightharpoonup> |
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents:
52432
diff
changeset
|
1858 |
(SML) "true" and (OCaml) "true" and (Haskell) "True" and (Scala) "true" |
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents:
52432
diff
changeset
|
1859 |
| constant False \<rightharpoonup> |
58826 | 1860 |
(SML) "false" and (OCaml) "false" and (Haskell) "False" and (Scala) "false" |
34294 | 1861 |
|
30929
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents:
30927
diff
changeset
|
1862 |
code_reserved SML |
52435
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents:
52432
diff
changeset
|
1863 |
bool true false |
30929
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents:
30927
diff
changeset
|
1864 |
|
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents:
30927
diff
changeset
|
1865 |
code_reserved OCaml |
52435
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents:
52432
diff
changeset
|
1866 |
bool |
30929
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents:
30927
diff
changeset
|
1867 |
|
34294 | 1868 |
code_reserved Scala |
1869 |
Boolean |
|
1870 |
||
52435
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents:
52432
diff
changeset
|
1871 |
code_printing |
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents:
52432
diff
changeset
|
1872 |
constant Not \<rightharpoonup> |
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents:
52432
diff
changeset
|
1873 |
(SML) "not" and (OCaml) "not" and (Haskell) "not" and (Scala) "'! _" |
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents:
52432
diff
changeset
|
1874 |
| constant HOL.conj \<rightharpoonup> |
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents:
52432
diff
changeset
|
1875 |
(SML) infixl 1 "andalso" and (OCaml) infixl 3 "&&" and (Haskell) infixr 3 "&&" and (Scala) infixl 3 "&&" |
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents:
52432
diff
changeset
|
1876 |
| constant HOL.disj \<rightharpoonup> |
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents:
52432
diff
changeset
|
1877 |
(SML) infixl 0 "orelse" and (OCaml) infixl 2 "||" and (Haskell) infixl 2 "||" and (Scala) infixl 1 "||" |
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents:
52432
diff
changeset
|
1878 |
| constant HOL.implies \<rightharpoonup> |
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents:
52432
diff
changeset
|
1879 |
(SML) "!(if (_)/ then (_)/ else true)" |
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents:
52432
diff
changeset
|
1880 |
and (OCaml) "!(if (_)/ then (_)/ else true)" |
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents:
52432
diff
changeset
|
1881 |
and (Haskell) "!(if (_)/ then (_)/ else True)" |
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents:
52432
diff
changeset
|
1882 |
and (Scala) "!(if ((_))/ (_)/ else true)" |
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents:
52432
diff
changeset
|
1883 |
| constant If \<rightharpoonup> |
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents:
52432
diff
changeset
|
1884 |
(SML) "!(if (_)/ then (_)/ else (_))" |
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents:
52432
diff
changeset
|
1885 |
and (OCaml) "!(if (_)/ then (_)/ else (_))" |
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents:
52432
diff
changeset
|
1886 |
and (Haskell) "!(if (_)/ then (_)/ else (_))" |
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents:
52432
diff
changeset
|
1887 |
and (Scala) "!(if ((_))/ (_)/ else (_))" |
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents:
52432
diff
changeset
|
1888 |
|
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents:
52432
diff
changeset
|
1889 |
code_reserved SML |
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents:
52432
diff
changeset
|
1890 |
not |
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents:
52432
diff
changeset
|
1891 |
|
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents:
52432
diff
changeset
|
1892 |
code_reserved OCaml |
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents:
52432
diff
changeset
|
1893 |
not |
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents:
52432
diff
changeset
|
1894 |
|
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents:
52432
diff
changeset
|
1895 |
code_identifier |
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents:
52432
diff
changeset
|
1896 |
code_module Pure \<rightharpoonup> |
