src/HOL/Topological_Spaces.thy
author wenzelm
Mon, 28 Dec 2015 01:26:34 +0100
changeset 61944 5d06ecfdb472
parent 61907 f0c894ab18c9
child 61969 e01015e49041
permissions -rw-r--r--
prefer symbols for "abs";
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
52265
bb907eba5902 tuned headers;
wenzelm
parents: 51775
diff changeset
     1
(*  Title:      HOL/Topological_Spaces.thy
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
     2
    Author:     Brian Huffman
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
     3
    Author:     Johannes Hölzl
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
     4
*)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
     5
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
     6
section \<open>Topological Spaces\<close>
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
     7
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
     8
theory Topological_Spaces
51773
9328c6681f3c spell conditional_ly_-complete lattices correct
hoelzl
parents: 51641
diff changeset
     9
imports Main Conditionally_Complete_Lattices
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    10
begin
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    11
57953
69728243a614 updated to named_theorems;
wenzelm
parents: 57448
diff changeset
    12
named_theorems continuous_intros "structural introduction rules for continuity"
69728243a614 updated to named_theorems;
wenzelm
parents: 57448
diff changeset
    13
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56329
diff changeset
    14
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
    15
subsection \<open>Topological space\<close>
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    16
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    17
class "open" =
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    18
  fixes "open" :: "'a set \<Rightarrow> bool"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    19
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    20
class topological_space = "open" +
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    21
  assumes open_UNIV [simp, intro]: "open UNIV"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    22
  assumes open_Int [intro]: "open S \<Longrightarrow> open T \<Longrightarrow> open (S \<inter> T)"
60585
48fdff264eb2 tuned whitespace;
wenzelm
parents: 60182
diff changeset
    23
  assumes open_Union [intro]: "\<forall>S\<in>K. open S \<Longrightarrow> open (\<Union>K)"
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    24
begin
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    25
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    26
definition
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    27
  closed :: "'a set \<Rightarrow> bool" where
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    28
  "closed S \<longleftrightarrow> open (- S)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    29
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56329
diff changeset
    30
lemma open_empty [continuous_intros, intro, simp]: "open {}"
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    31
  using open_Union [of "{}"] by simp
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    32
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56329
diff changeset
    33
lemma open_Un [continuous_intros, intro]: "open S \<Longrightarrow> open T \<Longrightarrow> open (S \<union> T)"
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    34
  using open_Union [of "{S, T}"] by simp
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    35
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56329
diff changeset
    36
lemma open_UN [continuous_intros, intro]: "\<forall>x\<in>A. open (B x) \<Longrightarrow> open (\<Union>x\<in>A. B x)"
56166
9a241bc276cd normalising simp rules for compound operators
haftmann
parents: 56020
diff changeset
    37
  using open_Union [of "B ` A"] by simp
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    38
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56329
diff changeset
    39
lemma open_Inter [continuous_intros, intro]: "finite S \<Longrightarrow> \<forall>T\<in>S. open T \<Longrightarrow> open (\<Inter>S)"
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    40
  by (induct set: finite) auto
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    41
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56329
diff changeset
    42
lemma open_INT [continuous_intros, intro]: "finite A \<Longrightarrow> \<forall>x\<in>A. open (B x) \<Longrightarrow> open (\<Inter>x\<in>A. B x)"
56166
9a241bc276cd normalising simp rules for compound operators
haftmann
parents: 56020
diff changeset
    43
  using open_Inter [of "B ` A"] by simp
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    44
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
    45
lemma openI:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
    46
  assumes "\<And>x. x \<in> S \<Longrightarrow> \<exists>T. open T \<and> x \<in> T \<and> T \<subseteq> S"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
    47
  shows "open S"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
    48
proof -
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
    49
  have "open (\<Union>{T. open T \<and> T \<subseteq> S})" by auto
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
    50
  moreover have "\<Union>{T. open T \<and> T \<subseteq> S} = S" by (auto dest!: assms)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
    51
  ultimately show "open S" by simp
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
    52
qed
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
    53
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56329
diff changeset
    54
lemma closed_empty [continuous_intros, intro, simp]:  "closed {}"
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    55
  unfolding closed_def by simp
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    56
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56329
diff changeset
    57
lemma closed_Un [continuous_intros, intro]: "closed S \<Longrightarrow> closed T \<Longrightarrow> closed (S \<union> T)"
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    58
  unfolding closed_def by auto
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    59
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56329
diff changeset
    60
lemma closed_UNIV [continuous_intros, intro, simp]: "closed UNIV"
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    61
  unfolding closed_def by simp
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    62
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56329
diff changeset
    63
lemma closed_Int [continuous_intros, intro]: "closed S \<Longrightarrow> closed T \<Longrightarrow> closed (S \<inter> T)"
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    64
  unfolding closed_def by auto
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    65
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56329
diff changeset
    66
lemma closed_INT [continuous_intros, intro]: "\<forall>x\<in>A. closed (B x) \<Longrightarrow> closed (\<Inter>x\<in>A. B x)"
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    67
  unfolding closed_def by auto
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    68
60585
48fdff264eb2 tuned whitespace;
wenzelm
parents: 60182
diff changeset
    69
lemma closed_Inter [continuous_intros, intro]: "\<forall>S\<in>K. closed S \<Longrightarrow> closed (\<Inter>K)"
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    70
  unfolding closed_def uminus_Inf by auto
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    71
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56329
diff changeset
    72
lemma closed_Union [continuous_intros, intro]: "finite S \<Longrightarrow> \<forall>T\<in>S. closed T \<Longrightarrow> closed (\<Union>S)"
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    73
  by (induct set: finite) auto
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    74
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56329
diff changeset
    75
lemma closed_UN [continuous_intros, intro]: "finite A \<Longrightarrow> \<forall>x\<in>A. closed (B x) \<Longrightarrow> closed (\<Union>x\<in>A. B x)"
56166
9a241bc276cd normalising simp rules for compound operators
haftmann
parents: 56020
diff changeset
    76
  using closed_Union [of "B ` A"] by simp
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    77
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    78
lemma open_closed: "open S \<longleftrightarrow> closed (- S)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    79
  unfolding closed_def by simp
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    80
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    81
lemma closed_open: "closed S \<longleftrightarrow> open (- S)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    82
  unfolding closed_def by simp
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    83
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56329
diff changeset
    84
lemma open_Diff [continuous_intros, intro]: "open S \<Longrightarrow> closed T \<Longrightarrow> open (S - T)"
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    85
  unfolding closed_open Diff_eq by (rule open_Int)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    86
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56329
diff changeset
    87
lemma closed_Diff [continuous_intros, intro]: "closed S \<Longrightarrow> open T \<Longrightarrow> closed (S - T)"
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    88
  unfolding open_closed Diff_eq by (rule closed_Int)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    89
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56329
diff changeset
    90
lemma open_Compl [continuous_intros, intro]: "closed S \<Longrightarrow> open (- S)"
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    91
  unfolding closed_open .
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    92
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56329
diff changeset
    93
lemma closed_Compl [continuous_intros, intro]: "open S \<Longrightarrow> closed (- S)"
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    94
  unfolding open_closed .
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
    95
57447
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
    96
lemma open_Collect_neg: "closed {x. P x} \<Longrightarrow> open {x. \<not> P x}"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
    97
  unfolding Collect_neg_eq by (rule open_Compl)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
    98
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
    99
lemma open_Collect_conj: assumes "open {x. P x}" "open {x. Q x}" shows "open {x. P x \<and> Q x}"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
   100
  using open_Int[OF assms] by (simp add: Int_def)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
   101
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
   102
lemma open_Collect_disj: assumes "open {x. P x}" "open {x. Q x}" shows "open {x. P x \<or> Q x}"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
   103
  using open_Un[OF assms] by (simp add: Un_def)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
   104
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
   105
lemma open_Collect_ex: "(\<And>i. open {x. P i x}) \<Longrightarrow> open {x. \<exists>i. P i x}"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
   106
  using open_UN[of UNIV "\<lambda>i. {x. P i x}"] unfolding Collect_ex_eq by simp 
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
   107
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
   108
lemma open_Collect_imp: "closed {x. P x} \<Longrightarrow> open {x. Q x} \<Longrightarrow> open {x. P x \<longrightarrow> Q x}"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
   109
  unfolding imp_conv_disj by (intro open_Collect_disj open_Collect_neg)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
   110
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
   111
lemma open_Collect_const: "open {x. P}"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
   112
  by (cases P) auto
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
   113
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
   114
lemma closed_Collect_neg: "open {x. P x} \<Longrightarrow> closed {x. \<not> P x}"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
   115
  unfolding Collect_neg_eq by (rule closed_Compl)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
   116
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
   117
lemma closed_Collect_conj: assumes "closed {x. P x}" "closed {x. Q x}" shows "closed {x. P x \<and> Q x}"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
   118
  using closed_Int[OF assms] by (simp add: Int_def)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
   119
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
   120
lemma closed_Collect_disj: assumes "closed {x. P x}" "closed {x. Q x}" shows "closed {x. P x \<or> Q x}"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
   121
  using closed_Un[OF assms] by (simp add: Un_def)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
   122
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
   123
lemma closed_Collect_all: "(\<And>i. closed {x. P i x}) \<Longrightarrow> closed {x. \<forall>i. P i x}"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
   124
  using closed_INT[of UNIV "\<lambda>i. {x. P i x}"] unfolding Collect_all_eq by simp 
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
   125
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
   126
lemma closed_Collect_imp: "open {x. P x} \<Longrightarrow> closed {x. Q x} \<Longrightarrow> closed {x. P x \<longrightarrow> Q x}"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
   127
  unfolding imp_conv_disj by (intro closed_Collect_disj closed_Collect_neg)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
   128
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
   129
lemma closed_Collect_const: "closed {x. P}"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
   130
  by (cases P) auto
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
   131
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   132
end
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   133
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
   134
subsection\<open>Hausdorff and other separation properties\<close>
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   135
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   136
class t0_space = topological_space +
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   137
  assumes t0_space: "x \<noteq> y \<Longrightarrow> \<exists>U. open U \<and> \<not> (x \<in> U \<longleftrightarrow> y \<in> U)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   138
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   139
class t1_space = topological_space +
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   140
  assumes t1_space: "x \<noteq> y \<Longrightarrow> \<exists>U. open U \<and> x \<in> U \<and> y \<notin> U"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   141
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   142
instance t1_space \<subseteq> t0_space
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   143
proof qed (fast dest: t1_space)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   144
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   145
lemma separation_t1:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   146
  fixes x y :: "'a::t1_space"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   147
  shows "x \<noteq> y \<longleftrightarrow> (\<exists>U. open U \<and> x \<in> U \<and> y \<notin> U)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   148
  using t1_space[of x y] by blast
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   149
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   150
lemma closed_singleton:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   151
  fixes a :: "'a::t1_space"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   152
  shows "closed {a}"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   153
proof -
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   154
  let ?T = "\<Union>{S. open S \<and> a \<notin> S}"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   155
  have "open ?T" by (simp add: open_Union)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   156
  also have "?T = - {a}"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   157
    by (simp add: set_eq_iff separation_t1, auto)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   158
  finally show "closed {a}" unfolding closed_def .
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   159
qed
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   160
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56329
diff changeset
   161
lemma closed_insert [continuous_intros, simp]:
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   162
  fixes a :: "'a::t1_space"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   163
  assumes "closed S" shows "closed (insert a S)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   164
proof -
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   165
  from closed_singleton assms
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   166
  have "closed ({a} \<union> S)" by (rule closed_Un)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   167
  thus "closed (insert a S)" by simp
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   168
qed
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   169
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   170
lemma finite_imp_closed:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   171
  fixes S :: "'a::t1_space set"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   172
  shows "finite S \<Longrightarrow> closed S"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   173
by (induct set: finite, simp_all)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   174
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
   175
text \<open>T2 spaces are also known as Hausdorff spaces.\<close>
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   176
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   177
class t2_space = topological_space +
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   178
  assumes hausdorff: "x \<noteq> y \<Longrightarrow> \<exists>U V. open U \<and> open V \<and> x \<in> U \<and> y \<in> V \<and> U \<inter> V = {}"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   179
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   180
instance t2_space \<subseteq> t1_space
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   181
proof qed (fast dest: hausdorff)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   182
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   183
lemma separation_t2:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   184
  fixes x y :: "'a::t2_space"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   185
  shows "x \<noteq> y \<longleftrightarrow> (\<exists>U V. open U \<and> open V \<and> x \<in> U \<and> y \<in> V \<and> U \<inter> V = {})"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   186
  using hausdorff[of x y] by blast
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   187
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   188
lemma separation_t0:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   189
  fixes x y :: "'a::t0_space"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   190
  shows "x \<noteq> y \<longleftrightarrow> (\<exists>U. open U \<and> ~(x\<in>U \<longleftrightarrow> y\<in>U))"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   191
  using t0_space[of x y] by blast
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   192
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
   193
text \<open>A perfect space is a topological space with no isolated points.\<close>
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   194
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   195
class perfect_space = topological_space +
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   196
  assumes not_open_singleton: "\<not> open {x}"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   197
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   198
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
   199
subsection \<open>Generators for toplogies\<close>
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   200
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   201
inductive generate_topology for S where
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   202
  UNIV: "generate_topology S UNIV"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   203
| Int: "generate_topology S a \<Longrightarrow> generate_topology S b \<Longrightarrow> generate_topology S (a \<inter> b)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   204
| UN: "(\<And>k. k \<in> K \<Longrightarrow> generate_topology S k) \<Longrightarrow> generate_topology S (\<Union>K)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   205
| Basis: "s \<in> S \<Longrightarrow> generate_topology S s"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   206
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   207
hide_fact (open) UNIV Int UN Basis 
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   208
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   209
lemma generate_topology_Union: 
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   210
  "(\<And>k. k \<in> I \<Longrightarrow> generate_topology S (K k)) \<Longrightarrow> generate_topology S (\<Union>k\<in>I. K k)"
56166
9a241bc276cd normalising simp rules for compound operators
haftmann
parents: 56020
diff changeset
   211
  using generate_topology.UN [of "K ` I"] by auto
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   212
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   213
lemma topological_space_generate_topology:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   214
  "class.topological_space (generate_topology S)"
61169
4de9ff3ea29a tuned proofs -- less legacy;
wenzelm
parents: 60762
diff changeset
   215
  by standard (auto intro: generate_topology.intros)
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   216
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
   217
subsection \<open>Order topologies\<close>
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   218
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   219
class order_topology = order + "open" +
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   220
  assumes open_generated_order: "open = generate_topology (range (\<lambda>a. {..< a}) \<union> range (\<lambda>a. {a <..}))"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   221
begin
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   222
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   223
subclass topological_space
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   224
  unfolding open_generated_order
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   225
  by (rule topological_space_generate_topology)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   226
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56329
diff changeset
   227
lemma open_greaterThan [continuous_intros, simp]: "open {a <..}"
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   228
  unfolding open_generated_order by (auto intro: generate_topology.Basis)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   229
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56329
diff changeset
   230
lemma open_lessThan [continuous_intros, simp]: "open {..< a}"
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   231
  unfolding open_generated_order by (auto intro: generate_topology.Basis)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   232
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56329
diff changeset
   233
lemma open_greaterThanLessThan [continuous_intros, simp]: "open {a <..< b}"
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   234
   unfolding greaterThanLessThan_eq by (simp add: open_Int)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   235
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   236
end
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   237
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   238
class linorder_topology = linorder + order_topology
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   239
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56329
diff changeset
   240
lemma closed_atMost [continuous_intros, simp]: "closed {.. a::'a::linorder_topology}"
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   241
  by (simp add: closed_open)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   242
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56329
diff changeset
   243
lemma closed_atLeast [continuous_intros, simp]: "closed {a::'a::linorder_topology ..}"
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   244
  by (simp add: closed_open)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   245
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56329
diff changeset
   246
lemma closed_atLeastAtMost [continuous_intros, simp]: "closed {a::'a::linorder_topology .. b}"
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   247
proof -
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   248
  have "{a .. b} = {a ..} \<inter> {.. b}"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   249
    by auto
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   250
  then show ?thesis
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   251
    by (simp add: closed_Int)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   252
qed
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   253
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   254
lemma (in linorder) less_separate:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   255
  assumes "x < y"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   256
  shows "\<exists>a b. x \<in> {..< a} \<and> y \<in> {b <..} \<and> {..< a} \<inter> {b <..} = {}"
53381
355a4cac5440 tuned proofs -- less guessing;
wenzelm
parents: 53374
diff changeset
   257
proof (cases "\<exists>z. x < z \<and> z < y")
355a4cac5440 tuned proofs -- less guessing;
wenzelm
parents: 53374
diff changeset
   258
  case True
355a4cac5440 tuned proofs -- less guessing;
wenzelm
parents: 53374
diff changeset
   259
  then obtain z where "x < z \<and> z < y" ..
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   260
  then have "x \<in> {..< z} \<and> y \<in> {z <..} \<and> {z <..} \<inter> {..< z} = {}"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   261
    by auto
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   262
  then show ?thesis by blast
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   263
next
53381
355a4cac5440 tuned proofs -- less guessing;
wenzelm
parents: 53374
diff changeset
   264
  case False
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
   265
  with \<open>x < y\<close> have "x \<in> {..< y} \<and> y \<in> {x <..} \<and> {x <..} \<inter> {..< y} = {}"
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   266
    by auto
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   267
  then show ?thesis by blast
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   268
qed
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   269
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   270
instance linorder_topology \<subseteq> t2_space
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   271
proof
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   272
  fix x y :: 'a
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   273
  from less_separate[of x y] less_separate[of y x]
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   274
  show "x \<noteq> y \<Longrightarrow> \<exists>U V. open U \<and> open V \<and> x \<in> U \<and> y \<in> V \<and> U \<inter> V = {}"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   275
    by (elim neqE) (metis open_lessThan open_greaterThan Int_commute)+
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   276
qed
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   277
51480
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
   278
lemma (in linorder_topology) open_right:
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
   279
  assumes "open S" "x \<in> S" and gt_ex: "x < y" shows "\<exists>b>x. {x ..< b} \<subseteq> S"
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   280
  using assms unfolding open_generated_order
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   281
proof induction
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   282
  case (Int A B)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   283
  then obtain a b where "a > x" "{x ..< a} \<subseteq> A"  "b > x" "{x ..< b} \<subseteq> B" by auto
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   284
  then show ?case by (auto intro!: exI[of _ "min a b"])
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   285
next
51480
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
   286
  case (Basis S) then show ?case by (fastforce intro: exI[of _ y] gt_ex)
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
   287
qed blast+
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   288
51480
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
   289
lemma (in linorder_topology) open_left:
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
   290
  assumes "open S" "x \<in> S" and lt_ex: "y < x" shows "\<exists>b<x. {b <.. x} \<subseteq> S"
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   291
  using assms unfolding open_generated_order
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   292
proof induction
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   293
  case (Int A B)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   294
  then obtain a b where "a < x" "{a <.. x} \<subseteq> A"  "b < x" "{b <.. x} \<subseteq> B" by auto
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   295
  then show ?case by (auto intro!: exI[of _ "max a b"])
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   296
next
51480
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
   297
  case (Basis S) then show ?case by (fastforce intro: exI[of _ y] lt_ex)
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
   298
qed blast+
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   299
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
   300
subsubsection \<open>Boolean is an order topology\<close>
59106
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
   301
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
   302
text \<open>It also is a discrete topology, but don't have a type class for it (yet).\<close>
59106
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
   303
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
   304
instantiation bool :: order_topology
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
   305
begin
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
   306
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
   307
definition open_bool :: "bool set \<Rightarrow> bool" where
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
   308
  "open_bool = generate_topology (range (\<lambda>a. {..< a}) \<union> range (\<lambda>a. {a <..}))"
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
   309
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
   310
instance
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
   311
  proof qed (rule open_bool_def)
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
   312
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
   313
end
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
   314
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
   315
lemma open_bool[simp, intro!]: "open (A::bool set)"
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
   316
proof -
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
   317
  have *: "{False <..} = {True}" "{..< True} = {False}"
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
   318
    by auto
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
   319
  have "A = UNIV \<or> A = {} \<or> A = {False <..} \<or> A = {..< True}"
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
   320
    using subset_UNIV[of A] unfolding UNIV_bool * by auto
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
   321
  then show "open A"
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
   322
    by auto
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
   323
qed
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
   324
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
   325
subsubsection \<open>Topological filters\<close>
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   326
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   327
definition (in topological_space) nhds :: "'a \<Rightarrow> 'a filter"
57276
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   328
  where "nhds a = (INF S:{S. open S \<and> a \<in> S}. principal S)"
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   329
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
   330
definition (in topological_space) at_within :: "'a \<Rightarrow> 'a set \<Rightarrow> 'a filter" ("at (_) within (_)" [1000, 60] 60)
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
   331
  where "at a within s = inf (nhds a) (principal (s - {a}))"
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
   332
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
   333
abbreviation (in topological_space) at :: "'a \<Rightarrow> 'a filter" ("at") where
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
   334
  "at x \<equiv> at x within (CONST UNIV)"
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   335
51473
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
   336
abbreviation (in order_topology) at_right :: "'a \<Rightarrow> 'a filter" where
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   337
  "at_right x \<equiv> at x within {x <..}"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   338
51473
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
   339
abbreviation (in order_topology) at_left :: "'a \<Rightarrow> 'a filter" where
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   340
  "at_left x \<equiv> at x within {..< x}"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   341
57448
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   342
lemma (in topological_space) nhds_generated_topology:
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   343
  "open = generate_topology T \<Longrightarrow> nhds x = (INF S:{S\<in>T. x \<in> S}. principal S)"
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   344
  unfolding nhds_def
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   345
proof (safe intro!: antisym INF_greatest)
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   346
  fix S assume "generate_topology T S" "x \<in> S"
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   347
  then show "(INF S:{S \<in> T. x \<in> S}. principal S) \<le> principal S"
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   348
    by induction 
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   349
       (auto intro: INF_lower order_trans simp add: inf_principal[symmetric] simp del: inf_principal)
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   350
qed (auto intro!: INF_lower intro: generate_topology.intros)
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   351
51473
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
   352
lemma (in topological_space) eventually_nhds:
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   353
  "eventually P (nhds a) \<longleftrightarrow> (\<exists>S. open S \<and> a \<in> S \<and> (\<forall>x\<in>S. P x))"
57276
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   354
  unfolding nhds_def by (subst eventually_INF_base) (auto simp: eventually_principal)
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   355
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   356
lemma (in topological_space) eventually_nhds_in_open: 
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   357
  "open s \<Longrightarrow> x \<in> s \<Longrightarrow> eventually (\<lambda>y. y \<in> s) (nhds x)"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   358
  by (subst eventually_nhds) blast
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   359
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   360
lemma nhds_neq_bot [simp]: "nhds a \<noteq> bot"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   361
  unfolding trivial_limit_def eventually_nhds by simp
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   362
60182
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60172
diff changeset
   363
lemma (in t1_space) t1_space_nhds:
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60172
diff changeset
   364
  "x \<noteq> y \<Longrightarrow> (\<forall>\<^sub>F x in nhds x. x \<noteq> y)"
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60172
diff changeset
   365
  by (drule t1_space) (auto simp: eventually_nhds)
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60172
diff changeset
   366
57448
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   367
lemma at_within_eq: "at x within s = (INF S:{S. open S \<and> x \<in> S}. principal (S \<inter> s - {x}))"
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   368
  unfolding nhds_def at_within_def by (subst INF_inf_const2[symmetric]) (auto simp add: Diff_Int_distrib)
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   369
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
   370
lemma eventually_at_filter:
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
   371
  "eventually P (at a within s) \<longleftrightarrow> eventually (\<lambda>x. x \<noteq> a \<longrightarrow> x \<in> s \<longrightarrow> P x) (nhds a)"
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
   372
  unfolding at_within_def eventually_inf_principal by (simp add: imp_conjL[symmetric] conj_commute)
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
   373
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
   374
lemma at_le: "s \<subseteq> t \<Longrightarrow> at x within s \<le> at x within t"
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
   375
  unfolding at_within_def by (intro inf_mono) auto
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
   376
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   377
lemma eventually_at_topological:
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
   378
  "eventually P (at a within s) \<longleftrightarrow> (\<exists>S. open S \<and> a \<in> S \<and> (\<forall>x\<in>S. x \<noteq> a \<longrightarrow> x \<in> s \<longrightarrow> P x))"
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
   379
  unfolding eventually_nhds eventually_at_filter by simp
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   380
51481
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
   381
lemma at_within_open: "a \<in> S \<Longrightarrow> open S \<Longrightarrow> at a within S = at a"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
   382
  unfolding filter_eq_iff eventually_at_topological by (metis open_Int Int_iff UNIV_I)
51481
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
   383
61234
a9e6052188fa New lemmas
paulson <lp15@cam.ac.uk>
parents: 61204
diff changeset
   384
lemma at_within_open_NO_MATCH:
a9e6052188fa New lemmas
paulson <lp15@cam.ac.uk>
parents: 61204
diff changeset
   385
  "a \<in> s \<Longrightarrow> open s \<Longrightarrow> NO_MATCH UNIV s \<Longrightarrow> at a within s = at a"
a9e6052188fa New lemmas
paulson <lp15@cam.ac.uk>
parents: 61204
diff changeset
   386
  by (simp only: at_within_open)
a9e6052188fa New lemmas
paulson <lp15@cam.ac.uk>
parents: 61204
diff changeset
   387
61245
b77bf45efe21 prove Liminf_inverse_ereal
hoelzl
parents: 61234
diff changeset
   388
lemma at_within_nhd:
b77bf45efe21 prove Liminf_inverse_ereal
hoelzl
parents: 61234
diff changeset
   389
  assumes "x \<in> S" "open S" "T \<inter> S - {x} = U \<inter> S - {x}"
b77bf45efe21 prove Liminf_inverse_ereal
hoelzl
parents: 61234
diff changeset
   390
  shows "at x within T = at x within U"
b77bf45efe21 prove Liminf_inverse_ereal
hoelzl
parents: 61234
diff changeset
   391
  unfolding filter_eq_iff eventually_at_filter
b77bf45efe21 prove Liminf_inverse_ereal
hoelzl
parents: 61234
diff changeset
   392
proof (intro allI eventually_subst)
b77bf45efe21 prove Liminf_inverse_ereal
hoelzl
parents: 61234
diff changeset
   393
  have "eventually (\<lambda>x. x \<in> S) (nhds x)"
b77bf45efe21 prove Liminf_inverse_ereal
hoelzl
parents: 61234
diff changeset
   394
    using \<open>x \<in> S\<close> \<open>open S\<close> by (auto simp: eventually_nhds)
b77bf45efe21 prove Liminf_inverse_ereal
hoelzl
parents: 61234
diff changeset
   395
  then show "\<forall>\<^sub>F n in nhds x. (n \<noteq> x \<longrightarrow> n \<in> T \<longrightarrow> P n) = (n \<noteq> x \<longrightarrow> n \<in> U \<longrightarrow> P n)" for P  
b77bf45efe21 prove Liminf_inverse_ereal
hoelzl
parents: 61234
diff changeset
   396
    by eventually_elim (insert \<open>T \<inter> S - {x} = U \<inter> S - {x}\<close>, blast)
b77bf45efe21 prove Liminf_inverse_ereal
hoelzl
parents: 61234
diff changeset
   397
qed
b77bf45efe21 prove Liminf_inverse_ereal
hoelzl
parents: 61234
diff changeset
   398
53859
e6cb01686f7b replace lemma with more general simp rule
huffman
parents: 53381
diff changeset
   399
lemma at_within_empty [simp]: "at a within {} = bot"
e6cb01686f7b replace lemma with more general simp rule
huffman
parents: 53381
diff changeset
   400
  unfolding at_within_def by simp
e6cb01686f7b replace lemma with more general simp rule
huffman
parents: 53381
diff changeset
   401
53860
f2d683432580 factor out new lemma
huffman
parents: 53859
diff changeset
   402
lemma at_within_union: "at x within (S \<union> T) = sup (at x within S) (at x within T)"
f2d683432580 factor out new lemma
huffman
parents: 53859
diff changeset
   403
  unfolding filter_eq_iff eventually_sup eventually_at_filter
f2d683432580 factor out new lemma
huffman
parents: 53859
diff changeset
   404
  by (auto elim!: eventually_rev_mp)
f2d683432580 factor out new lemma
huffman
parents: 53859
diff changeset
   405
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   406
lemma at_eq_bot_iff: "at a = bot \<longleftrightarrow> open {a}"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   407
  unfolding trivial_limit_def eventually_at_topological
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   408
  by (safe, case_tac "S = {a}", simp, fast, fast)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   409
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   410
lemma at_neq_bot [simp]: "at (a::'a::perfect_space) \<noteq> bot"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   411
  by (simp add: at_eq_bot_iff not_open_singleton)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   412
57448
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   413
lemma (in order_topology) nhds_order: "nhds x =
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   414
  inf (INF a:{x <..}. principal {..< a}) (INF a:{..< x}. principal {a <..})"
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   415
proof -
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   416
  have 1: "{S \<in> range lessThan \<union> range greaterThan. x \<in> S} = 
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   417
      (\<lambda>a. {..< a}) ` {x <..} \<union> (\<lambda>a. {a <..}) ` {..< x}"
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   418
    by auto
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   419
  show ?thesis
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   420
    unfolding nhds_generated_topology[OF open_generated_order] INF_union 1 INF_image comp_def ..
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   421
qed
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   422
57448
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   423
lemma (in linorder_topology) at_within_order: "UNIV \<noteq> {x} \<Longrightarrow> 
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   424
  at x within s = inf (INF a:{x <..}. principal ({..< a} \<inter> s - {x}))
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   425
                      (INF a:{..< x}. principal ({a <..} \<inter> s - {x}))"
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   426
proof (cases "{x <..} = {}" "{..< x} = {}" rule: case_split[case_product case_split])
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   427
  assume "UNIV \<noteq> {x}" "{x<..} = {}" "{..< x} = {}"
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   428
  moreover have "UNIV = {..< x} \<union> {x} \<union> {x <..}"
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   429
    by auto
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   430
  ultimately show ?thesis
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   431
    by auto
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   432
qed (auto simp: at_within_def nhds_order Int_Diff inf_principal[symmetric] INF_inf_const2
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   433
                inf_sup_aci[where 'a="'a filter"]
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   434
          simp del: inf_principal)
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   435
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   436
lemma (in linorder_topology) at_left_eq:
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   437
  "y < x \<Longrightarrow> at_left x = (INF a:{..< x}. principal {a <..< x})"
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   438
  by (subst at_within_order)
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   439
     (auto simp: greaterThan_Int_greaterThan greaterThanLessThan_eq[symmetric] min.absorb2 INF_constant
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   440
           intro!: INF_lower2 inf_absorb2)
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   441
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   442
lemma (in linorder_topology) eventually_at_left:
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   443
  "y < x \<Longrightarrow> eventually P (at_left x) \<longleftrightarrow> (\<exists>b<x. \<forall>y>b. y < x \<longrightarrow> P y)"
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   444
  unfolding at_left_eq by (subst eventually_INF_base) (auto simp: eventually_principal Ball_def)
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   445
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   446
lemma (in linorder_topology) at_right_eq:
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   447
  "x < y \<Longrightarrow> at_right x = (INF a:{x <..}. principal {x <..< a})"
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   448
  by (subst at_within_order)
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   449
     (auto simp: lessThan_Int_lessThan greaterThanLessThan_eq[symmetric] max.absorb2 INF_constant Int_commute
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   450
           intro!: INF_lower2 inf_absorb1)
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   451
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   452
lemma (in linorder_topology) eventually_at_right:
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   453
  "x < y \<Longrightarrow> eventually P (at_right x) \<longleftrightarrow> (\<exists>b>x. \<forall>y>x. y < b \<longrightarrow> P y)"
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   454
  unfolding at_right_eq by (subst eventually_INF_base) (auto simp: eventually_principal Ball_def)
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   455
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57025
diff changeset
   456
lemma trivial_limit_at_right_top: "at_right (top::_::{order_top, linorder_topology}) = bot"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57025
diff changeset
   457
  unfolding filter_eq_iff eventually_at_topological by auto
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57025
diff changeset
   458
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57025
diff changeset
   459
lemma trivial_limit_at_left_bot: "at_left (bot::_::{order_bot, linorder_topology}) = bot"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57025
diff changeset
   460
  unfolding filter_eq_iff eventually_at_topological by auto
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57025
diff changeset
   461
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   462
lemma trivial_limit_at_left_real [simp]:
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57025
diff changeset
   463
  "\<not> trivial_limit (at_left (x::'a::{no_bot, dense_order, linorder_topology}))"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57025
diff changeset
   464
  using lt_ex[of x]
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57025
diff changeset
   465
  by safe (auto simp add: trivial_limit_def eventually_at_left dest: dense)
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   466
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   467
lemma trivial_limit_at_right_real [simp]:
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57025
diff changeset
   468
  "\<not> trivial_limit (at_right (x::'a::{no_top, dense_order, linorder_topology}))"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57025
diff changeset
   469
  using gt_ex[of x]
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57025
diff changeset
   470
  by safe (auto simp add: trivial_limit_def eventually_at_right dest: dense)
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   472
lemma at_eq_sup_left_right: "at (x::'a::linorder_topology) = sup (at_left x) (at_right x)"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
   473
  by (auto simp: eventually_at_filter filter_eq_iff eventually_sup 
61810
3c5040d5694a sorted out eventually_mono
paulson <lp15@cam.ac.uk>
parents: 61806
diff changeset
   474
           elim: eventually_elim2 eventually_mono)
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   475
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   476
lemma eventually_at_split:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   477
  "eventually P (at (x::'a::linorder_topology)) \<longleftrightarrow> eventually P (at_left x) \<and> eventually P (at_right x)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   478
  by (subst at_eq_sup_left_right) (simp add: eventually_sup)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   479
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
   480
subsubsection \<open>Tendsto\<close>
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   481
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   482
abbreviation (in topological_space)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   483
  tendsto :: "('b \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'b filter \<Rightarrow> bool" (infixr "--->" 55) where
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   484
  "(f ---> l) F \<equiv> filterlim f (nhds l) F"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   485
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   486
definition (in t2_space) Lim :: "'f filter \<Rightarrow> ('f \<Rightarrow> 'a) \<Rightarrow> 'a" where
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   487
  "Lim A f = (THE l. (f ---> l) A)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   488
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   489
lemma tendsto_eq_rhs: "(f ---> x) F \<Longrightarrow> x = y \<Longrightarrow> (f ---> y) F"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   490
  by simp
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   491
57953
69728243a614 updated to named_theorems;
wenzelm
parents: 57448
diff changeset
   492
named_theorems tendsto_intros "introduction rules for tendsto"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
   493
setup \<open>
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   494
  Global_Theory.add_thms_dynamic (@{binding tendsto_eq_intros},
57953
69728243a614 updated to named_theorems;
wenzelm
parents: 57448
diff changeset
   495
    fn context =>
69728243a614 updated to named_theorems;
wenzelm
parents: 57448
diff changeset
   496
      Named_Theorems.get (Context.proof_of context) @{named_theorems tendsto_intros}
69728243a614 updated to named_theorems;
wenzelm
parents: 57448
diff changeset
   497
      |> map_filter (try (fn thm => @{thm tendsto_eq_rhs} OF [thm])))
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
   498
\<close>
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   499
51473
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
   500
lemma (in topological_space) tendsto_def:
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
   501
   "(f ---> l) F \<longleftrightarrow> (\<forall>S. open S \<longrightarrow> l \<in> S \<longrightarrow> eventually (\<lambda>x. f x \<in> S) F)"
57276
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   502
   unfolding nhds_def filterlim_INF filterlim_principal by auto
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   503
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   504
lemma tendsto_cong:
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   505
  assumes "eventually (\<lambda>x. f x = g x) F"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   506
  shows   "(f ---> c) F \<longleftrightarrow> (g ---> c) F"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   507
  by (rule filterlim_cong[OF refl refl assms])
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   508
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   509
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   510
lemma tendsto_mono: "F \<le> F' \<Longrightarrow> (f ---> l) F' \<Longrightarrow> (f ---> l) F"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   511
  unfolding tendsto_def le_filter_def by fast
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   512
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
   513
lemma tendsto_within_subset: "(f ---> l) (at x within S) \<Longrightarrow> T \<subseteq> S \<Longrightarrow> (f ---> l) (at x within T)"
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
   514
  by (blast intro: tendsto_mono at_le)
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
   515
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
   516
lemma filterlim_at:
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
   517
  "(LIM x F. f x :> at b within s) \<longleftrightarrow> (eventually (\<lambda>x. f x \<in> s \<and> f x \<noteq> b) F \<and> (f ---> b) F)"
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
   518
  by (simp add: at_within_def filterlim_inf filterlim_principal conj_commute)
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
   519
51473
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
   520
lemma (in topological_space) topological_tendstoI:
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
   521
  "(\<And>S. open S \<Longrightarrow> l \<in> S \<Longrightarrow> eventually (\<lambda>x. f x \<in> S) F) \<Longrightarrow> (f ---> l) F"
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   522
  unfolding tendsto_def by auto
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   523
51473
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
   524
lemma (in topological_space) topological_tendstoD:
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   525
  "(f ---> l) F \<Longrightarrow> open S \<Longrightarrow> l \<in> S \<Longrightarrow> eventually (\<lambda>x. f x \<in> S) F"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   526
  unfolding tendsto_def by auto
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   527
57448
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   528
lemma (in order_topology) order_tendsto_iff:
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   529