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents:
52432
diff
changeset
|
1897 |
(SML) HOL and (OCaml) HOL and (Haskell) HOL and (Scala) HOL |
39026 | 1898 |
|
60758 | 1899 |
text \<open>using built-in Haskell equality\<close> |
30929
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents:
30927
diff
changeset
|
1900 |
|
52435
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents:
52432
diff
changeset
|
1901 |
code_printing |
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents:
52432
diff
changeset
|
1902 |
type_class equal \<rightharpoonup> (Haskell) "Eq" |
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents:
52432
diff
changeset
|
1903 |
| constant HOL.equal \<rightharpoonup> (Haskell) infix 4 "==" |
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents:
52432
diff
changeset
|
1904 |
| constant HOL.eq \<rightharpoonup> (Haskell) infix 4 "==" |
30929
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents:
30927
diff
changeset
|
1905 |
|
60758 | 1906 |
text \<open>undefined\<close> |
30929
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents:
30927
diff
changeset
|
1907 |
|
52435
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents:
52432
diff
changeset
|
1908 |
code_printing |
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents:
52432
diff
changeset
|
1909 |
constant undefined \<rightharpoonup> |
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents:
52432
diff
changeset
|
1910 |
(SML) "!(raise/ Fail/ \"undefined\")" |
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents:
52432
diff
changeset
|
1911 |
and (OCaml) "failwith/ \"undefined\"" |
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents:
52432
diff
changeset
|
1912 |
and (Haskell) "error/ \"undefined\"" |
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents:
52432
diff
changeset
|
1913 |
and (Scala) "!sys.error(\"undefined\")" |
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
haftmann
parents:
52432
diff
changeset
|
1914 |
|
30929
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents:
30927
diff
changeset
|
1915 |
|
60758 | 1916 |
subsubsection \<open>Evaluation and normalization by evaluation\<close> |
30929
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents:
30927
diff
changeset
|
1917 |
|
60758 | 1918 |
method_setup eval = \<open> |
58826 | 1919 |
let |
1920 |
fun eval_tac ctxt = |
|
1921 |
let val conv = Code_Runtime.dynamic_holds_conv ctxt |
|
58839 | 1922 |
in |
1923 |
CONVERSION (Conv.params_conv ~1 (K (Conv.concl_conv ~1 conv)) ctxt) THEN' |
|
59498
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
wenzelm
parents:
59028
diff
changeset
|
1924 |
resolve_tac ctxt [TrueI] |
58839 | 1925 |
end |
58826 | 1926 |
in |
1927 |
Scan.succeed (SIMPLE_METHOD' o eval_tac) |
|
1928 |
end |
|
60758 | 1929 |
\<close> "solve goal by evaluation" |
30929
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents:
30927
diff
changeset
|
1930 |
|
60758 | 1931 |
method_setup normalization = \<open> |
46190
a42c5f23109f
more conventional eval_tac vs. method_setup "eval";
wenzelm
parents:
46161
diff
changeset
|
1932 |
Scan.succeed (fn ctxt => |
a42c5f23109f
more conventional eval_tac vs. method_setup "eval";
wenzelm
parents:
46161
diff
changeset
|
1933 |
SIMPLE_METHOD' |
a42c5f23109f
more conventional eval_tac vs. method_setup "eval";
wenzelm
parents:
46161
diff
changeset
|
1934 |
(CHANGED_PROP o |
55757 | 1935 |
(CONVERSION (Nbe.dynamic_conv ctxt) |
59498
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
wenzelm
parents:
59028
diff
changeset
|
1936 |
THEN_ALL_NEW (TRY o resolve_tac ctxt [TrueI])))) |
60758 | 1937 |
\<close> "solve goal by normalization" |
30929
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents:
30927
diff
changeset
|
1938 |
|
31902 | 1939 |
|
60758 | 1940 |
subsection \<open>Counterexample Search Units\<close> |
33084 | 1941 |
|
60758 | 1942 |
subsubsection \<open>Quickcheck\<close> |
30929
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents:
30927
diff
changeset
|
1943 |
|
33084 | 1944 |
quickcheck_params [size = 5, iterations = 50] |
1945 |
||
30929
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents:
30927
diff
changeset
|
1946 |
|
60758 | 1947 |
subsubsection \<open>Nitpick setup\<close> |
30309
188f0658af9f
Added a "nitpick_maybe" symbol, which is used by Nitpick. This will go away once Nitpick is part of HOL.