  "(f ---> x) F \<longleftrightarrow> (\<forall>l<x. eventually (\<lambda>x. l < f x) F) \<and> (\<forall>u>x. eventually (\<lambda>x. f x < u) F)"
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   530
  unfolding nhds_order filterlim_inf filterlim_INF filterlim_principal by auto
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   531
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   532
lemma (in order_topology) order_tendstoI:
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   533
  "(\<And>a. a < y \<Longrightarrow> eventually (\<lambda>x. a < f x) F) \<Longrightarrow> (\<And>a. y < a \<Longrightarrow> eventually (\<lambda>x. f x < a) F) \<Longrightarrow>
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   534
    (f ---> y) F"
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   535
  unfolding order_tendsto_iff by auto
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   536
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   537
lemma (in order_topology) order_tendstoD:
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   538
  assumes "(f ---> y) F"
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   539
  shows "a < y \<Longrightarrow> eventually (\<lambda>x. a < f x) F"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   540
    and "y < a \<Longrightarrow> eventually (\<lambda>x. f x < a) F"
57448
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   541
  using assms unfolding order_tendsto_iff by auto
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   542
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   543
lemma tendsto_bot [simp]: "(f ---> a) bot"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   544
  unfolding tendsto_def by simp
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   545
57448
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   546
lemma (in linorder_topology) tendsto_max:
56949
d1a937cbf858 clean up Lebesgue integration
hoelzl
parents: 56524
diff changeset
   547
  assumes X: "(X ---> x) net"
d1a937cbf858 clean up Lebesgue integration
hoelzl
parents: 56524
diff changeset
   548
  assumes Y: "(Y ---> y) net"
d1a937cbf858 clean up Lebesgue integration
hoelzl
parents: 56524
diff changeset
   549
  shows "((\<lambda>x. max (X x) (Y x)) ---> max x y) net"
d1a937cbf858 clean up Lebesgue integration
hoelzl
parents: 56524
diff changeset
   550
proof (rule order_tendstoI)
d1a937cbf858 clean up Lebesgue integration
hoelzl
parents: 56524
diff changeset
   551
  fix a assume "a < max x y"
d1a937cbf858 clean up Lebesgue integration
hoelzl
parents: 56524
diff changeset
   552
  then show "eventually (\<lambda>x. a < max (X x) (Y x)) net"
d1a937cbf858 clean up Lebesgue integration
hoelzl
parents: 56524
diff changeset
   553
    using order_tendstoD(1)[OF X, of a] order_tendstoD(1)[OF Y, of a]
61810
3c5040d5694a sorted out eventually_mono
paulson <lp15@cam.ac.uk>
parents: 61806
diff changeset
   554
    by (auto simp: less_max_iff_disj elim: eventually_mono)
56949
d1a937cbf858 clean up Lebesgue integration
hoelzl
parents: 56524
diff changeset
   555
next
d1a937cbf858 clean up Lebesgue integration
hoelzl
parents: 56524
diff changeset
   556
  fix a assume "max x y < a"
d1a937cbf858 clean up Lebesgue integration
hoelzl
parents: 56524
diff changeset
   557
  then show "eventually (\<lambda>x. max (X x) (Y x) < a) net"
d1a937cbf858 clean up Lebesgue integration
hoelzl
parents: 56524
diff changeset
   558
    using order_tendstoD(2)[OF X, of a] order_tendstoD(2)[OF Y, of a]
d1a937cbf858 clean up Lebesgue integration
hoelzl
parents: 56524
diff changeset
   559
    by (auto simp: eventually_conj_iff)
d1a937cbf858 clean up Lebesgue integration
hoelzl
parents: 56524
diff changeset
   560
qed
d1a937cbf858 clean up Lebesgue integration
hoelzl
parents: 56524
diff changeset
   561
57448
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   562
lemma (in linorder_topology) tendsto_min:
56949
d1a937cbf858 clean up Lebesgue integration
hoelzl
parents: 56524
diff changeset
   563
  assumes X: "(X ---> x) net"
d1a937cbf858 clean up Lebesgue integration
hoelzl
parents: 56524
diff changeset
   564
  assumes Y: "(Y ---> y) net"
d1a937cbf858 clean up Lebesgue integration
hoelzl
parents: 56524
diff changeset
   565
  shows "((\<lambda>x. min (X x) (Y x)) ---> min x y) net"
d1a937cbf858 clean up Lebesgue integration
hoelzl
parents: 56524
diff changeset
   566
proof (rule order_tendstoI)
d1a937cbf858 clean up Lebesgue integration
hoelzl
parents: 56524
diff changeset
   567
  fix a assume "a < min x y"
d1a937cbf858 clean up Lebesgue integration
hoelzl
parents: 56524
diff changeset
   568
  then show "eventually (\<lambda>x. a < min (X x) (Y x)) net"
d1a937cbf858 clean up Lebesgue integration
hoelzl
parents: 56524
diff changeset
   569
    using order_tendstoD(1)[OF X, of a] order_tendstoD(1)[OF Y, of a]
d1a937cbf858 clean up Lebesgue integration
hoelzl
parents: 56524
diff changeset
   570
    by (auto simp: eventually_conj_iff)
d1a937cbf858 clean up Lebesgue integration
hoelzl
parents: 56524
diff changeset
   571
next
d1a937cbf858 clean up Lebesgue integration
hoelzl
parents: 56524
diff changeset
   572
  fix a assume "min x y < a"
d1a937cbf858 clean up Lebesgue integration
hoelzl
parents: 56524
diff changeset
   573
  then show "eventually (\<lambda>x. min (X x) (Y x) < a) net"
d1a937cbf858 clean up Lebesgue integration
hoelzl
parents: 56524
diff changeset
   574
    using order_tendstoD(2)[OF X, of a] order_tendstoD(2)[OF Y, of a]
61810
3c5040d5694a sorted out eventually_mono
paulson <lp15@cam.ac.uk>
parents: 61806
diff changeset
   575
    by (auto simp: min_less_iff_disj elim: eventually_mono)
56949
d1a937cbf858 clean up Lebesgue integration
hoelzl
parents: 56524
diff changeset
   576
qed
d1a937cbf858 clean up Lebesgue integration
hoelzl
parents: 56524
diff changeset
   577
58729
e8ecc79aee43 add tendsto_const and tendsto_ident_at as simp and intro rules
hoelzl
parents: 57953
diff changeset
   578
lemma tendsto_ident_at [tendsto_intros, simp, intro]: "((\<lambda>x. x) ---> a) (at a within s)"
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   579
  unfolding tendsto_def eventually_at_topological by auto
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   580
58729
e8ecc79aee43 add tendsto_const and tendsto_ident_at as simp and intro rules
hoelzl
parents: 57953
diff changeset
   581
lemma (in topological_space) tendsto_const [tendsto_intros, simp, intro]: "((\<lambda>x. k) ---> k) F"
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   582
  by (simp add: tendsto_def)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   583
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   584
lemma (in t2_space) tendsto_unique:
57448
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   585
  assumes "F \<noteq> bot" and "(f ---> a) F" and "(f ---> b) F"
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   586
  shows "a = b"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   587
proof (rule ccontr)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   588
  assume "a \<noteq> b"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   589
  obtain U V where "open U" "open V" "a \<in> U" "b \<in> V" "U \<inter> V = {}"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
   590
    using hausdorff [OF \<open>a \<noteq> b\<close>] by fast
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   591
  have "eventually (\<lambda>x. f x \<in> U) F"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
   592
    using \<open>(f ---> a) F\<close> \<open>open U\<close> \<open>a \<in> U\<close> by (rule topological_tendstoD)
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   593
  moreover
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   594
  have "eventually (\<lambda>x. f x \<in> V) F"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
   595
    using \<open>(f ---> b) F\<close> \<open>open V\<close> \<open>b \<in> V\<close> by (rule topological_tendstoD)
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   596
  ultimately
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   597
  have "eventually (\<lambda>x. False) F"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   598
  proof eventually_elim
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   599
    case (elim x)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   600
    hence "f x \<in> U \<inter> V" by simp
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
   601
    with \<open>U \<inter> V = {}\<close> show ?case by simp
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   602
  qed
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
   603
  with \<open>\<not> trivial_limit F\<close> show "False"
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   604
    by (simp add: trivial_limit_def)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   605
qed
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   606
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   607
lemma (in t2_space) tendsto_const_iff:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   608
  assumes "\<not> trivial_limit F" shows "((\<lambda>x. a :: 'a) ---> b) F \<longleftrightarrow> a = b"
58729
e8ecc79aee43 add tendsto_const and tendsto_ident_at as simp and intro rules
hoelzl
parents: 57953
diff changeset
   609
  by (auto intro!: tendsto_unique [OF assms tendsto_const])
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   610
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   611
lemma increasing_tendsto:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   612
  fixes f :: "_ \<Rightarrow> 'a::order_topology"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   613
  assumes bdd: "eventually (\<lambda>n. f n \<le> l) F"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   614
      and en: "\<And>x. x < l \<Longrightarrow> eventually (\<lambda>n. x < f n) F"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   615
  shows "(f ---> l) F"
61810
3c5040d5694a sorted out eventually_mono
paulson <lp15@cam.ac.uk>
parents: 61806
diff changeset
   616
  using assms by (intro order_tendstoI) (auto elim!: eventually_mono)
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   617
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   618
lemma decreasing_tendsto:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   619
  fixes f :: "_ \<Rightarrow> 'a::order_topology"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   620
  assumes bdd: "eventually (\<lambda>n. l \<le> f n) F"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   621
      and en: "\<And>x. l < x \<Longrightarrow> eventually (\<lambda>n. f n < x) F"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   622
  shows "(f ---> l) F"
61810
3c5040d5694a sorted out eventually_mono
paulson <lp15@cam.ac.uk>
parents: 61806
diff changeset
   623
  using assms by (intro order_tendstoI) (auto elim!: eventually_mono)
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   624
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   625
lemma tendsto_sandwich:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   626
  fixes f g h :: "'a \<Rightarrow> 'b::order_topology"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   627
  assumes ev: "eventually (\<lambda>n. f n \<le> g n) net" "eventually (\<lambda>n. g n \<le> h n) net"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   628
  assumes lim: "(f ---> c) net" "(h ---> c) net"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   629
  shows "(g ---> c) net"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   630
proof (rule order_tendstoI)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   631
  fix a show "a < c \<Longrightarrow> eventually (\<lambda>x. a < g x) net"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   632
    using order_tendstoD[OF lim(1), of a] ev by (auto elim: eventually_elim2)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   633
next
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   634
  fix a show "c < a \<Longrightarrow> eventually (\<lambda>x. g x < a) net"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   635
    using order_tendstoD[OF lim(2), of a] ev by (auto elim: eventually_elim2)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   636
qed
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   637
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   638
lemma limit_frequently_eq:
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   639
  assumes "F \<noteq> bot"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   640
  assumes "frequently (\<lambda>x. f x = c) F"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   641
  assumes "(f ---> d) F"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   642
  shows   "d = (c :: 'a :: t1_space)"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   643
proof (rule ccontr)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   644
  assume "d \<noteq> c"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   645
  from t1_space[OF this] obtain U where "open U" "d \<in> U" "c \<notin> U" by blast
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   646
  from this assms have "eventually (\<lambda>x. f x \<in> U) F" unfolding tendsto_def by blast
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61738
diff changeset
   647
  hence "eventually (\<lambda>x. f x \<noteq> c) F" by eventually_elim (insert \<open>c \<notin> U\<close>, blast)
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   648
  with assms(2) show False unfolding frequently_def by contradiction
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   649
qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   650
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   651
lemma tendsto_imp_eventually_ne:
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   652
  assumes "F \<noteq> bot" "(f ---> c) F" "c \<noteq> (c' :: 'a :: t1_space)"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   653
  shows   "eventually (\<lambda>z. f z \<noteq> c') F"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   654
proof (rule ccontr)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   655
  assume "\<not>eventually (\<lambda>z. f z \<noteq> c') F"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   656
  hence "frequently (\<lambda>z. f z = c') F" by (simp add: frequently_def)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   657
  from limit_frequently_eq[OF assms(1) this assms(2)] and assms(3) show False by contradiction
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   658
qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   659
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   660
lemma tendsto_le:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   661
  fixes f g :: "'a \<Rightarrow> 'b::linorder_topology"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   662
  assumes F: "\<not> trivial_limit F"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   663
  assumes x: "(f ---> x) F" and y: "(g ---> y) F"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   664
  assumes ev: "eventually (\<lambda>x. g x \<le> f x) F"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   665
  shows "y \<le> x"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   666
proof (rule ccontr)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   667
  assume "\<not> y \<le> x"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   668
  with less_separate[of x y] obtain a b where xy: "x < a" "b < y" "{..<a} \<inter> {b<..} = {}"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   669
    by (auto simp: not_le)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   670
  then have "eventually (\<lambda>x. f x < a) F" "eventually (\<lambda>x. b < g x) F"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   671
    using x y by (auto intro: order_tendstoD)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   672
  with ev have "eventually (\<lambda>x. False) F"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   673
    by eventually_elim (insert xy, fastforce)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   674
  with F show False
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   675
    by (simp add: eventually_False)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   676
qed
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   677
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   678
lemma tendsto_le_const:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   679
  fixes f :: "'a \<Rightarrow> 'b::linorder_topology"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   680
  assumes F: "\<not> trivial_limit F"
56289
d8d2a2b97168 Some useful lemmas
paulson <lp15@cam.ac.uk>
parents: 56231
diff changeset
   681
  assumes x: "(f ---> x) F" and a: "eventually (\<lambda>i. a \<le> f i) F"
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   682
  shows "a \<le> x"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   683
  using F x tendsto_const a by (rule tendsto_le)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   684
56289
d8d2a2b97168 Some useful lemmas
paulson <lp15@cam.ac.uk>
parents: 56231
diff changeset
   685
lemma tendsto_ge_const:
d8d2a2b97168 Some useful lemmas
paulson <lp15@cam.ac.uk>
parents: 56231
diff changeset
   686
  fixes f :: "'a \<Rightarrow> 'b::linorder_topology"
d8d2a2b97168 Some useful lemmas
paulson <lp15@cam.ac.uk>
parents: 56231
diff changeset
   687
  assumes F: "\<not> trivial_limit F"
d8d2a2b97168 Some useful lemmas
paulson <lp15@cam.ac.uk>
parents: 56231
diff changeset
   688
  assumes x: "(f ---> x) F" and a: "eventually (\<lambda>i. a \<ge> f i) F"
d8d2a2b97168 Some useful lemmas
paulson <lp15@cam.ac.uk>
parents: 56231
diff changeset
   689
  shows "a \<ge> x"
d8d2a2b97168 Some useful lemmas
paulson <lp15@cam.ac.uk>
parents: 56231
diff changeset
   690
  by (rule tendsto_le [OF F tendsto_const x a])
d8d2a2b97168 Some useful lemmas
paulson <lp15@cam.ac.uk>
parents: 56231
diff changeset
   691
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   692
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   693
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   694
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
   695
subsubsection \<open>Rules about @{const Lim}\<close>
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   696
57276
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
   697
lemma tendsto_Lim:
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   698
  "\<not>(trivial_limit net) \<Longrightarrow> (f ---> l) net \<Longrightarrow> Lim net f = l"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   699
  unfolding Lim_def using tendsto_unique[of net f] by auto
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   700
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
   701
lemma Lim_ident_at: "\<not> trivial_limit (at x within s) \<Longrightarrow> Lim (at x within s) (\<lambda>x. x) = x"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   702
  by (rule tendsto_Lim[OF _ tendsto_ident_at]) auto
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   703
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   704
lemma filterlim_at_bot_at_right:
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57025
diff changeset
   705
  fixes f :: "'a::linorder_topology \<Rightarrow> 'b::linorder"
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   706
  assumes mono: "\<And>x y. Q x \<Longrightarrow> Q y \<Longrightarrow> x \<le> y \<Longrightarrow> f x \<le> f y"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   707
  assumes bij: "\<And>x. P x \<Longrightarrow> f (g x) = x" "\<And>x. P x \<Longrightarrow> Q (g x)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   708
  assumes Q: "eventually Q (at_right a)" and bound: "\<And>b. Q b \<Longrightarrow> a < b"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   709
  assumes P: "eventually P at_bot"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   710
  shows "filterlim f at_bot (at_right a)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   711
proof -
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   712
  from P obtain x where x: "\<And>y. y \<le> x \<Longrightarrow> P y"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   713
    unfolding eventually_at_bot_linorder by auto
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   714
  show ?thesis
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   715
  proof (intro filterlim_at_bot_le[THEN iffD2] allI impI)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   716
    fix z assume "z \<le> x"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   717
    with x have "P z" by auto
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   718
    have "eventually (\<lambda>x. x \<le> g z) (at_right a)"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
   719
      using bound[OF bij(2)[OF \<open>P z\<close>]]
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
   720
      unfolding eventually_at_right[OF bound[OF bij(2)[OF \<open>P z\<close>]]] by (auto intro!: exI[of _ "g z"])
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   721
    with Q show "eventually (\<lambda>x. f x \<le> z) (at_right a)"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
   722
      by eventually_elim (metis bij \<open>P z\<close> mono)
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   723
  qed
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   724
qed
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   725
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   726
lemma filterlim_at_top_at_left:
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57025
diff changeset
   727
  fixes f :: "'a::linorder_topology \<Rightarrow> 'b::linorder"
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   728
  assumes mono: "\<And>x y. Q x \<Longrightarrow> Q y \<Longrightarrow> x \<le> y \<Longrightarrow> f x \<le> f y"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   729
  assumes bij: "\<And>x. P x \<Longrightarrow> f (g x) = x" "\<And>x. P x \<Longrightarrow> Q (g x)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   730
  assumes Q: "eventually Q (at_left a)" and bound: "\<And>b. Q b \<Longrightarrow> b < a"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   731
  assumes P: "eventually P at_top"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   732
  shows "filterlim f at_top (at_left a)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   733
proof -
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   734
  from P obtain x where x: "\<And>y. x \<le> y \<Longrightarrow> P y"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   735
    unfolding eventually_at_top_linorder by auto
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   736
  show ?thesis
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   737
  proof (intro filterlim_at_top_ge[THEN iffD2] allI impI)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   738
    fix z assume "x \<le> z"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   739
    with x have "P z" by auto
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   740
    have "eventually (\<lambda>x. g z \<le> x) (at_left a)"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
   741
      using bound[OF bij(2)[OF \<open>P z\<close>]]
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
   742
      unfolding eventually_at_left[OF bound[OF bij(2)[OF \<open>P z\<close>]]] by (auto intro!: exI[of _ "g z"])
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   743
    with Q show "eventually (\<lambda>x. z \<le> f x) (at_left a)"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
   744
      by eventually_elim (metis bij \<open>P z\<close> mono)
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   745
  qed
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   746
qed
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   747
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   748
lemma filterlim_split_at:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   749
  "filterlim f F (at_left x) \<Longrightarrow> filterlim f F (at_right x) \<Longrightarrow> filterlim f F (at (x::'a::linorder_topology))"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   750
  by (subst at_eq_sup_left_right) (rule filterlim_sup)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   751
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   752
lemma filterlim_at_split:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   753
  "filterlim f F (at (x::'a::linorder_topology)) \<longleftrightarrow> filterlim f F (at_left x) \<and> filterlim f F (at_right x)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   754
  by (subst at_eq_sup_left_right) (simp add: filterlim_def filtermap_sup)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   755
57025
e7fd64f82876 add various lemmas
hoelzl
parents: 56949
diff changeset
   756
lemma eventually_nhds_top:
e7fd64f82876 add various lemmas
hoelzl
parents: 56949
diff changeset
   757
  fixes P :: "'a :: {order_top, linorder_topology} \<Rightarrow> bool"
e7fd64f82876 add various lemmas
hoelzl
parents: 56949
diff changeset
   758
  assumes "(b::'a) < top"
e7fd64f82876 add various lemmas
hoelzl
parents: 56949
diff changeset
   759
  shows "eventually P (nhds top) \<longleftrightarrow> (\<exists>b<top. (\<forall>z. b < z \<longrightarrow> P z))"
e7fd64f82876 add various lemmas
hoelzl
parents: 56949
diff changeset
   760
  unfolding eventually_nhds
e7fd64f82876 add various lemmas
hoelzl
parents: 56949
diff changeset
   761
proof safe
e7fd64f82876 add various lemmas
hoelzl
parents: 56949
diff changeset
   762
  fix S :: "'a set" assume "open S" "top \<in> S"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
   763
  note open_left[OF this \<open>b < top\<close>]
57025
e7fd64f82876 add various lemmas
hoelzl
parents: 56949
diff changeset
   764
  moreover assume "\<forall>s\<in>S. P s"
e7fd64f82876 add various lemmas
hoelzl
parents: 56949
diff changeset
   765
  ultimately show "\<exists>b<top. \<forall>z>b. P z"
e7fd64f82876 add various lemmas
hoelzl
parents: 56949
diff changeset
   766
    by (auto simp: subset_eq Ball_def)
e7fd64f82876 add various lemmas
hoelzl
parents: 56949
diff changeset
   767
next
e7fd64f82876 add various lemmas
hoelzl
parents: 56949
diff changeset
   768
  fix b assume "b < top" "\<forall>z>b. P z"
e7fd64f82876 add various lemmas
hoelzl
parents: 56949
diff changeset
   769
  then show "\<exists>S. open S \<and> top \<in> S \<and> (\<forall>xa\<in>S. P xa)"
e7fd64f82876 add various lemmas
hoelzl
parents: 56949
diff changeset
   770
    by (intro exI[of _ "{b <..}"]) auto
e7fd64f82876 add various lemmas
hoelzl
parents: 56949
diff changeset
   771
qed
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   772
57447
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
   773
lemma tendsto_at_within_iff_tendsto_nhds:
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
   774
  "(g ---> g l) (at l within S) \<longleftrightarrow> (g ---> g l) (inf (nhds l) (principal S))"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
   775
  unfolding tendsto_def eventually_at_filter eventually_inf_principal
61810
3c5040d5694a sorted out eventually_mono
paulson <lp15@cam.ac.uk>
parents: 61806
diff changeset
   776
  by (intro ext all_cong imp_cong) (auto elim!: eventually_mono)
57447
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
   777
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
   778
subsection \<open>Limits on sequences\<close>
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   779
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   780
abbreviation (in topological_space)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   781
  LIMSEQ :: "[nat \<Rightarrow> 'a, 'a] \<Rightarrow> bool"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   782
    ("((_)/ ----> (_))" [60, 60] 60) where
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   783
  "X ----> L \<equiv> (X ---> L) sequentially"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   784
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   785
abbreviation (in t2_space) lim :: "(nat \<Rightarrow> 'a) \<Rightarrow> 'a" where
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   786
  "lim X \<equiv> Lim sequentially X"
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   787
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   788
definition (in topological_space) convergent :: "(nat \<Rightarrow> 'a) \<Rightarrow> bool" where
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   789
  "convergent X = (\<exists>L. X ----> L)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   790
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   791
lemma lim_def: "lim X = (THE L. X ----> L)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   792
  unfolding Lim_def ..
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   793
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
   794
subsubsection \<open>Monotone sequences and subsequences\<close>
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   795
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   796
definition
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   797
  monoseq :: "(nat \<Rightarrow> 'a::order) \<Rightarrow> bool" where
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61738
diff changeset
   798
    \<comment>\<open>Definition of monotonicity.
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   799
        The use of disjunction here complicates proofs considerably.
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   800
        One alternative is to add a Boolean argument to indicate the direction.
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
   801
        Another is to develop the notions of increasing and decreasing first.\<close>
56020
f92479477c52 introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
hoelzl
parents: 55945
diff changeset
   802
  "monoseq X = ((\<forall>m. \<forall>n\<ge>m. X m \<le> X n) \<or> (\<forall>m. \<forall>n\<ge>m. X n \<le> X m))"
f92479477c52 introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
hoelzl
parents: 55945
diff changeset
   803
f92479477c52 introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
hoelzl
parents: 55945
diff changeset
   804
abbreviation incseq :: "(nat \<Rightarrow> 'a::order) \<Rightarrow> bool" where
f92479477c52 introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
hoelzl
parents: 55945
diff changeset
   805
  "incseq X \<equiv> mono X"
f92479477c52 introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
hoelzl
parents: 55945
diff changeset
   806
f92479477c52 introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
hoelzl
parents: 55945
diff changeset
   807
lemma incseq_def: "incseq X \<longleftrightarrow> (\<forall>m. \<forall>n\<ge>m. X n \<ge> X m)"
f92479477c52 introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
hoelzl
parents: 55945
diff changeset
   808
  unfolding mono_def ..
f92479477c52 introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
hoelzl
parents: 55945
diff changeset
   809
f92479477c52 introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
hoelzl
parents: 55945
diff changeset
   810
abbreviation decseq :: "(nat \<Rightarrow> 'a::order) \<Rightarrow> bool" where
f92479477c52 introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
hoelzl
parents: 55945
diff changeset
   811
  "decseq X \<equiv> antimono X"
f92479477c52 introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
hoelzl
parents: 55945
diff changeset
   812
f92479477c52 introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
hoelzl
parents: 55945
diff changeset
   813
lemma decseq_def: "decseq X \<longleftrightarrow> (\<forall>m. \<forall>n\<ge>m. X n \<le> X m)"
f92479477c52 introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
hoelzl
parents: 55945
diff changeset
   814
  unfolding antimono_def ..
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   815
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   816
definition
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   817
  subseq :: "(nat \<Rightarrow> nat) \<Rightarrow> bool" where
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61738
diff changeset
   818
    \<comment>\<open>Definition of subsequence\<close>
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   819
  "subseq f \<longleftrightarrow> (\<forall>m. \<forall>n>m. f m < f n)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   820
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   821
lemma incseq_SucI:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   822
  "(\<And>n. X n \<le> X (Suc n)) \<Longrightarrow> incseq X"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   823
  using lift_Suc_mono_le[of X]
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   824
  by (auto simp: incseq_def)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   825
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   826
lemma incseqD: "\<And>i j. incseq f \<Longrightarrow> i \<le> j \<Longrightarrow> f i \<le> f j"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   827
  by (auto simp: incseq_def)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   828
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   829
lemma incseq_SucD: "incseq A \<Longrightarrow> A i \<le> A (Suc i)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   830
  using incseqD[of A i "Suc i"] by auto
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   831
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   832
lemma incseq_Suc_iff: "incseq f \<longleftrightarrow> (\<forall>n. f n \<le> f (Suc n))"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   833
  by (auto intro: incseq_SucI dest: incseq_SucD)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   834
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   835
lemma incseq_const[simp, intro]: "incseq (\<lambda>x. k)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   836
  unfolding incseq_def by auto
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   837
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   838
lemma decseq_SucI:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   839
  "(\<And>n. X (Suc n) \<le> X n) \<Longrightarrow> decseq X"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   840
  using order.lift_Suc_mono_le[OF dual_order, of X]
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   841
  by (auto simp: decseq_def)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   842
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   843
lemma decseqD: "\<And>i j. decseq f \<Longrightarrow> i \<le> j \<Longrightarrow> f j \<le> f i"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   844
  by (auto simp: decseq_def)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   845
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   846
lemma decseq_SucD: "decseq A \<Longrightarrow> A (Suc i) \<le> A i"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   847
  using decseqD[of A i "Suc i"] by auto
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   848
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   849
lemma decseq_Suc_iff: "decseq f \<longleftrightarrow> (\<forall>n. f (Suc n) \<le> f n)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   850
  by (auto intro: decseq_SucI dest: decseq_SucD)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   851
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   852
lemma decseq_const[simp, intro]: "decseq (\<lambda>x. k)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   853
  unfolding decseq_def by auto
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   854
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   855
lemma monoseq_iff: "monoseq X \<longleftrightarrow> incseq X \<or> decseq X"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   856
  unfolding monoseq_def incseq_def decseq_def ..
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   857
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   858
lemma monoseq_Suc:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   859
  "monoseq X \<longleftrightarrow> (\<forall>n. X n \<le> X (Suc n)) \<or> (\<forall>n. X (Suc n) \<le> X n)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   860
  unfolding monoseq_iff incseq_Suc_iff decseq_Suc_iff ..
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   861
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   862
lemma monoI1: "\<forall>m. \<forall> n \<ge> m. X m \<le> X n ==> monoseq X"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   863
by (simp add: monoseq_def)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   864
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   865
lemma monoI2: "\<forall>m. \<forall> n \<ge> m. X n \<le> X m ==> monoseq X"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   866
by (simp add: monoseq_def)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   867
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   868
lemma mono_SucI1: "\<forall>n. X n \<le> X (Suc n) ==> monoseq X"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   869
by (simp add: monoseq_Suc)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   870
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   871
lemma mono_SucI2: "\<forall>n. X (Suc n) \<le> X n ==> monoseq X"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   872
by (simp add: monoseq_Suc)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   873
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   874
lemma monoseq_minus:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   875
  fixes a :: "nat \<Rightarrow> 'a::ordered_ab_group_add"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   876
  assumes "monoseq a"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   877
  shows "monoseq (\<lambda> n. - a n)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   878
proof (cases "\<forall> m. \<forall> n \<ge> m. a m \<le> a n")
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   879
  case True
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   880
  hence "\<forall> m. \<forall> n \<ge> m. - a n \<le> - a m" by auto
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   881
  thus ?thesis by (rule monoI2)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   882
next
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   883
  case False
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
   884
  hence "\<forall> m. \<forall> n \<ge> m. - a m \<le> - a n" using \<open>monoseq a\<close>[unfolded monoseq_def] by auto
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   885
  thus ?thesis by (rule monoI1)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   886
qed
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   887
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
   888
text\<open>Subsequence (alternative definition, (e.g. Hoskins)\<close>
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   889
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   890
lemma subseq_Suc_iff: "subseq f = (\<forall>n. (f n) < (f (Suc n)))"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   891
apply (simp add: subseq_def)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   892
apply (auto dest!: less_imp_Suc_add)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   893
apply (induct_tac k)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   894
apply (auto intro: less_trans)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   895
done
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   896
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
   897
text\<open>for any sequence, there is a monotonic subsequence\<close>
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   898
lemma seq_monosub:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   899
  fixes s :: "nat => 'a::linorder"
57448
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   900
  shows "\<exists>f. subseq f \<and> monoseq (\<lambda>n. (s (f n)))"
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   901
proof cases
57448
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   902
  assume "\<forall>n. \<exists>p>n. \<forall>m\<ge>p. s m \<le> s p"
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   903
  then have "\<exists>f. \<forall>n. (\<forall>m\<ge>f n. s m \<le> s (f n)) \<and> f n < f (Suc n)"
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   904
    by (intro dependent_nat_choice) (auto simp: conj_commute)
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   905
  then obtain f where "subseq f" and mono: "\<And>n m. f n \<le> m \<Longrightarrow> s m \<le> s (f n)"
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   906
    by (auto simp: subseq_Suc_iff)
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   907
  moreover 
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   908
  then have "incseq f"
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   909
    unfolding subseq_Suc_iff incseq_Suc_iff by (auto intro: less_imp_le)
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   910
  then have "monoseq (\<lambda>n. s (f n))"
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   911
    by (auto simp add: incseq_def intro!: mono monoI2)
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   912
  ultimately show ?thesis
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   913
    by auto
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   914
next
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   915
  assume "\<not> (\<forall>n. \<exists>p>n. (\<forall>m\<ge>p. s m \<le> s p))"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   916
  then obtain N where N: "\<And>p. p > N \<Longrightarrow> \<exists>m>p. s p < s m" by (force simp: not_le le_less)
57448
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   917
  have "\<exists>f. \<forall>n. N < f n \<and> f n < f (Suc n) \<and> s (f n) \<le> s (f (Suc n))"
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   918
  proof (intro dependent_nat_choice)
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   919
    fix x assume "N < x" with N[of x] show "\<exists>y>N. x < y \<and> s x \<le> s y"
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   920
      by (auto intro: less_trans)
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   921
  qed auto
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   922
  then show ?thesis
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
   923
    by (auto simp: monoseq_iff incseq_Suc_iff subseq_Suc_iff)
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   924
qed
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   925
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   926
lemma seq_suble: assumes sf: "subseq f" shows "n \<le> f n"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   927
proof(induct n)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   928
  case 0 thus ?case by simp
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   929
next
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   930
  case (Suc n)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   931
  from sf[unfolded subseq_Suc_iff, rule_format, of n] Suc.hyps
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   932
  have "n < f (Suc n)" by arith
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   933
  thus ?case by arith
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   934
qed
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   935
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   936
lemma eventually_subseq:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   937
  "subseq r \<Longrightarrow> eventually P sequentially \<Longrightarrow> eventually (\<lambda>n. P (r n)) sequentially"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   938
  unfolding eventually_sequentially by (metis seq_suble le_trans)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   939
51473
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
   940
lemma not_eventually_sequentiallyD:
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
   941
  assumes P: "\<not> eventually P sequentially"
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
   942
  shows "\<exists>r. subseq r \<and> (\<forall>n. \<not> P (r n))"
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
   943
proof -
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
   944
  from P have "\<forall>n. \<exists>m\<ge>n. \<not> P m"
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
   945
    unfolding eventually_sequentially by (simp add: not_less)
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
   946
  then obtain r where "\<And>n. r n \<ge> n" "\<And>n. \<not> P (r n)"
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
   947
    by (auto simp: choice_iff)
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
   948
  then show ?thesis
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
   949
    by (auto intro!: exI[of _ "\<lambda>n. r (((Suc \<circ> r) ^^ Suc n) 0)"]
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
   950
             simp: less_eq_Suc_le subseq_Suc_iff)
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
   951
qed
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
   952
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   953
lemma filterlim_subseq: "subseq f \<Longrightarrow> filterlim f sequentially sequentially"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   954
  unfolding filterlim_iff by (metis eventually_subseq)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   955
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   956
lemma subseq_o: "subseq r \<Longrightarrow> subseq s \<Longrightarrow> subseq (r \<circ> s)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   957
  unfolding subseq_def by simp
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   958
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   959
lemma subseq_mono: assumes "subseq r" "m < n" shows "r m < r n"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   960
  using assms by (auto simp: subseq_def)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   961
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   962
lemma subseq_imp_inj_on: "subseq g \<Longrightarrow> inj_on g A"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   963
proof (rule inj_onI)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   964
  assume g: "subseq g"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   965
  fix x y assume "g x = g y"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   966
  with subseq_mono[OF g, of x y] subseq_mono[OF g, of y x] show "x = y" 
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   967
    by (cases x y rule: linorder_cases) simp_all
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   968
qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   969
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   970
lemma subseq_strict_mono: "subseq g \<Longrightarrow> strict_mono g"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   971
  by (intro strict_monoI subseq_mono[of g])
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
   972
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   973
lemma incseq_imp_monoseq:  "incseq X \<Longrightarrow> monoseq X"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   974
  by (simp add: incseq_def monoseq_def)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   975
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   976
lemma decseq_imp_monoseq:  "decseq X \<Longrightarrow> monoseq X"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   977
  by (simp add: decseq_def monoseq_def)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   978
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   979
lemma decseq_eq_incseq:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   980
  fixes X :: "nat \<Rightarrow> 'a::ordered_ab_group_add" shows "decseq X = incseq (\<lambda>n. - X n)" 
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   981
  by (simp add: decseq_def incseq_def)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   982
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   983
lemma INT_decseq_offset:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   984
  assumes "decseq F"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   985
  shows "(\<Inter>i. F i) = (\<Inter>i\<in>{n..}. F i)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   986
proof safe
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   987
  fix x i assume x: "x \<in> (\<Inter>i\<in>{n..}. F i)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   988
  show "x \<in> F i"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   989
  proof cases
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   990
    from x have "x \<in> F n" by auto
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
   991
    also assume "i \<le> n" with \<open>decseq F\<close> have "F n \<subseteq> F i"
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   992
      unfolding decseq_def by simp
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   993
    finally show ?thesis .
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   994
  qed (insert x, simp)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   995
qed auto
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   996
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   997
lemma LIMSEQ_const_iff:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   998
  fixes k l :: "'a::t2_space"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
   999
  shows "(\<lambda>n. k) ----> l \<longleftrightarrow> k = l"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1000
  using trivial_limit_sequentially by (rule tendsto_const_iff)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1001
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1002
lemma LIMSEQ_SUP:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1003
  "incseq X \<Longrightarrow> X ----> (SUP i. X i :: 'a :: {complete_linorder, linorder_topology})"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1004
  by (intro increasing_tendsto)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1005
     (auto simp: SUP_upper less_SUP_iff incseq_def eventually_sequentially intro: less_le_trans)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1006
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1007
lemma LIMSEQ_INF:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1008
  "decseq X \<Longrightarrow> X ----> (INF i. X i :: 'a :: {complete_linorder, linorder_topology})"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1009
  by (intro decreasing_tendsto)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1010
     (auto simp: INF_lower INF_less_iff decseq_def eventually_sequentially intro: le_less_trans)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1011
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1012
lemma LIMSEQ_ignore_initial_segment:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1013
  "f ----> a \<Longrightarrow> (\<lambda>n. f (n + k)) ----> a"
51474
1e9e68247ad1 generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
hoelzl
parents: 51473
diff changeset
  1014
  unfolding tendsto_def
1e9e68247ad1 generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
hoelzl
parents: 51473
diff changeset
  1015
  by (subst eventually_sequentially_seg[where k=k])
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1016
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1017
lemma LIMSEQ_offset:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1018
  "(\<lambda>n. f (n + k)) ----> a \<Longrightarrow> f ----> a"
51474
1e9e68247ad1 generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
hoelzl
parents: 51473
diff changeset
  1019
  unfolding tendsto_def
1e9e68247ad1 generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
hoelzl
parents: 51473
diff changeset
  1020
  by (subst (asm) eventually_sequentially_seg[where k=k])
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1021
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1022
lemma LIMSEQ_Suc: "f ----> l \<Longrightarrow> (\<lambda>n. f (Suc n)) ----> l"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1023
by (drule_tac k="Suc 0" in LIMSEQ_ignore_initial_segment, simp)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1024
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1025
lemma LIMSEQ_imp_Suc: "(\<lambda>n. f (Suc n)) ----> l \<Longrightarrow> f ----> l"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1026
by (rule_tac k="Suc 0" in LIMSEQ_offset, simp)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1027
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1028
lemma LIMSEQ_Suc_iff: "(\<lambda>n. f (Suc n)) ----> l = f ----> l"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1029
by (blast intro: LIMSEQ_imp_Suc LIMSEQ_Suc)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1030
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1031
lemma LIMSEQ_unique:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1032
  fixes a b :: "'a::t2_space"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1033
  shows "\<lbrakk>X ----> a; X ----> b\<rbrakk> \<Longrightarrow> a = b"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1034
  using trivial_limit_sequentially by (rule tendsto_unique)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1035
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1036
lemma LIMSEQ_le_const:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1037
  "\<lbrakk>X ----> (x::'a::linorder_topology); \<exists>N. \<forall>n\<ge>N. a \<le> X n\<rbrakk> \<Longrightarrow> a \<le> x"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1038
  using tendsto_le_const[of sequentially X x a] by (simp add: eventually_sequentially)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1039
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1040
lemma LIMSEQ_le:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1041
  "\<lbrakk>X ----> x; Y ----> y; \<exists>N. \<forall>n\<ge>N. X n \<le> Y n\<rbrakk> \<Longrightarrow> x \<le> (y::'a::linorder_topology)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1042
  using tendsto_le[of sequentially Y y X x] by (simp add: eventually_sequentially)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1043
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1044
lemma LIMSEQ_le_const2:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1045
  "\<lbrakk>X ----> (x::'a::linorder_topology); \<exists>N. \<forall>n\<ge>N. X n \<le> a\<rbrakk> \<Longrightarrow> x \<le> a"
58729
e8ecc79aee43 add tendsto_const and tendsto_ident_at as simp and intro rules
hoelzl
parents: 57953
diff changeset
  1046
  by (rule LIMSEQ_le[of X x "\<lambda>n. a"]) auto
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1047
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1048
lemma convergentD: "convergent X ==> \<exists>L. (X ----> L)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1049
by (simp add: convergent_def)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1050
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1051
lemma convergentI: "(X ----> L) ==> convergent X"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1052
by (auto simp add: convergent_def)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1053
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1054
lemma convergent_LIMSEQ_iff: "convergent X = (X ----> lim X)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1055
by (auto intro: theI LIMSEQ_unique simp add: convergent_def lim_def)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1056
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1057
lemma convergent_const: "convergent (\<lambda>n. c)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1058
  by (rule convergentI, rule tendsto_const)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1059
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1060
lemma monoseq_le:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1061
  "monoseq a \<Longrightarrow> a ----> (x::'a::linorder_topology) \<Longrightarrow>
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1062
    ((\<forall> n. a n \<le> x) \<and> (\<forall>m. \<forall>n\<ge>m. a m \<le> a n)) \<or> ((\<forall> n. x \<le> a n) \<and> (\<forall>m. \<forall>n\<ge>m. a n \<le> a m))"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1063
  by (metis LIMSEQ_le_const LIMSEQ_le_const2 decseq_def incseq_def monoseq_iff)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1064
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1065
lemma LIMSEQ_subseq_LIMSEQ:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1066
  "\<lbrakk> X ----> L; subseq f \<rbrakk> \<Longrightarrow> (X o f) ----> L"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1067
  unfolding comp_def by (rule filterlim_compose[of X, OF _ filterlim_subseq])
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1068
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1069
lemma convergent_subseq_convergent:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1070
  "\<lbrakk>convergent X; subseq f\<rbrakk> \<Longrightarrow> convergent (X o f)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1071
  unfolding convergent_def by (auto intro: LIMSEQ_subseq_LIMSEQ)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1072
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1073
lemma limI: "X ----> L ==> lim X = L"
57276
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
  1074
  by (rule tendsto_Lim) (rule trivial_limit_sequentially)