blanchet
parents:
30254
diff
changeset
|
1948 |
|
59028 | 1949 |
named_theorems nitpick_unfold "alternative definitions of constants as needed by Nitpick" |
1950 |
and nitpick_simp "equational specification of constants as needed by Nitpick" |
|
1951 |
and nitpick_psimp "partial equational specification of constants as needed by Nitpick" |
|
1952 |
and nitpick_choice_spec "choice specification of constants as needed by Nitpick" |
|
30980 | 1953 |
|
41792
ff3cb0c418b7
renamed "nitpick\_def" to "nitpick_unfold" to reflect its new semantics
blanchet
parents:
41636
diff
changeset
|
1954 |
declare if_bool_eq_conj [nitpick_unfold, no_atp] |
ff3cb0c418b7
renamed "nitpick\_def" to "nitpick_unfold" to reflect its new semantics
blanchet
parents:
41636
diff
changeset
|
1955 |
if_bool_eq_disj [no_atp] |
ff3cb0c418b7
renamed "nitpick\_def" to "nitpick_unfold" to reflect its new semantics
blanchet
parents:
41636
diff
changeset
|
1956 |
|
29863
dadad1831e9d
Added "nitpick_const_simps" and "nitpick_ind_intros" attributes for theorems;
blanchet
parents:
29608
diff
changeset
|
1957 |
|
60758 | 1958 |
subsection \<open>Preprocessing for the predicate compiler\<close> |
33084 | 1959 |
|
59028 | 1960 |
named_theorems code_pred_def "alternative definitions of constants for the Predicate Compiler" |
1961 |
and code_pred_inline "inlining definitions for the Predicate Compiler" |
|
1962 |
and code_pred_simp "simplification rules for the optimisations in the Predicate Compiler" |
|
33084 | 1963 |
|
1964 |
||
60758 | 1965 |
subsection \<open>Legacy tactics and ML bindings\<close> |
21671 | 1966 |
|
60758 | 1967 |
ML \<open> |
58826 | 1968 |
(* combination of (spec RS spec RS ...(j times) ... spec RS mp) *) |
1969 |
local |
|
1970 |
fun wrong_prem (Const (@{const_name All}, _) $ Abs (_, _, t)) = wrong_prem t |
|
1971 |
| wrong_prem (Bound _) = true |
|
1972 |
| wrong_prem _ = false; |
|
1973 |
val filter_right = filter (not o wrong_prem o HOLogic.dest_Trueprop o hd o Thm.prems_of); |
|
61914 | 1974 |
fun smp i = funpow i (fn m => filter_right ([spec] RL m)) [mp]; |
58826 | 1975 |
in |
59498
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
wenzelm
parents:
59028
diff
changeset
|
1976 |
fun smp_tac ctxt j = EVERY' [dresolve_tac ctxt (smp j), assume_tac ctxt]; |
58826 | 1977 |
end; |
22839 | 1978 |
|
58826 | 1979 |
local |
1980 |
val nnf_ss = |
|
1981 |
simpset_of (put_simpset HOL_basic_ss @{context} addsimps @{thms simp_thms nnf_simps}); |
|
1982 |
in |
|
1983 |
fun nnf_conv ctxt = Simplifier.rewrite (put_simpset nnf_ss ctxt); |
|
1984 |
end |
|
60758 | 1985 |
\<close> |
21671 | 1986 |
|
38866 | 1987 |
hide_const (open) eq equal |
1988 |
||
14357 | 1989 |
end |