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1075
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1076
lemma lim_le: "convergent f \<Longrightarrow> (\<And>n. f n \<le> (x::'a::linorder_topology)) \<Longrightarrow> lim f \<le> x"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1077
  using LIMSEQ_le_const2[of f "lim f" x] by (simp add: convergent_LIMSEQ_iff)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1078
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  1079
subsubsection\<open>Increasing and Decreasing Series\<close>
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1080
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1081
lemma incseq_le: "incseq X \<Longrightarrow> X ----> L \<Longrightarrow> X n \<le> (L::'a::linorder_topology)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1082
  by (metis incseq_def LIMSEQ_le_const)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1083
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1084
lemma decseq_le: "decseq X \<Longrightarrow> X ----> L \<Longrightarrow> (L::'a::linorder_topology) \<le> X n"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1085
  by (metis decseq_def LIMSEQ_le_const2)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1086
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  1087
subsection \<open>First countable topologies\<close>
51473
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1088
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1089
class first_countable_topology = topological_space +
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1090
  assumes first_countable_basis:
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1091
    "\<exists>A::nat \<Rightarrow> 'a set. (\<forall>i. x \<in> A i \<and> open (A i)) \<and> (\<forall>S. open S \<and> x \<in> S \<longrightarrow> (\<exists>i. A i \<subseteq> S))"
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1092
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1093
lemma (in first_countable_topology) countable_basis_at_decseq:
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1094
  obtains A :: "nat \<Rightarrow> 'a set" where
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1095
    "\<And>i. open (A i)" "\<And>i. x \<in> (A i)"
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1096
    "\<And>S. open S \<Longrightarrow> x \<in> S \<Longrightarrow> eventually (\<lambda>i. A i \<subseteq> S) sequentially"
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1097
proof atomize_elim
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1098
  from first_countable_basis[of x] obtain A :: "nat \<Rightarrow> 'a set" where
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1099
    nhds: "\<And>i. open (A i)" "\<And>i. x \<in> A i"
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1100
    and incl: "\<And>S. open S \<Longrightarrow> x \<in> S \<Longrightarrow> \<exists>i. A i \<subseteq> S"  by auto
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1101
  def F \<equiv> "\<lambda>n. \<Inter>i\<le>n. A i"
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1102
  show "\<exists>A. (\<forall>i. open (A i)) \<and> (\<forall>i. x \<in> A i) \<and>
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1103
      (\<forall>S. open S \<longrightarrow> x \<in> S \<longrightarrow> eventually (\<lambda>i. A i \<subseteq> S) sequentially)"
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1104
  proof (safe intro!: exI[of _ F])
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1105
    fix i
51480
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  1106
    show "open (F i)" using nhds(1) by (auto simp: F_def)
51473
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1107
    show "x \<in> F i" using nhds(2) by (auto simp: F_def)
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1108
  next
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1109
    fix S assume "open S" "x \<in> S"
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1110
    from incl[OF this] obtain i where "F i \<subseteq> S" unfolding F_def by auto
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1111
    moreover have "\<And>j. i \<le> j \<Longrightarrow> F j \<subseteq> F i"
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1112
      by (auto simp: F_def)
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1113
    ultimately show "eventually (\<lambda>i. F i \<subseteq> S) sequentially"
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1114
      by (auto simp: eventually_sequentially)
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1115
  qed
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1116
qed
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1117
57448
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1118
lemma (in first_countable_topology) nhds_countable:
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1119
  obtains X :: "nat \<Rightarrow> 'a set"
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1120
  where "decseq X" "\<And>n. open (X n)" "\<And>n. x \<in> X n" "nhds x = (INF n. principal (X n))"
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1121
proof -
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1122
  from first_countable_basis obtain A :: "nat \<Rightarrow> 'a set"
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1123
    where A: "\<And>n. x \<in> A n" "\<And>n. open (A n)" "\<And>S. open S \<Longrightarrow> x \<in> S \<Longrightarrow> \<exists>i. A i \<subseteq> S"
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1124
    by metis
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1125
  show thesis
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1126
  proof
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1127
    show "decseq (\<lambda>n. \<Inter>i\<le>n. A i)"
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1128
      by (auto simp: decseq_def)
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1129
    show "\<And>n. x \<in> (\<Inter>i\<le>n. A i)" "\<And>n. open (\<Inter>i\<le>n. A i)"
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1130
      using A by auto
60585
48fdff264eb2 tuned whitespace;
wenzelm
parents: 60182
diff changeset
  1131
    show "nhds x = (INF n. principal (\<Inter>i\<le>n. A i))"
57448
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1132
      using A unfolding nhds_def
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1133
      apply (intro INF_eq)
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1134
      apply simp_all
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1135
      apply force
60585
48fdff264eb2 tuned whitespace;
wenzelm
parents: 60182
diff changeset
  1136
      apply (intro exI[of _ "\<Inter>i\<le>n. A i" for n] conjI open_INT)
57448
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1137
      apply auto
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1138
      done
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1139
  qed
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1140
qed
159e45728ceb more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
hoelzl
parents: 57447
diff changeset
  1141
51473
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1142
lemma (in first_countable_topology) countable_basis:
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1143
  obtains A :: "nat \<Rightarrow> 'a set" where
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1144
    "\<And>i. open (A i)" "\<And>i. x \<in> A i"
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1145
    "\<And>F. (\<forall>n. F n \<in> A n) \<Longrightarrow> F ----> x"
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1146
proof atomize_elim
53381
355a4cac5440 tuned proofs -- less guessing;
wenzelm
parents: 53374
diff changeset
  1147
  obtain A :: "nat \<Rightarrow> 'a set" where A:
355a4cac5440 tuned proofs -- less guessing;
wenzelm
parents: 53374
diff changeset
  1148
    "\<And>i. open (A i)"
355a4cac5440 tuned proofs -- less guessing;
wenzelm
parents: 53374
diff changeset
  1149
    "\<And>i. x \<in> A i"
355a4cac5440 tuned proofs -- less guessing;
wenzelm
parents: 53374
diff changeset
  1150
    "\<And>S. open S \<Longrightarrow> x \<in> S \<Longrightarrow> eventually (\<lambda>i. A i \<subseteq> S) sequentially"
355a4cac5440 tuned proofs -- less guessing;
wenzelm
parents: 53374
diff changeset
  1151
    by (rule countable_basis_at_decseq) blast
355a4cac5440 tuned proofs -- less guessing;
wenzelm
parents: 53374
diff changeset
  1152
  {
355a4cac5440 tuned proofs -- less guessing;
wenzelm
parents: 53374
diff changeset
  1153
    fix F S assume "\<forall>n. F n \<in> A n" "open S" "x \<in> S"
51473
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1154
    with A(3)[of S] have "eventually (\<lambda>n. F n \<in> S) sequentially"
61810
3c5040d5694a sorted out eventually_mono
paulson <lp15@cam.ac.uk>
parents: 61806
diff changeset
  1155
      by (auto elim: eventually_mono simp: subset_eq)
53381
355a4cac5440 tuned proofs -- less guessing;
wenzelm
parents: 53374
diff changeset
  1156
  }
51473
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1157
  with A show "\<exists>A. (\<forall>i. open (A i)) \<and> (\<forall>i. x \<in> A i) \<and> (\<forall>F. (\<forall>n. F n \<in> A n) \<longrightarrow> F ----> x)"
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1158
    by (intro exI[of _ A]) (auto simp: tendsto_def)
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1159
qed
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1160
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1161
lemma (in first_countable_topology) sequentially_imp_eventually_nhds_within:
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1162
  assumes "\<forall>f. (\<forall>n. f n \<in> s) \<and> f ----> a \<longrightarrow> eventually (\<lambda>n. P (f n)) sequentially"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
  1163
  shows "eventually P (inf (nhds a) (principal s))"
51473
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1164
proof (rule ccontr)
53381
355a4cac5440 tuned proofs -- less guessing;
wenzelm
parents: 53374
diff changeset
  1165
  obtain A :: "nat \<Rightarrow> 'a set" where A:
355a4cac5440 tuned proofs -- less guessing;
wenzelm
parents: 53374
diff changeset
  1166
    "\<And>i. open (A i)"
355a4cac5440 tuned proofs -- less guessing;
wenzelm
parents: 53374
diff changeset
  1167
    "\<And>i. a \<in> A i"
355a4cac5440 tuned proofs -- less guessing;
wenzelm
parents: 53374
diff changeset
  1168
    "\<And>F. \<forall>n. F n \<in> A n \<Longrightarrow> F ----> a"
355a4cac5440 tuned proofs -- less guessing;
wenzelm
parents: 53374
diff changeset
  1169
    by (rule countable_basis) blast
355a4cac5440 tuned proofs -- less guessing;
wenzelm
parents: 53374
diff changeset
  1170
  assume "\<not> ?thesis"
51473
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1171
  with A have P: "\<exists>F. \<forall>n. F n \<in> s \<and> F n \<in> A n \<and> \<not> P (F n)"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
  1172
    unfolding eventually_inf_principal eventually_nhds by (intro choice) fastforce
53381
355a4cac5440 tuned proofs -- less guessing;
wenzelm
parents: 53374
diff changeset
  1173
  then obtain F where F0: "\<forall>n. F n \<in> s" and F2: "\<forall>n. F n \<in> A n" and F3: "\<forall>n. \<not> P (F n)"
355a4cac5440 tuned proofs -- less guessing;
wenzelm
parents: 53374
diff changeset
  1174
    by blast
51473
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1175
  with A have "F ----> a" by auto
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1176
  hence "eventually (\<lambda>n. P (F n)) sequentially"
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1177
    using assms F0 by simp
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1178
  thus "False" by (simp add: F3)
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1179
qed
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1180
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1181
lemma (in first_countable_topology) eventually_nhds_within_iff_sequentially:
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
  1182
  "eventually P (inf (nhds a) (principal s)) \<longleftrightarrow> 
51473
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1183
    (\<forall>f. (\<forall>n. f n \<in> s) \<and> f ----> a \<longrightarrow> eventually (\<lambda>n. P (f n)) sequentially)"
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1184
proof (safe intro!: sequentially_imp_eventually_nhds_within)
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
  1185
  assume "eventually P (inf (nhds a) (principal s))" 
51473
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1186
  then obtain S where "open S" "a \<in> S" "\<forall>x\<in>S. x \<in> s \<longrightarrow> P x"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
  1187
    by (auto simp: eventually_inf_principal eventually_nhds)
51473
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1188
  moreover fix f assume "\<forall>n. f n \<in> s" "f ----> a"
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1189
  ultimately show "eventually (\<lambda>n. P (f n)) sequentially"
61810
3c5040d5694a sorted out eventually_mono
paulson <lp15@cam.ac.uk>
parents: 61806
diff changeset
  1190
    by (auto dest!: topological_tendstoD elim: eventually_mono)
51473
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1191
qed
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1192
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1193
lemma (in first_countable_topology) eventually_nhds_iff_sequentially:
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1194
  "eventually P (nhds a) \<longleftrightarrow> (\<forall>f. f ----> a \<longrightarrow> eventually (\<lambda>n. P (f n)) sequentially)"
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1195
  using eventually_nhds_within_iff_sequentially[of P a UNIV] by simp
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1196
57447
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1197
lemma tendsto_at_iff_sequentially:
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1198
  fixes f :: "'a :: first_countable_topology \<Rightarrow> _"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1199
  shows "(f ---> a) (at x within s) \<longleftrightarrow> (\<forall>X. (\<forall>i. X i \<in> s - {x}) \<longrightarrow> X ----> x \<longrightarrow> ((f \<circ> X) ----> a))"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1200
  unfolding filterlim_def[of _ "nhds a"] le_filter_def eventually_filtermap at_within_def eventually_nhds_within_iff_sequentially comp_def
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1201
  by metis
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1202
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  1203
subsection \<open>Function limit at a point\<close>
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1204
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1205
abbreviation
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1206
  LIM :: "('a::topological_space \<Rightarrow> 'b::topological_space) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> bool"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1207
        ("((_)/ -- (_)/ --> (_))" [60, 0, 60] 60) where
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1208
  "f -- a --> L \<equiv> (f ---> L) (at a)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1209
51481
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1210
lemma tendsto_within_open: "a \<in> S \<Longrightarrow> open S \<Longrightarrow> (f ---> l) (at a within S) \<longleftrightarrow> (f -- a --> l)"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
  1211
  unfolding tendsto_def by (simp add: at_within_open[where S=S])
51481
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1212
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1213
lemma LIM_const_not_eq[tendsto_intros]:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1214
  fixes a :: "'a::perfect_space"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1215
  fixes k L :: "'b::t2_space"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1216
  shows "k \<noteq> L \<Longrightarrow> \<not> (\<lambda>x. k) -- a --> L"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1217
  by (simp add: tendsto_const_iff)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1218
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1219
lemmas LIM_not_zero = LIM_const_not_eq [where L = 0]
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1220
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1221
lemma LIM_const_eq:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1222
  fixes a :: "'a::perfect_space"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1223
  fixes k L :: "'b::t2_space"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1224
  shows "(\<lambda>x. k) -- a --> L \<Longrightarrow> k = L"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1225
  by (simp add: tendsto_const_iff)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1226
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1227
lemma LIM_unique:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1228
  fixes a :: "'a::perfect_space" and L M :: "'b::t2_space"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1229
  shows "f -- a --> L \<Longrightarrow> f -- a --> M \<Longrightarrow> L = M"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1230
  using at_neq_bot by (rule tendsto_unique)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1231
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  1232
text \<open>Limits are equal for functions equal except at limit point\<close>
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1233
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1234
lemma LIM_equal: "\<forall>x. x \<noteq> a --> (f x = g x) \<Longrightarrow> (f -- a --> l) \<longleftrightarrow> (g -- a --> l)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1235
  unfolding tendsto_def eventually_at_topological by simp
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1236
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1237
lemma LIM_cong: "a = b \<Longrightarrow> (\<And>x. x \<noteq> b \<Longrightarrow> f x = g x) \<Longrightarrow> l = m \<Longrightarrow> (f -- a --> l) \<longleftrightarrow> (g -- b --> m)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1238
  by (simp add: LIM_equal)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1239
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1240
lemma LIM_cong_limit: "f -- x --> L \<Longrightarrow> K = L \<Longrightarrow> f -- x --> K"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1241
  by simp
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1242
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1243
lemma tendsto_at_iff_tendsto_nhds:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1244
  "g -- l --> g l \<longleftrightarrow> (g ---> g l) (nhds l)"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
  1245
  unfolding tendsto_def eventually_at_filter
61810
3c5040d5694a sorted out eventually_mono
paulson <lp15@cam.ac.uk>
parents: 61806
diff changeset
  1246
  by (intro ext all_cong imp_cong) (auto elim!: eventually_mono)
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1247
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1248
lemma tendsto_compose:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1249
  "g -- l --> g l \<Longrightarrow> (f ---> l) F \<Longrightarrow> ((\<lambda>x. g (f x)) ---> g l) F"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1250
  unfolding tendsto_at_iff_tendsto_nhds by (rule filterlim_compose[of g])
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1251
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1252
lemma LIM_o: "\<lbrakk>g -- l --> g l; f -- a --> l\<rbrakk> \<Longrightarrow> (g \<circ> f) -- a --> g l"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1253
  unfolding o_def by (rule tendsto_compose)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1254
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1255
lemma tendsto_compose_eventually:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1256
  "g -- l --> m \<Longrightarrow> (f ---> l) F \<Longrightarrow> eventually (\<lambda>x. f x \<noteq> l) F \<Longrightarrow> ((\<lambda>x. g (f x)) ---> m) F"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1257
  by (rule filterlim_compose[of g _ "at l"]) (auto simp add: filterlim_at)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1258
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1259
lemma LIM_compose_eventually:
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1260
  assumes f: "f -- a --> b"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1261
  assumes g: "g -- b --> c"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1262
  assumes inj: "eventually (\<lambda>x. f x \<noteq> b) (at a)"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1263
  shows "(\<lambda>x. g (f x)) -- a --> c"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1264
  using g f inj by (rule tendsto_compose_eventually)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1265
57447
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1266
lemma tendsto_compose_filtermap: "((g \<circ> f) ---> T) F \<longleftrightarrow> (g ---> T) (filtermap f F)"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1267
  by (simp add: filterlim_def filtermap_filtermap comp_def)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1268
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  1269
subsubsection \<open>Relation of LIM and LIMSEQ\<close>
51473
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1270
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1271
lemma (in first_countable_topology) sequentially_imp_eventually_within:
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1272
  "(\<forall>f. (\<forall>n. f n \<in> s \<and> f n \<noteq> a) \<and> f ----> a \<longrightarrow> eventually (\<lambda>n. P (f n)) sequentially) \<Longrightarrow>
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1273
    eventually P (at a within s)"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
  1274
  unfolding at_within_def
51473
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1275
  by (intro sequentially_imp_eventually_nhds_within) auto
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1276
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1277
lemma (in first_countable_topology) sequentially_imp_eventually_at:
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1278
  "(\<forall>f. (\<forall>n. f n \<noteq> a) \<and> f ----> a \<longrightarrow> eventually (\<lambda>n. P (f n)) sequentially) \<Longrightarrow> eventually P (at a)"
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1279
  using assms sequentially_imp_eventually_within [where s=UNIV] by simp
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1280
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1281
lemma LIMSEQ_SEQ_conv1:
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1282
  fixes f :: "'a::topological_space \<Rightarrow> 'b::topological_space"
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1283
  assumes f: "f -- a --> l"
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1284
  shows "\<forall>S. (\<forall>n. S n \<noteq> a) \<and> S ----> a \<longrightarrow> (\<lambda>n. f (S n)) ----> l"
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1285
  using tendsto_compose_eventually [OF f, where F=sequentially] by simp
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1286
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1287
lemma LIMSEQ_SEQ_conv2:
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1288
  fixes f :: "'a::first_countable_topology \<Rightarrow> 'b::topological_space"
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1289
  assumes "\<forall>S. (\<forall>n. S n \<noteq> a) \<and> S ----> a \<longrightarrow> (\<lambda>n. f (S n)) ----> l"
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1290
  shows "f -- a --> l"
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1291
  using assms unfolding tendsto_def [where l=l] by (simp add: sequentially_imp_eventually_at)
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1292
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1293
lemma LIMSEQ_SEQ_conv:
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1294
  "(\<forall>S. (\<forall>n. S n \<noteq> a) \<and> S ----> (a::'a::first_countable_topology) \<longrightarrow> (\<lambda>n. X (S n)) ----> L) =
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1295
   (X -- a --> (L::'b::topological_space))"
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1296
  using LIMSEQ_SEQ_conv2 LIMSEQ_SEQ_conv1 ..
1210309fddab move first_countable_topology to the HOL image
hoelzl
parents: 51471
diff changeset
  1297
57025
e7fd64f82876 add various lemmas
hoelzl
parents: 56949
diff changeset
  1298
lemma sequentially_imp_eventually_at_left:
60172
423273355b55 rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
hoelzl
parents: 60150
diff changeset
  1299
  fixes a :: "'a :: {linorder_topology, first_countable_topology}"
57025
e7fd64f82876 add various lemmas
hoelzl
parents: 56949
diff changeset
  1300
  assumes b[simp]: "b < a"
e7fd64f82876 add various lemmas
hoelzl
parents: 56949
diff changeset
  1301
  assumes *: "\<And>f. (\<And>n. b < f n) \<Longrightarrow> (\<And>n. f n < a) \<Longrightarrow> incseq f \<Longrightarrow> f ----> a \<Longrightarrow> eventually (\<lambda>n. P (f n)) sequentially"
e7fd64f82876 add various lemmas
hoelzl
parents: 56949
diff changeset
  1302
  shows "eventually P (at_left a)"
e7fd64f82876 add various lemmas
hoelzl
parents: 56949
diff changeset
  1303
proof (safe intro!: sequentially_imp_eventually_within)
57447
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1304
  fix X assume X: "\<forall>n. X n \<in> {..< a} \<and> X n \<noteq> a" "X ----> a"
57025
e7fd64f82876 add various lemmas
hoelzl
parents: 56949
diff changeset
  1305
  show "eventually (\<lambda>n. P (X n)) sequentially"
e7fd64f82876 add various lemmas
hoelzl
parents: 56949
diff changeset
  1306
  proof (rule ccontr)
57447
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1307
    assume neg: "\<not> eventually (\<lambda>n. P (X n)) sequentially"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1308
    have "\<exists>s. \<forall>n. (\<not> P (X (s n)) \<and> b < X (s n)) \<and> (X (s n) \<le> X (s (Suc n)) \<and> Suc (s n) \<le> s (Suc n))"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1309
    proof (rule dependent_nat_choice)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1310
      have "\<not> eventually (\<lambda>n. b < X n \<longrightarrow> P (X n)) sequentially"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1311
        by (intro not_eventually_impI neg order_tendstoD(1) [OF X(2) b])
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1312
      then show "\<exists>x. \<not> P (X x) \<and> b < X x"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1313
        by (auto dest!: not_eventuallyD)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1314
    next
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1315
      fix x n
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1316
      have "\<not> eventually (\<lambda>n. Suc x \<le> n \<longrightarrow> b < X n \<longrightarrow> X x < X n \<longrightarrow> P (X n)) sequentially"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1317
        using X by (intro not_eventually_impI order_tendstoD(1)[OF X(2)] eventually_ge_at_top neg) auto
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1318
      then show "\<exists>n. (\<not> P (X n) \<and> b < X n) \<and> (X x \<le> X n \<and> Suc x \<le> n)"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1319
        by (auto dest!: not_eventuallyD)
57025
e7fd64f82876 add various lemmas
hoelzl
parents: 56949
diff changeset
  1320
    qed
57447
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1321
    then guess s ..
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1322
    then have "\<And>n. b < X (s n)" "\<And>n. X (s n) < a" "incseq (\<lambda>n. X (s n))" "(\<lambda>n. X (s n)) ----> a" "\<And>n. \<not> P (X (s n))"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  1323
      using X by (auto simp: subseq_Suc_iff Suc_le_eq incseq_Suc_iff intro!: LIMSEQ_subseq_LIMSEQ[OF \<open>X ----> a\<close>, unfolded comp_def])
57447
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1324
    from *[OF this(1,2,3,4)] this(5) show False by auto
57025
e7fd64f82876 add various lemmas
hoelzl
parents: 56949
diff changeset
  1325
  qed
e7fd64f82876 add various lemmas
hoelzl
parents: 56949
diff changeset
  1326
qed
e7fd64f82876 add various lemmas
hoelzl
parents: 56949
diff changeset
  1327
e7fd64f82876 add various lemmas
hoelzl
parents: 56949
diff changeset
  1328
lemma tendsto_at_left_sequentially:
60172
423273355b55 rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
hoelzl
parents: 60150
diff changeset
  1329
  fixes a :: "_ :: {linorder_topology, first_countable_topology}"
57025
e7fd64f82876 add various lemmas
hoelzl
parents: 56949
diff changeset
  1330
  assumes "b < a"
e7fd64f82876 add various lemmas
hoelzl
parents: 56949
diff changeset
  1331
  assumes *: "\<And>S. (\<And>n. S n < a) \<Longrightarrow> (\<And>n. b < S n) \<Longrightarrow> incseq S \<Longrightarrow> S ----> a \<Longrightarrow> (\<lambda>n. X (S n)) ----> L"
e7fd64f82876 add various lemmas
hoelzl
parents: 56949
diff changeset
  1332
  shows "(X ---> L) (at_left a)"
e7fd64f82876 add various lemmas
hoelzl
parents: 56949
diff changeset
  1333
  using assms unfolding tendsto_def [where l=L]
e7fd64f82876 add various lemmas
hoelzl
parents: 56949
diff changeset
  1334
  by (simp add: sequentially_imp_eventually_at_left)
e7fd64f82876 add various lemmas
hoelzl
parents: 56949
diff changeset
  1335
57447
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1336
lemma sequentially_imp_eventually_at_right:
60172
423273355b55 rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
hoelzl
parents: 60150
diff changeset
  1337
  fixes a :: "'a :: {linorder_topology, first_countable_topology}"
57447
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1338
  assumes b[simp]: "a < b"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1339
  assumes *: "\<And>f. (\<And>n. a < f n) \<Longrightarrow> (\<And>n. f n < b) \<Longrightarrow> decseq f \<Longrightarrow> f ----> a \<Longrightarrow> eventually (\<lambda>n. P (f n)) sequentially"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1340
  shows "eventually P (at_right a)"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1341
proof (safe intro!: sequentially_imp_eventually_within)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1342
  fix X assume X: "\<forall>n. X n \<in> {a <..} \<and> X n \<noteq> a" "X ----> a"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1343
  show "eventually (\<lambda>n. P (X n)) sequentially"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1344
  proof (rule ccontr)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1345
    assume neg: "\<not> eventually (\<lambda>n. P (X n)) sequentially"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1346
    have "\<exists>s. \<forall>n. (\<not> P (X (s n)) \<and> X (s n) < b) \<and> (X (s (Suc n)) \<le> X (s n) \<and> Suc (s n) \<le> s (Suc n))"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1347
    proof (rule dependent_nat_choice)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1348
      have "\<not> eventually (\<lambda>n. X n < b \<longrightarrow> P (X n)) sequentially"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1349
        by (intro not_eventually_impI neg order_tendstoD(2) [OF X(2) b])
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1350
      then show "\<exists>x. \<not> P (X x) \<and> X x < b"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1351
        by (auto dest!: not_eventuallyD)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1352
    next
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1353
      fix x n
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1354
      have "\<not> eventually (\<lambda>n. Suc x \<le> n \<longrightarrow> X n < b \<longrightarrow> X n < X x \<longrightarrow> P (X n)) sequentially"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1355
        using X by (intro not_eventually_impI order_tendstoD(2)[OF X(2)] eventually_ge_at_top neg) auto
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1356
      then show "\<exists>n. (\<not> P (X n) \<and> X n < b) \<and> (X n \<le> X x \<and> Suc x \<le> n)"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1357
        by (auto dest!: not_eventuallyD)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1358
    qed
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1359
    then guess s ..
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1360
    then have "\<And>n. a < X (s n)" "\<And>n. X (s n) < b" "decseq (\<lambda>n. X (s n))" "(\<lambda>n. X (s n)) ----> a" "\<And>n. \<not> P (X (s n))"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  1361
      using X by (auto simp: subseq_Suc_iff Suc_le_eq decseq_Suc_iff intro!: LIMSEQ_subseq_LIMSEQ[OF \<open>X ----> a\<close>, unfolded comp_def])
57447
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1362
    from *[OF this(1,2,3,4)] this(5) show False by auto
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1363
  qed
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1364
qed
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1365
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1366
lemma tendsto_at_right_sequentially:
60172
423273355b55 rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
hoelzl
parents: 60150
diff changeset
  1367
  fixes a :: "_ :: {linorder_topology, first_countable_topology}"
57447
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1368
  assumes "a < b"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1369
  assumes *: "\<And>S. (\<And>n. a < S n) \<Longrightarrow> (\<And>n. S n < b) \<Longrightarrow> decseq S \<Longrightarrow> S ----> a \<Longrightarrow> (\<lambda>n. X (S n)) ----> L"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1370
  shows "(X ---> L) (at_right a)"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1371
  using assms unfolding tendsto_def [where l=L]
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1372
  by (simp add: sequentially_imp_eventually_at_right)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1373
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  1374
subsection \<open>Continuity\<close>
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1375
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  1376
subsubsection \<open>Continuity on a set\<close>
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1377
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1378
definition continuous_on :: "'a set \<Rightarrow> ('a :: topological_space \<Rightarrow> 'b :: topological_space) \<Rightarrow> bool" where
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1379
  "continuous_on s f \<longleftrightarrow> (\<forall>x\<in>s. (f ---> f x) (at x within s))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1380
51481
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1381
lemma continuous_on_cong [cong]:
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1382
  "s = t \<Longrightarrow> (\<And>x. x \<in> t \<Longrightarrow> f x = g x) \<Longrightarrow> continuous_on s f \<longleftrightarrow> continuous_on t g"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
  1383
  unfolding continuous_on_def by (intro ball_cong filterlim_cong) (auto simp: eventually_at_filter)
51481
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1384
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1385
lemma continuous_on_topological:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1386
  "continuous_on s f \<longleftrightarrow>
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1387
    (\<forall>x\<in>s. \<forall>B. open B \<longrightarrow> f x \<in> B \<longrightarrow> (\<exists>A. open A \<and> x \<in> A \<and> (\<forall>y\<in>s. y \<in> A \<longrightarrow> f y \<in> B)))"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
  1388
  unfolding continuous_on_def tendsto_def eventually_at_topological by metis
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1389
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1390
lemma continuous_on_open_invariant:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1391
  "continuous_on s f \<longleftrightarrow> (\<forall>B. open B \<longrightarrow> (\<exists>A. open A \<and> A \<inter> s = f -` B \<inter> s))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1392
proof safe
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1393
  fix B :: "'b set" assume "continuous_on s f" "open B"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1394
  then have "\<forall>x\<in>f -` B \<inter> s. (\<exists>A. open A \<and> x \<in> A \<and> s \<inter> A \<subseteq> f -` B)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1395
    by (auto simp: continuous_on_topological subset_eq Ball_def imp_conjL)
53381
355a4cac5440 tuned proofs -- less guessing;
wenzelm
parents: 53374
diff changeset
  1396
  then obtain A where "\<forall>x\<in>f -` B \<inter> s. open (A x) \<and> x \<in> A x \<and> s \<inter> A x \<subseteq> f -` B"
355a4cac5440 tuned proofs -- less guessing;
wenzelm
parents: 53374
diff changeset
  1397
    unfolding bchoice_iff ..
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1398
  then show "\<exists>A. open A \<and> A \<inter> s = f -` B \<inter> s"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1399
    by (intro exI[of _ "\<Union>x\<in>f -` B \<inter> s. A x"]) auto
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1400
next
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1401
  assume B: "\<forall>B. open B \<longrightarrow> (\<exists>A. open A \<and> A \<inter> s = f -` B \<inter> s)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1402
  show "continuous_on s f"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1403
    unfolding continuous_on_topological
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1404
  proof safe
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1405
    fix x B assume "x \<in> s" "open B" "f x \<in> B"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1406
    with B obtain A where A: "open A" "A \<inter> s = f -` B \<inter> s" by auto
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  1407
    with \<open>x \<in> s\<close> \<open>f x \<in> B\<close> show "\<exists>A. open A \<and> x \<in> A \<and> (\<forall>y\<in>s. y \<in> A \<longrightarrow> f y \<in> B)"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1408
      by (intro exI[of _ A]) auto
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1409
  qed
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1410
qed
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1411
51481
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1412
lemma continuous_on_open_vimage:
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1413
  "open s \<Longrightarrow> continuous_on s f \<longleftrightarrow> (\<forall>B. open B \<longrightarrow> open (f -` B \<inter> s))"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1414
  unfolding continuous_on_open_invariant
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1415
  by (metis open_Int Int_absorb Int_commute[of s] Int_assoc[of _ _ s])
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1416
55734
3f5b2745d659 More complex-related lemmas
paulson <lp15@cam.ac.uk>
parents: 55642
diff changeset
  1417
corollary continuous_imp_open_vimage:
3f5b2745d659 More complex-related lemmas
paulson <lp15@cam.ac.uk>
parents: 55642
diff changeset
  1418
  assumes "continuous_on s f" "open s" "open B" "f -` B \<subseteq> s"
3f5b2745d659 More complex-related lemmas
paulson <lp15@cam.ac.uk>
parents: 55642
diff changeset
  1419
    shows "open (f -` B)"
3f5b2745d659 More complex-related lemmas
paulson <lp15@cam.ac.uk>
parents: 55642
diff changeset
  1420
by (metis assms continuous_on_open_vimage le_iff_inf)
3f5b2745d659 More complex-related lemmas
paulson <lp15@cam.ac.uk>
parents: 55642
diff changeset
  1421
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56329
diff changeset
  1422
corollary open_vimage[continuous_intros]:
55775
1557a391a858 A bit of tidying up
paulson <lp15@cam.ac.uk>
parents: 55734
diff changeset
  1423
  assumes "open s" and "continuous_on UNIV f"
1557a391a858 A bit of tidying up
paulson <lp15@cam.ac.uk>
parents: 55734
diff changeset
  1424
  shows "open (f -` s)"
1557a391a858 A bit of tidying up
paulson <lp15@cam.ac.uk>
parents: 55734
diff changeset
  1425
  using assms unfolding continuous_on_open_vimage [OF open_UNIV]
1557a391a858 A bit of tidying up
paulson <lp15@cam.ac.uk>
parents: 55734
diff changeset
  1426
  by simp
1557a391a858 A bit of tidying up
paulson <lp15@cam.ac.uk>
parents: 55734
diff changeset
  1427
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1428
lemma continuous_on_closed_invariant:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1429
  "continuous_on s f \<longleftrightarrow> (\<forall>B. closed B \<longrightarrow> (\<exists>A. closed A \<and> A \<inter> s = f -` B \<inter> s))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1430
proof -
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1431
  have *: "\<And>P Q::'b set\<Rightarrow>bool. (\<And>A. P A \<longleftrightarrow> Q (- A)) \<Longrightarrow> (\<forall>A. P A) \<longleftrightarrow> (\<forall>A. Q A)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1432
    by (metis double_compl)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1433
  show ?thesis
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1434
    unfolding continuous_on_open_invariant by (intro *) (auto simp: open_closed[symmetric])
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1435
qed
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1436
51481
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1437
lemma continuous_on_closed_vimage:
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1438
  "closed s \<Longrightarrow> continuous_on s f \<longleftrightarrow> (\<forall>B. closed B \<longrightarrow> closed (f -` B \<inter> s))"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1439
  unfolding continuous_on_closed_invariant
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1440
  by (metis closed_Int Int_absorb Int_commute[of s] Int_assoc[of _ _ s])
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1441
61426
d53db136e8fd new material on path_component_sets, inside, outside, etc. And more default simprules
paulson <lp15@cam.ac.uk>
parents: 61342
diff changeset
  1442
corollary closed_vimage_Int[continuous_intros]:
d53db136e8fd new material on path_component_sets, inside, outside, etc. And more default simprules
paulson <lp15@cam.ac.uk>
parents: 61342
diff changeset
  1443
  assumes "closed s" and "continuous_on t f" and t: "closed t"
d53db136e8fd new material on path_component_sets, inside, outside, etc. And more default simprules
paulson <lp15@cam.ac.uk>
parents: 61342
diff changeset
  1444
  shows "closed (f -` s \<inter> t)"
d53db136e8fd new material on path_component_sets, inside, outside, etc. And more default simprules
paulson <lp15@cam.ac.uk>
parents: 61342
diff changeset
  1445
  using assms unfolding continuous_on_closed_vimage [OF t]  by simp
d53db136e8fd new material on path_component_sets, inside, outside, etc. And more default simprules
paulson <lp15@cam.ac.uk>
parents: 61342
diff changeset
  1446
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56329
diff changeset
  1447
corollary closed_vimage[continuous_intros]:
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56329
diff changeset
  1448
  assumes "closed s" and "continuous_on UNIV f"
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56329
diff changeset
  1449
  shows "closed (f -` s)"
61426
d53db136e8fd new material on path_component_sets, inside, outside, etc. And more default simprules
paulson <lp15@cam.ac.uk>
parents: 61342
diff changeset
  1450
  using closed_vimage_Int [OF assms] by simp
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56329
diff changeset
  1451
61907
f0c894ab18c9 Liouville theorem, Fundamental Theorem of Algebra, etc.
paulson <lp15@cam.ac.uk>
parents: 61810
diff changeset
  1452
lemma continuous_on_empty: "continuous_on {} f"
f0c894ab18c9 Liouville theorem, Fundamental Theorem of Algebra, etc.
paulson <lp15@cam.ac.uk>
parents: 61810
diff changeset
  1453
  by (simp add: continuous_on_def)
f0c894ab18c9 Liouville theorem, Fundamental Theorem of Algebra, etc.
paulson <lp15@cam.ac.uk>
parents: 61810
diff changeset
  1454
f0c894ab18c9 Liouville theorem, Fundamental Theorem of Algebra, etc.
paulson <lp15@cam.ac.uk>
parents: 61810
diff changeset
  1455
lemma continuous_on_sing: "continuous_on {x} f"
f0c894ab18c9 Liouville theorem, Fundamental Theorem of Algebra, etc.
paulson <lp15@cam.ac.uk>
parents: 61810
diff changeset
  1456
  by (simp add: continuous_on_def at_within_def)
f0c894ab18c9 Liouville theorem, Fundamental Theorem of Algebra, etc.
paulson <lp15@cam.ac.uk>
parents: 61810
diff changeset
  1457
51481
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1458
lemma continuous_on_open_Union:
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1459
  "(\<And>s. s \<in> S \<Longrightarrow> open s) \<Longrightarrow> (\<And>s. s \<in> S \<Longrightarrow> continuous_on s f) \<Longrightarrow> continuous_on (\<Union>S) f"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
  1460
  unfolding continuous_on_def by safe (metis open_Union at_within_open UnionI)
51481
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1461
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1462
lemma continuous_on_open_UN:
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1463
  "(\<And>s. s \<in> S \<Longrightarrow> open (A s)) \<Longrightarrow> (\<And>s. s \<in> S \<Longrightarrow> continuous_on (A s) f) \<Longrightarrow> continuous_on (\<Union>s\<in>S. A s) f"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1464
  unfolding Union_image_eq[symmetric] by (rule continuous_on_open_Union) auto
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1465
61204
3e491e34a62e new lemmas and movement of lemmas into place
paulson
parents: 61169
diff changeset
  1466
lemma continuous_on_open_Un:
3e491e34a62e new lemmas and movement of lemmas into place
paulson
parents: 61169
diff changeset
  1467
  "open s \<Longrightarrow> open t \<Longrightarrow> continuous_on s f \<Longrightarrow> continuous_on t f \<Longrightarrow> continuous_on (s \<union> t) f"
3e491e34a62e new lemmas and movement of lemmas into place
paulson
parents: 61169
diff changeset
  1468
  using continuous_on_open_Union [of "{s,t}"] by auto
3e491e34a62e new lemmas and movement of lemmas into place
paulson
parents: 61169
diff changeset
  1469
51481
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1470
lemma continuous_on_closed_Un:
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1471
  "closed s \<Longrightarrow> closed t \<Longrightarrow> continuous_on s f \<Longrightarrow> continuous_on t f \<Longrightarrow> continuous_on (s \<union> t) f"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1472
  by (auto simp add: continuous_on_closed_vimage closed_Un Int_Un_distrib)
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1473
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1474
lemma continuous_on_If:
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1475
  assumes closed: "closed s" "closed t" and cont: "continuous_on s f" "continuous_on t g"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1476
    and P: "\<And>x. x \<in> s \<Longrightarrow> \<not> P x \<Longrightarrow> f x = g x" "\<And>x. x \<in> t \<Longrightarrow> P x \<Longrightarrow> f x = g x"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1477
  shows "continuous_on (s \<union> t) (\<lambda>x. if P x then f x else g x)" (is "continuous_on _ ?h")
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1478
proof-
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1479
  from P have "\<forall>x\<in>s. f x = ?h x" "\<forall>x\<in>t. g x = ?h x"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1480
    by auto
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1481
  with cont have "continuous_on s ?h" "continuous_on t ?h"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1482
    by simp_all
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1483
  with closed show ?thesis
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1484
    by (rule continuous_on_closed_Un)
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1485
qed
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1486
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56329
diff changeset
  1487
lemma continuous_on_id[continuous_intros]: "continuous_on s (\<lambda>x. x)"
58729
e8ecc79aee43 add tendsto_const and tendsto_ident_at as simp and intro rules
hoelzl
parents: 57953
diff changeset
  1488
  unfolding continuous_on_def by fast
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1489
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56329
diff changeset
  1490
lemma continuous_on_const[continuous_intros]: "continuous_on s (\<lambda>x. c)"
58729
e8ecc79aee43 add tendsto_const and tendsto_ident_at as simp and intro rules
hoelzl
parents: 57953
diff changeset
  1491
  unfolding continuous_on_def by auto
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1492
61738
c4f6031f1310 New material about paths, winding numbers, etc. Added lemmas to divide_const_simps. Misc tuning.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
  1493
lemma continuous_on_subset: "continuous_on s f \<Longrightarrow> t \<subseteq> s \<Longrightarrow> continuous_on t f"
c4f6031f1310 New material about paths, winding numbers, etc. Added lemmas to divide_const_simps. Misc tuning.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
  1494
  unfolding continuous_on_def by (metis subset_eq tendsto_within_subset)
c4f6031f1310 New material about paths, winding numbers, etc. Added lemmas to divide_const_simps. Misc tuning.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
  1495
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56329
diff changeset
  1496
lemma continuous_on_compose[continuous_intros]:
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1497
  "continuous_on s f \<Longrightarrow> continuous_on (f ` s) g \<Longrightarrow> continuous_on s (g o f)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1498
  unfolding continuous_on_topological by simp metis
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1499
51481
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1500
lemma continuous_on_compose2:
61738
c4f6031f1310 New material about paths, winding numbers, etc. Added lemmas to divide_const_simps. Misc tuning.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
  1501
  "continuous_on t g \<Longrightarrow> continuous_on s f \<Longrightarrow> f ` s \<subseteq> t \<Longrightarrow> continuous_on s (\<lambda>x. g (f x))"
c4f6031f1310 New material about paths, winding numbers, etc. Added lemmas to divide_const_simps. Misc tuning.
paulson <lp15@cam.ac.uk>
parents: 61531
diff changeset
  1502
  using continuous_on_compose[of s f g] continuous_on_subset by (force simp add: comp_def)
51481
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1503
60720
8c99fa3b7c44 add continuous_onI_mono
hoelzl
parents: 60585
diff changeset
  1504
lemma continuous_on_generate_topology:
8c99fa3b7c44 add continuous_onI_mono
hoelzl
parents: 60585
diff changeset
  1505
  assumes *: "open = generate_topology X"
8c99fa3b7c44 add continuous_onI_mono
hoelzl
parents: 60585
diff changeset
  1506
  assumes **: "\<And>B. B \<in> X \<Longrightarrow> \<exists>C. open C \<and> C \<inter> A = f -` B \<inter> A"
8c99fa3b7c44 add continuous_onI_mono
hoelzl
parents: 60585
diff changeset
  1507
  shows "continuous_on A f"
8c99fa3b7c44 add continuous_onI_mono
hoelzl
parents: 60585
diff changeset
  1508
  unfolding continuous_on_open_invariant
8c99fa3b7c44 add continuous_onI_mono
hoelzl
parents: 60585
diff changeset
  1509
proof safe
8c99fa3b7c44 add continuous_onI_mono
hoelzl
parents: 60585
diff changeset
  1510
  fix B :: "'a set" assume "open B" then show "\<exists>C. open C \<and> C \<inter> A = f -` B \<inter> A"
8c99fa3b7c44 add continuous_onI_mono
hoelzl
parents: 60585
diff changeset
  1511
    unfolding *
8c99fa3b7c44 add continuous_onI_mono
hoelzl
parents: 60585
diff changeset
  1512
  proof induction
8c99fa3b7c44 add continuous_onI_mono
hoelzl
parents: 60585
diff changeset
  1513
    case (UN K)
8c99fa3b7c44 add continuous_onI_mono
hoelzl
parents: 60585
diff changeset
  1514
    then obtain C where "\<And>k. k \<in> K \<Longrightarrow> open (C k)" "\<And>k. k \<in> K \<Longrightarrow> C k \<inter> A = f -` k \<inter> A"
8c99fa3b7c44 add continuous_onI_mono
hoelzl
parents: 60585
diff changeset
  1515
      by metis
8c99fa3b7c44 add continuous_onI_mono
hoelzl
parents: 60585
diff changeset
  1516
    then show ?case
8c99fa3b7c44 add continuous_onI_mono
hoelzl
parents: 60585
diff changeset
  1517
      by (intro exI[of _ "\<Union>k\<in>K. C k"]) blast
8c99fa3b7c44 add continuous_onI_mono
hoelzl
parents: 60585
diff changeset
  1518
  qed (auto intro: **)
8c99fa3b7c44 add continuous_onI_mono
hoelzl
parents: 60585
diff changeset
  1519
qed
8c99fa3b7c44 add continuous_onI_mono
hoelzl
parents: 60585
diff changeset
  1520
8c99fa3b7c44 add continuous_onI_mono
hoelzl
parents: 60585
diff changeset
  1521
lemma continuous_onI_mono:
8c99fa3b7c44 add continuous_onI_mono
hoelzl
parents: 60585
diff changeset
  1522
  fixes f :: "'a::linorder_topology \<Rightarrow> 'b::{dense_order, linorder_topology}"
8c99fa3b7c44 add continuous_onI_mono
hoelzl
parents: 60585
diff changeset
  1523
  assumes "open (f`A)"
8c99fa3b7c44 add continuous_onI_mono
hoelzl
parents: 60585
diff changeset
  1524
  assumes mono: "\<And>x y. x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> x \<le> y \<Longrightarrow> f x \<le> f y"
8c99fa3b7c44 add continuous_onI_mono
hoelzl
parents: 60585
diff changeset
  1525
  shows "continuous_on A f"
8c99fa3b7c44 add continuous_onI_mono
hoelzl
parents: 60585
diff changeset
  1526
proof (rule continuous_on_generate_topology[OF open_generated_order], safe)
8c99fa3b7c44 add continuous_onI_mono
hoelzl
parents: 60585
diff changeset
  1527
  have monoD: "\<And>x y. x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> f x < f y \<Longrightarrow> x < y"
8c99fa3b7c44 add continuous_onI_mono
hoelzl
parents: 60585
diff changeset
  1528
    by (auto simp: not_le[symmetric] mono)
8c99fa3b7c44 add continuous_onI_mono
hoelzl
parents: 60585
diff changeset
  1529
8c99fa3b7c44 add continuous_onI_mono
hoelzl
parents: 60585
diff changeset
  1530
  { fix a b assume "a \<in> A" "f a < b"
8c99fa3b7c44 add continuous_onI_mono
hoelzl
parents: 60585
diff changeset
  1531
    moreover
8c99fa3b7c44 add continuous_onI_mono
hoelzl
parents: 60585
diff changeset
  1532
    with open_right[OF \<open>open (f`A)\<close>, of "f a" b] obtain y where "f a < y" "{f a ..< y} \<subseteq> f`A"
8c99fa3b7c44 add continuous_onI_mono
hoelzl
parents: 60585
diff changeset
  1533
      by auto
8c99fa3b7c44 add continuous_onI_mono
hoelzl
parents: 60585
diff changeset
  1534
    moreover then obtain z where "f a < z" "z < min b y"
8c99fa3b7c44 add continuous_onI_mono
hoelzl
parents: 60585
diff changeset
  1535
      using dense[of "f a" "min b y"] \<open>f a < y\<close> \<open>f a < b\<close> by auto
8c99fa3b7c44 add continuous_onI_mono
hoelzl
parents: 60585
diff changeset
  1536
    moreover then obtain c where "z = f c" "c \<in> A"
8c99fa3b7c44 add continuous_onI_mono
hoelzl
parents: 60585
diff changeset
  1537
      using \<open>{f a ..< y} \<subseteq> f`A\<close>[THEN subsetD, of z] by (auto simp: less_imp_le)
8c99fa3b7c44 add continuous_onI_mono
hoelzl
parents: 60585
diff changeset
  1538
    ultimately have "\<exists>x. x \<in> A \<and> f x < b \<and> a < x"
8c99fa3b7c44 add continuous_onI_mono
hoelzl
parents: 60585
diff changeset
  1539
      by (auto intro!: exI[of _ c] simp: monoD) }
8c99fa3b7c44 add continuous_onI_mono
hoelzl
parents: 60585
diff changeset
  1540
  then show "\<exists>C. open C \<and> C \<inter> A = f -` {..<b} \<inter> A" for b
8c99fa3b7c44 add continuous_onI_mono
hoelzl
parents: 60585
diff changeset
  1541
    by (intro exI[of _ "(\<Union>x\<in>{x\<in>A. f x < b}. {..< x})"])
8c99fa3b7c44 add continuous_onI_mono
hoelzl
parents: 60585
diff changeset
  1542
       (auto intro: le_less_trans[OF mono] less_imp_le)
8c99fa3b7c44 add continuous_onI_mono
hoelzl
parents: 60585
diff changeset
  1543
8c99fa3b7c44 add continuous_onI_mono
hoelzl
parents: 60585
diff changeset
  1544
  { fix a b assume "a \<in> A" "b < f a"
8c99fa3b7c44 add continuous_onI_mono
hoelzl
parents: 60585
diff changeset
  1545
    moreover
8c99fa3b7c44 add continuous_onI_mono
hoelzl
parents: 60585
diff changeset
  1546
    with open_left[OF \<open>open (f`A)\<close>, of "f a" b] obtain y where "y < f a" "{y <.. f a} \<subseteq> f`A"
8c99fa3b7c44 add continuous_onI_mono
hoelzl
parents: 60585
diff changeset
  1547
      by auto
8c99fa3b7c44 add continuous_onI_mono
hoelzl
parents: 60585
diff changeset
  1548
    moreover then obtain z where "max b y < z" "z < f a"
8c99fa3b7c44 add continuous_onI_mono
hoelzl
parents: 60585
diff changeset
  1549
      using dense[of "max b y" "f a"] \<open>y < f a\<close> \<open>b < f a\<close> by auto
8c99fa3b7c44 add continuous_onI_mono
hoelzl
parents: 60585
diff changeset
  1550
    moreover then obtain c where "z = f c" "c \<in> A"
8c99fa3b7c44 add continuous_onI_mono
hoelzl
parents: 60585
diff changeset
  1551
      using \<open>{y <.. f a} \<subseteq> f`A\<close>[THEN subsetD, of z] by (auto simp: less_imp_le)
8c99fa3b7c44 add continuous_onI_mono
hoelzl
parents: 60585
diff changeset
  1552
    ultimately have "\<exists>x. x \<in> A \<and> b < f x \<and> x < a"
8c99fa3b7c44 add continuous_onI_mono
hoelzl
parents: 60585
diff changeset
  1553
      by (auto intro!: exI[of _ c] simp: monoD) }
8c99fa3b7c44 add continuous_onI_mono
hoelzl
parents: 60585
diff changeset
  1554
  then show "\<exists>C. open C \<and> C \<inter> A = f -` {b <..} \<inter> A" for b
8c99fa3b7c44 add continuous_onI_mono
hoelzl
parents: 60585
diff changeset
  1555
    by (intro exI[of _ "(\<Union>x\<in>{x\<in>A. b < f x}. {x <..})"])
8c99fa3b7c44 add continuous_onI_mono
hoelzl
parents: 60585
diff changeset
  1556
       (auto intro: less_le_trans[OF _ mono] less_imp_le)
8c99fa3b7c44 add continuous_onI_mono
hoelzl
parents: 60585
diff changeset
  1557
qed
8c99fa3b7c44 add continuous_onI_mono
hoelzl
parents: 60585
diff changeset
  1558
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  1559
subsubsection \<open>Continuity at a point\<close>
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1560
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1561
definition continuous :: "'a::t2_space filter \<Rightarrow> ('a \<Rightarrow> 'b::topological_space) \<Rightarrow> bool" where
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1562
  "continuous F f \<longleftrightarrow> (f ---> f (Lim F (\<lambda>x. x))) F"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1563
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1564
lemma continuous_bot[continuous_intros, simp]: "continuous bot f"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1565
  unfolding continuous_def by auto
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1566
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1567
lemma continuous_trivial_limit: "trivial_limit net \<Longrightarrow> continuous net f"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1568
  by simp
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1569
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1570
lemma continuous_within: "continuous (at x within s) f \<longleftrightarrow> (f ---> f x) (at x within s)"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
  1571
  by (cases "trivial_limit (at x within s)") (auto simp add: Lim_ident_at continuous_def)
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1572
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1573
lemma continuous_within_topological:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1574
  "continuous (at x within s) f \<longleftrightarrow>
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1575
    (\<forall>B. open B \<longrightarrow> f x \<in> B \<longrightarrow> (\<exists>A. open A \<and> x \<in> A \<and> (\<forall>y\<in>s. y \<in> A \<longrightarrow> f y \<in> B)))"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
  1576
  unfolding continuous_within tendsto_def eventually_at_topological by metis
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1577
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1578
lemma continuous_within_compose[continuous_intros]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1579
  "continuous (at x within s) f \<Longrightarrow> continuous (at (f x) within f ` s) g \<Longrightarrow>
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1580
  continuous (at x within s) (g o f)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1581
  by (simp add: continuous_within_topological) metis
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1582
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1583
lemma continuous_within_compose2:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1584
  "continuous (at x within s) f \<Longrightarrow> continuous (at (f x) within f ` s) g \<Longrightarrow>
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1585
  continuous (at x within s) (\<lambda>x. g (f x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1586
  using continuous_within_compose[of x s f g] by (simp add: comp_def)
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1587
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1588
lemma continuous_at: "continuous (at x) f \<longleftrightarrow> f -- x --> f x"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1589
  using continuous_within[of x UNIV f] by simp
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1590
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1591
lemma continuous_ident[continuous_intros, simp]: "continuous (at x within S) (\<lambda>x. x)"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
  1592
  unfolding continuous_within by (rule tendsto_ident_at)
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1593
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1594
lemma continuous_const[continuous_intros, simp]: "continuous F (\<lambda>x. c)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1595
  unfolding continuous_def by (rule tendsto_const)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1596
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1597
lemma continuous_on_eq_continuous_within:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1598
  "continuous_on s f \<longleftrightarrow> (\<forall>x\<in>s. continuous (at x within s) f)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1599
  unfolding continuous_on_def continuous_within ..
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1600
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1601
abbreviation isCont :: "('a::t2_space \<Rightarrow> 'b::topological_space) \<Rightarrow> 'a \<Rightarrow> bool" where
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1602
  "isCont f a \<equiv> continuous (at a) f"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1603
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1604
lemma isCont_def: "isCont f a \<longleftrightarrow> f -- a --> f a"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1605
  by (rule continuous_at)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1606
60762
bf0c76ccee8d new material for multivariate analysis, etc.
paulson
parents: 60758
diff changeset
  1607
lemma continuous_at_imp_continuous_at_within: "isCont f x \<Longrightarrow> continuous (at x within s) f"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
  1608
  by (auto intro: tendsto_mono at_le simp: continuous_at continuous_within)
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1609
51481
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1610
lemma continuous_on_eq_continuous_at: "open s \<Longrightarrow> continuous_on s f \<longleftrightarrow> (\<forall>x\<in>s. isCont f x)"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51518
diff changeset
  1611
  by (simp add: continuous_on_def continuous_at at_within_open[of _ s])
51481
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1612
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1613
lemma continuous_at_imp_continuous_on: "\<forall>x\<in>s. isCont f x \<Longrightarrow> continuous_on s f"
60762
bf0c76ccee8d new material for multivariate analysis, etc.
paulson
parents: 60758
diff changeset
  1614
  by (auto intro: continuous_at_imp_continuous_at_within simp: continuous_on_eq_continuous_within)
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1615
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1616
lemma isCont_o2: "isCont f a \<Longrightarrow> isCont g (f a) \<Longrightarrow> isCont (\<lambda>x. g (f x)) a"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1617
  unfolding isCont_def by (rule tendsto_compose)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1618
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1619
lemma isCont_o[continuous_intros]: "isCont f a \<Longrightarrow> isCont g (f a) \<Longrightarrow> isCont (g \<circ> f) a"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1620
  unfolding o_def by (rule isCont_o2)
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1621
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1622
lemma isCont_tendsto_compose: "isCont g l \<Longrightarrow> (f ---> l) F \<Longrightarrow> ((\<lambda>x. g (f x)) ---> g l) F"
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1623
  unfolding isCont_def by (rule tendsto_compose)
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1624
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1625
lemma continuous_within_compose3:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1626
  "isCont g (f x) \<Longrightarrow> continuous (at x within s) f \<Longrightarrow> continuous (at x within s) (\<lambda>x. g (f x))"
60762
bf0c76ccee8d new material for multivariate analysis, etc.
paulson
parents: 60758
diff changeset
  1627
  using continuous_within_compose2[of x s f g] by (simp add: continuous_at_imp_continuous_at_within)
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1628
57447
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1629
lemma filtermap_nhds_open_map:
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1630
  assumes cont: "isCont f a" and open_map: "\<And>S. open S \<Longrightarrow> open (f`S)"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1631
  shows "filtermap f (nhds a) = nhds (f a)"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1632
  unfolding filter_eq_iff
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1633
proof safe
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1634
  fix P assume "eventually P (filtermap f (nhds a))"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1635
  then guess S unfolding eventually_filtermap eventually_nhds ..
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1636
  then show "eventually P (nhds (f a))"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1637
    unfolding eventually_nhds by (intro exI[of _ "f`S"]) (auto intro!: open_map)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1638
qed (metis filterlim_iff tendsto_at_iff_tendsto_nhds isCont_def eventually_filtermap cont)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1639
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1640
lemma continuous_at_split: 
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1641
  "continuous (at (x::'a::linorder_topology)) f = (continuous (at_left x) f \<and> continuous (at_right x) f)"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1642
  by (simp add: continuous_within filterlim_at_split)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  1643
61245
b77bf45efe21 prove Liminf_inverse_ereal
hoelzl
parents: 61234
diff changeset
  1644
subsubsection \<open>Open-cover compactness\<close>
51479
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  1645
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  1646
context topological_space
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  1647
begin
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  1648
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  1649
definition compact :: "'a set \<Rightarrow> bool" where
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61738
diff changeset
  1650
  compact_eq_heine_borel: \<comment> "This name is used for backwards compatibility"
51479
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  1651
    "compact S \<longleftrightarrow> (\<forall>C. (\<forall>c\<in>C. open c) \<and> S \<subseteq> \<Union>C \<longrightarrow> (\<exists>D\<subseteq>C. finite D \<and> S \<subseteq> \<Union>D))"
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  1652
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  1653
lemma compactI:
60585
48fdff264eb2 tuned whitespace;
wenzelm
parents: 60182
diff changeset
  1654
  assumes "\<And>C. \<forall>t\<in>C. open t \<Longrightarrow> s \<subseteq> \<Union>C \<Longrightarrow> \<exists>C'. C' \<subseteq> C \<and> finite C' \<and> s \<subseteq> \<Union>C'"
51479
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  1655
  shows "compact s"
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  1656
  unfolding compact_eq_heine_borel using assms by metis
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  1657
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  1658
lemma compact_empty[simp]: "compact {}"
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  1659
  by (auto intro!: compactI)
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  1660
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  1661
lemma compactE:
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  1662
  assumes "compact s" and "\<forall>t\<in>C. open t" and "s \<subseteq> \<Union>C"
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  1663
  obtains C' where "C' \<subseteq> C" and "finite C'" and "s \<subseteq> \<Union>C'"
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  1664
  using assms unfolding compact_eq_heine_borel by metis
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  1665
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  1666
lemma compactE_image:
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  1667
  assumes "compact s" and "\<forall>t\<in>C. open (f t)" and "s \<subseteq> (\<Union>c\<in>C. f c)"
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  1668
  obtains C' where "C' \<subseteq> C" and "finite C'" and "s \<subseteq> (\<Union>c\<in>C'. f c)"
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  1669
  using assms unfolding ball_simps[symmetric] SUP_def
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  1670
  by (metis (lifting) finite_subset_image compact_eq_heine_borel[of s])
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  1671
51481
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1672
lemma compact_inter_closed [intro]:
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1673
  assumes "compact s" and "closed t"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1674
  shows "compact (s \<inter> t)"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1675
proof (rule compactI)
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1676
  fix C assume C: "\<forall>c\<in>C. open c" and cover: "s \<inter> t \<subseteq> \<Union>C"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  1677
  from C \<open>closed t\<close> have "\<forall>c\<in>C \<union> {-t}. open c" by auto
51481
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1678
  moreover from cover have "s \<subseteq> \<Union>(C \<union> {-t})" by auto
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1679
  ultimately have "\<exists>D\<subseteq>C \<union> {-t}. finite D \<and> s \<subseteq> \<Union>D"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  1680
    using \<open>compact s\<close> unfolding compact_eq_heine_borel by auto
53381
355a4cac5440 tuned proofs -- less guessing;
wenzelm
parents: 53374
diff changeset
  1681
  then obtain D where "D \<subseteq> C \<union> {- t} \<and> finite D \<and> s \<subseteq> \<Union>D" ..
51481
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1682
  then show "\<exists>D\<subseteq>C. finite D \<and> s \<inter> t \<subseteq> \<Union>D"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1683
    by (intro exI[of _ "D - {-t}"]) auto
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1684
qed
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1685
54797
be020ec8560c modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
hoelzl
parents: 54258
diff changeset
  1686
lemma inj_setminus: "inj_on uminus (A::'a set set)"
be020ec8560c modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
hoelzl
parents: 54258
diff changeset
  1687
  by (auto simp: inj_on_def)
be020ec8560c modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
hoelzl
parents: 54258
diff changeset
  1688
be020ec8560c modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
hoelzl
parents: 54258
diff changeset
  1689
lemma compact_fip:
be020ec8560c modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
hoelzl
parents: 54258
diff changeset
  1690
  "compact U \<longleftrightarrow>
be020ec8560c modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
hoelzl
parents: 54258
diff changeset
  1691
    (\<forall>A. (\<forall>a\<in>A. closed a) \<longrightarrow> (\<forall>B \<subseteq> A. finite B \<longrightarrow> U \<inter> \<Inter>B \<noteq> {}) \<longrightarrow> U \<inter> \<Inter>A \<noteq> {})"
be020ec8560c modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
hoelzl
parents: 54258
diff changeset
  1692
  (is "_ \<longleftrightarrow> ?R")
be020ec8560c modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
hoelzl
parents: 54258
diff changeset
  1693
proof (safe intro!: compact_eq_heine_borel[THEN iffD2])
be020ec8560c modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
hoelzl
parents: 54258
diff changeset
  1694
  fix A
be020ec8560c modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
hoelzl
parents: 54258
diff changeset
  1695
  assume "compact U"
be020ec8560c modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
hoelzl
parents: 54258
diff changeset
  1696
    and A: "\<forall>a\<in>A. closed a" "U \<inter> \<Inter>A = {}"
be020ec8560c modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
hoelzl
parents: 54258
diff changeset
  1697
    and fi: "\<forall>B \<subseteq> A. finite B \<longrightarrow> U \<inter> \<Inter>B \<noteq> {}"
be020ec8560c modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
hoelzl
parents: 54258
diff changeset
  1698
  from A have "(\<forall>a\<in>uminus`A. open a) \<and> U \<subseteq> \<Union>(uminus`A)"
be020ec8560c modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
hoelzl
parents: 54258
diff changeset
  1699
    by auto
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  1700
  with \<open>compact U\<close> obtain B where "B \<subseteq> A" "finite (uminus`B)" "U \<subseteq> \<Union>(uminus`B)"
54797
be020ec8560c modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
hoelzl
parents: 54258
diff changeset
  1701
    unfolding compact_eq_heine_borel by (metis subset_image_iff)
be020ec8560c modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
hoelzl
parents: 54258
diff changeset
  1702
  with fi[THEN spec, of B] show False
be020ec8560c modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
hoelzl
parents: 54258
diff changeset
  1703
    by (auto dest: finite_imageD intro: inj_setminus)
be020ec8560c modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
hoelzl
parents: 54258
diff changeset
  1704
next
be020ec8560c modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
hoelzl
parents: 54258
diff changeset
  1705
  fix A
be020ec8560c modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
hoelzl
parents: 54258
diff changeset
  1706
  assume ?R
be020ec8560c modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
hoelzl
parents: 54258
diff changeset
  1707
  assume "\<forall>a\<in>A. open a" "U \<subseteq> \<Union>A"
be020ec8560c modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
hoelzl
parents: 54258
diff changeset
  1708
  then have "U \<inter> \<Inter>(uminus`A) = {}" "\<forall>a\<in>uminus`A. closed a"
be020ec8560c modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
hoelzl
parents: 54258
diff changeset
  1709
    by auto
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  1710
  with \<open>?R\<close> obtain B where "B \<subseteq> A" "finite (uminus`B)" "U \<inter> \<Inter>(uminus`B) = {}"
54797
be020ec8560c modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
hoelzl
parents: 54258
diff changeset
  1711
    by (metis subset_image_iff)
be020ec8560c modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
hoelzl
parents: 54258
diff changeset
  1712
  then show "\<exists>T\<subseteq>A. finite T \<and> U \<subseteq> \<Union>T"
be020ec8560c modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
hoelzl
parents: 54258
diff changeset
  1713
    by  (auto intro!: exI[of _ B] inj_setminus dest: finite_imageD)
be020ec8560c modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
hoelzl
parents: 54258
diff changeset
  1714
qed
be020ec8560c modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
hoelzl
parents: 54258
diff changeset
  1715
be020ec8560c modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
hoelzl
parents: 54258
diff changeset
  1716
lemma compact_imp_fip:
60585
48fdff264eb2 tuned whitespace;
wenzelm
parents: 60182
diff changeset
  1717
  "compact s \<Longrightarrow> \<forall>t \<in> f. closed t \<Longrightarrow> \<forall>f'. finite f' \<and> f' \<subseteq> f \<longrightarrow> (s \<inter> (\<Inter>f') \<noteq> {}) \<Longrightarrow>
48fdff264eb2 tuned whitespace;
wenzelm
parents: 60182
diff changeset
  1718
    s \<inter> (\<Inter>f) \<noteq> {}"
54797
be020ec8560c modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
hoelzl
parents: 54258
diff changeset
  1719
  unfolding compact_fip by auto
be020ec8560c modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
hoelzl
parents: 54258
diff changeset
  1720
be020ec8560c modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
hoelzl
parents: 54258
diff changeset
  1721
lemma compact_imp_fip_image:
56166
9a241bc276cd normalising simp rules for compound operators
haftmann
parents: 56020
diff changeset
  1722
  assumes "compact s"
9a241bc276cd normalising simp rules for compound operators
haftmann
parents: 56020
diff changeset
  1723
    and P: "\<And>i. i \<in> I \<Longrightarrow> closed (f i)"
9a241bc276cd normalising simp rules for compound operators
haftmann
parents: 56020
diff changeset
  1724
    and Q: "\<And>I'. finite I' \<Longrightarrow> I' \<subseteq> I \<Longrightarrow> (s \<inter> (\<Inter>i\<in>I'. f i) \<noteq> {})"
9a241bc276cd normalising simp rules for compound operators
haftmann
parents: 56020
diff changeset
  1725
  shows "s \<inter> (\<Inter>i\<in>I. f i) \<noteq> {}"
9a241bc276cd normalising simp rules for compound operators
haftmann
parents: 56020
diff changeset
  1726
proof -
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  1727
  note \<open>compact s\<close>
56166
9a241bc276cd normalising simp rules for compound operators
haftmann
parents: 56020
diff changeset
  1728
  moreover from P have "\<forall>i \<in> f ` I. closed i" by blast
9a241bc276cd normalising simp rules for compound operators
haftmann
parents: 56020
diff changeset
  1729
  moreover have "\<forall>A. finite A \<and> A \<subseteq> f ` I \<longrightarrow> (s \<inter> (\<Inter>A) \<noteq> {})"
9a241bc276cd normalising simp rules for compound operators
haftmann
parents: 56020
diff changeset
  1730
  proof (rule, rule, erule conjE)
9a241bc276cd normalising simp rules for compound operators
haftmann
parents: 56020
diff changeset
  1731
    fix A :: "'a set set"
9a241bc276cd normalising simp rules for compound operators
haftmann
parents: 56020
diff changeset
  1732
    assume "finite A"
9a241bc276cd normalising simp rules for compound operators
haftmann
parents: 56020
diff changeset
  1733
    moreover assume "A \<subseteq> f ` I"
9a241bc276cd normalising simp rules for compound operators
haftmann
parents: 56020
diff changeset
  1734
    ultimately obtain B where "B \<subseteq> I" and "finite B" and "A = f ` B"
9a241bc276cd normalising simp rules for compound operators
haftmann
parents: 56020
diff changeset
  1735
      using finite_subset_image [of A f I] by blast
9a241bc276cd normalising simp rules for compound operators
haftmann
parents: 56020
diff changeset
  1736
    with Q [of B] show "s \<inter> \<Inter>A \<noteq> {}" by simp
9a241bc276cd normalising simp rules for compound operators
haftmann
parents: 56020
diff changeset
  1737
  qed
9a241bc276cd normalising simp rules for compound operators
haftmann
parents: 56020
diff changeset
  1738
  ultimately have "s \<inter> (\<Inter>(f ` I)) \<noteq> {}" by (rule compact_imp_fip)
9a241bc276cd normalising simp rules for compound operators
haftmann
parents: 56020
diff changeset
  1739
  then show ?thesis by simp
9a241bc276cd normalising simp rules for compound operators
haftmann
parents: 56020
diff changeset
  1740
qed
54797
be020ec8560c modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
hoelzl
parents: 54258
diff changeset
  1741
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1742
end
cad22a3cc09c move topological_space to its own theory
hoelzl
parents:
diff changeset
  1743
51481
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1744
lemma (in t2_space) compact_imp_closed:
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1745
  assumes "compact s" shows "closed s"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1746
unfolding closed_def
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1747
proof (rule openI)
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1748
  fix y assume "y \<in> - s"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1749
  let ?C = "\<Union>x\<in>s. {u. open u \<and> x \<in> u \<and> eventually (\<lambda>y. y \<notin> u) (nhds y)}"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  1750
  note \<open>compact s\<close>
51481
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1751
  moreover have "\<forall>u\<in>?C. open u" by simp
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1752
  moreover have "s \<subseteq> \<Union>?C"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1753
  proof
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1754
    fix x assume "x \<in> s"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  1755
    with \<open>y \<in> - s\<close> have "x \<noteq> y" by clarsimp
51481
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1756
    hence "\<exists>u v. open u \<and> open v \<and> x \<in> u \<and> y \<in> v \<and> u \<inter> v = {}"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1757
      by (rule hausdorff)
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  1758
    with \<open>x \<in> s\<close> show "x \<in> \<Union>?C"
51481
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1759
      unfolding eventually_nhds by auto
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1760
  qed
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1761
  ultimately obtain D where "D \<subseteq> ?C" and "finite D" and "s \<subseteq> \<Union>D"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1762
    by (rule compactE)
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  1763
  from \<open>D \<subseteq> ?C\<close> have "\<forall>x\<in>D. eventually (\<lambda>y. y \<notin> x) (nhds y)" by auto
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  1764
  with \<open>finite D\<close> have "eventually (\<lambda>y. y \<notin> \<Union>D) (nhds y)"
60040
1fa1023b13b9 move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
hoelzl
parents: 60036
diff changeset
  1765
    by (simp add: eventually_ball_finite)
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  1766
  with \<open>s \<subseteq> \<Union>D\<close> have "eventually (\<lambda>y. y \<notin> s) (nhds y)"
61810
3c5040d5694a sorted out eventually_mono
paulson <lp15@cam.ac.uk>
parents: 61806
diff changeset
  1767
    by (auto elim!: eventually_mono)
51481
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1768
  thus "\<exists>t. open t \<and> y \<in> t \<and> t \<subseteq> - s"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1769
    by (simp add: eventually_nhds subset_eq)
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1770
qed
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1771
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1772
lemma compact_continuous_image:
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1773
  assumes f: "continuous_on s f" and s: "compact s"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1774
  shows "compact (f ` s)"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1775
proof (rule compactI)
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1776
  fix C assume "\<forall>c\<in>C. open c" and cover: "f`s \<subseteq> \<Union>C"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1777
  with f have "\<forall>c\<in>C. \<exists>A. open A \<and> A \<inter> s = f -` c \<inter> s"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1778
    unfolding continuous_on_open_invariant by blast
53381
355a4cac5440 tuned proofs -- less guessing;
wenzelm
parents: 53374
diff changeset
  1779
  then obtain A where A: "\<forall>c\<in>C. open (A c) \<and> A c \<inter> s = f -` c \<inter> s"
355a4cac5440 tuned proofs -- less guessing;
wenzelm
parents: 53374
diff changeset
  1780
    unfolding bchoice_iff ..
51481
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1781
  with cover have "\<forall>c\<in>C. open (A c)" "s \<subseteq> (\<Union>c\<in>C. A c)"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1782
    by (fastforce simp add: subset_eq set_eq_iff)+
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1783
  from compactE_image[OF s this] obtain D where "D \<subseteq> C" "finite D" "s \<subseteq> (\<Union>c\<in>D. A c)" .
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1784
  with A show "\<exists>D \<subseteq> C. finite D \<and> f`s \<subseteq> \<Union>D"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1785
    by (intro exI[of _ D]) (fastforce simp add: subset_eq set_eq_iff)+
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1786
qed
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1787
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1788
lemma continuous_on_inv:
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1789
  fixes f :: "'a::topological_space \<Rightarrow> 'b::t2_space"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1790
  assumes "continuous_on s f"  "compact s"  "\<forall>x\<in>s. g (f x) = x"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1791
  shows "continuous_on (f ` s) g"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1792
unfolding continuous_on_topological
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1793
proof (clarsimp simp add: assms(3))
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1794
  fix x :: 'a and B :: "'a set"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1795
  assume "x \<in> s" and "open B" and "x \<in> B"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1796
  have 1: "\<forall>x\<in>s. f x \<in> f ` (s - B) \<longleftrightarrow> x \<in> s - B"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1797
    using assms(3) by (auto, metis)
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1798
  have "continuous_on (s - B) f"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  1799
    using \<open>continuous_on s f\<close> Diff_subset
51481
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1800
    by (rule continuous_on_subset)
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1801
  moreover have "compact (s - B)"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  1802
    using \<open>open B\<close> and \<open>compact s\<close>
51481
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1803
    unfolding Diff_eq by (intro compact_inter_closed closed_Compl)
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1804
  ultimately have "compact (f ` (s - B))"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1805
    by (rule compact_continuous_image)
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1806
  hence "closed (f ` (s - B))"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1807
    by (rule compact_imp_closed)
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1808
  hence "open (- f ` (s - B))"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1809
    by (rule open_Compl)
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1810
  moreover have "f x \<in> - f ` (s - B)"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  1811
    using \<open>x \<in> s\<close> and \<open>x \<in> B\<close> by (simp add: 1)
51481
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1812
  moreover have "\<forall>y\<in>s. f y \<in> - f ` (s - B) \<longrightarrow> y \<in> B"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1813
    by (simp add: 1)
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1814
  ultimately show "\<exists>A. open A \<and> f x \<in> A \<and> (\<forall>y\<in>s. f y \<in> A \<longrightarrow> y \<in> B)"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1815
    by fast
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1816
qed
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1817
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1818
lemma continuous_on_inv_into:
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1819
  fixes f :: "'a::topological_space \<Rightarrow> 'b::t2_space"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1820
  assumes s: "continuous_on s f" "compact s" and f: "inj_on f s"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1821
  shows "continuous_on (f ` s) (the_inv_into s f)"
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1822
  by (rule continuous_on_inv[OF s]) (auto simp: the_inv_into_f_f[OF f])
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1823
51479
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  1824
lemma (in linorder_topology) compact_attains_sup:
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  1825
  assumes "compact S" "S \<noteq> {}"
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  1826
  shows "\<exists>s\<in>S. \<forall>t\<in>S. t \<le> s"
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  1827
proof (rule classical)
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  1828
  assume "\<not> (\<exists>s\<in>S. \<forall>t\<in>S. t \<le> s)"
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  1829
  then obtain t where t: "\<forall>s\<in>S. t s \<in> S" and "\<forall>s\<in>S. s < t s"
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  1830
    by (metis not_le)
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  1831
  then have "\<forall>s\<in>S. open {..< t s}" "S \<subseteq> (\<Union>s\<in>S. {..< t s})"
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  1832
    by auto
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  1833
  with \<open>compact S\<close> obtain C where "C \<subseteq> S" "finite C" and C: "S \<subseteq> (\<Union>s\<in>C. {..< t s})"
51479
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  1834
    by (erule compactE_image)
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  1835
  with \<open>S \<noteq> {}\<close> have Max: "Max (t`C) \<in> t`C" and "\<forall>s\<in>t`C. s \<le> Max (t`C)"
51479
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  1836
    by (auto intro!: Max_in)
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  1837
  with C have "S \<subseteq> {..< Max (t`C)}"
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  1838
    by (auto intro: less_le_trans simp: subset_eq)
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  1839
  with t Max \<open>C \<subseteq> S\<close> show ?thesis
51479
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  1840
    by fastforce
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  1841
qed
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  1842
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  1843
lemma (in linorder_topology) compact_attains_inf:
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  1844
  assumes "compact S" "S \<noteq> {}"
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  1845
  shows "\<exists>s\<in>S. \<forall>t\<in>S. s \<le> t"
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  1846
proof (rule classical)
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  1847
  assume "\<not> (\<exists>s\<in>S. \<forall>t\<in>S. s \<le> t)"
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  1848
  then obtain t where t: "\<forall>s\<in>S. t s \<in> S" and "\<forall>s\<in>S. t s < s"
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  1849
    by (metis not_le)
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  1850
  then have "\<forall>s\<in>S. open {t s <..}" "S \<subseteq> (\<Union>s\<in>S. {t s <..})"
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  1851
    by auto
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  1852
  with \<open>compact S\<close> obtain C where "C \<subseteq> S" "finite C" and C: "S \<subseteq> (\<Union>s\<in>C. {t s <..})"
51479
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  1853
    by (erule compactE_image)
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  1854
  with \<open>S \<noteq> {}\<close> have Min: "Min (t`C) \<in> t`C" and "\<forall>s\<in>t`C. Min (t`C) \<le> s"
51479
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  1855
    by (auto intro!: Min_in)
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  1856
  with C have "S \<subseteq> {Min (t`C) <..}"
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  1857
    by (auto intro: le_less_trans simp: subset_eq)
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  1858
  with t Min \<open>C \<subseteq> S\<close> show ?thesis
51479
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  1859
    by fastforce
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  1860
qed
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  1861
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  1862
lemma continuous_attains_sup:
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  1863
  fixes f :: "'a::topological_space \<Rightarrow> 'b::linorder_topology"
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  1864
  shows "compact s \<Longrightarrow> s \<noteq> {} \<Longrightarrow> continuous_on s f \<Longrightarrow> (\<exists>x\<in>s. \<forall>y\<in>s.  f y \<le> f x)"
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  1865
  using compact_attains_sup[of "f ` s"] compact_continuous_image[of s f] by auto
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  1866
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  1867
lemma continuous_attains_inf:
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  1868
  fixes f :: "'a::topological_space \<Rightarrow> 'b::linorder_topology"
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  1869
  shows "compact s \<Longrightarrow> s \<noteq> {} \<Longrightarrow> continuous_on s f \<Longrightarrow> (\<exists>x\<in>s. \<forall>y\<in>s. f x \<le> f y)"
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  1870
  using compact_attains_inf[of "f ` s"] compact_continuous_image[of s f] by auto
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  1871
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  1872
subsection \<open>Connectedness\<close>
51480
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  1873
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  1874
context topological_space
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  1875
begin
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  1876
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  1877
definition "connected S \<longleftrightarrow>
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  1878
  \<not> (\<exists>A B. open A \<and> open B \<and> S \<subseteq> A \<union> B \<and> A \<inter> B \<inter> S = {} \<and> A \<inter> S \<noteq> {} \<and> B \<inter> S \<noteq> {})"
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  1879
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  1880
lemma connectedI:
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  1881
  "(\<And>A B. open A \<Longrightarrow> open B \<Longrightarrow> A \<inter> U \<noteq> {} \<Longrightarrow> B \<inter> U \<noteq> {} \<Longrightarrow> A \<inter> B \<inter> U = {} \<Longrightarrow> U \<subseteq> A \<union> B \<Longrightarrow> False)
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  1882
  \<Longrightarrow> connected U"
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  1883
  by (auto simp: connected_def)
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  1884
61306
9dd394c866fc New theorems about connected sets. And pairwise moved to Set.thy.
paulson <lp15@cam.ac.uk>
parents: 61245
diff changeset
  1885
lemma connected_empty [simp]: "connected {}"
9dd394c866fc New theorems about connected sets. And pairwise moved to Set.thy.
paulson <lp15@cam.ac.uk>
parents: 61245
diff changeset
  1886
  by (auto intro!: connectedI)
9dd394c866fc New theorems about connected sets. And pairwise moved to Set.thy.
paulson <lp15@cam.ac.uk>
parents: 61245
diff changeset
  1887
9dd394c866fc New theorems about connected sets. And pairwise moved to Set.thy.
paulson <lp15@cam.ac.uk>
parents: 61245
diff changeset
  1888
lemma connected_sing [simp]: "connected {x}"
51480
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  1889
  by (auto intro!: connectedI)
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  1890
56329
9597a53b3429 add connected_local_const
hoelzl
parents: 56289
diff changeset
  1891
lemma connectedD:
9597a53b3429 add connected_local_const
hoelzl
parents: 56289
diff changeset
  1892
  "connected A \<Longrightarrow> open U \<Longrightarrow> open V \<Longrightarrow> U \<inter> V \<inter> A = {} \<Longrightarrow> A \<subseteq> U \<union> V \<Longrightarrow> U \<inter> A = {} \<or> V \<inter> A = {}" 
9597a53b3429 add connected_local_const
hoelzl
parents: 56289
diff changeset
  1893
  by (auto simp: connected_def)
9597a53b3429 add connected_local_const
hoelzl
parents: 56289
diff changeset
  1894
51479
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  1895
end
33db4b7189af move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
hoelzl
parents: 51478
diff changeset
  1896
61306
9dd394c866fc New theorems about connected sets. And pairwise moved to Set.thy.
paulson <lp15@cam.ac.uk>
parents: 61245
diff changeset
  1897
lemma connected_closed:
9dd394c866fc New theorems about connected sets. And pairwise moved to Set.thy.
paulson <lp15@cam.ac.uk>
parents: 61245
diff changeset
  1898
    "connected s \<longleftrightarrow>
9dd394c866fc New theorems about connected sets. And pairwise moved to Set.thy.
paulson <lp15@cam.ac.uk>
parents: 61245
diff changeset
  1899
     ~ (\<exists>A B. closed A \<and> closed B \<and> s \<subseteq> A \<union> B \<and> A \<inter> B \<inter> s = {} \<and> A \<inter> s \<noteq> {} \<and> B \<inter> s \<noteq> {})"
9dd394c866fc New theorems about connected sets. And pairwise moved to Set.thy.
paulson <lp15@cam.ac.uk>
parents: 61245
diff changeset
  1900
apply (simp add: connected_def del: ex_simps, safe)
9dd394c866fc New theorems about connected sets. And pairwise moved to Set.thy.
paulson <lp15@cam.ac.uk>
parents: 61245
diff changeset
  1901
apply (drule_tac x="-A" in spec)
9dd394c866fc New theorems about connected sets. And pairwise moved to Set.thy.
paulson <lp15@cam.ac.uk>
parents: 61245
diff changeset
  1902
apply (drule_tac x="-B" in spec)
9dd394c866fc New theorems about connected sets. And pairwise moved to Set.thy.
paulson <lp15@cam.ac.uk>
parents: 61245
diff changeset
  1903
apply (fastforce simp add: closed_def [symmetric])
9dd394c866fc New theorems about connected sets. And pairwise moved to Set.thy.
paulson <lp15@cam.ac.uk>
parents: 61245
diff changeset
  1904
apply (drule_tac x="-A" in spec)
9dd394c866fc New theorems about connected sets. And pairwise moved to Set.thy.
paulson <lp15@cam.ac.uk>
parents: 61245
diff changeset
  1905
apply (drule_tac x="-B" in spec)
9dd394c866fc New theorems about connected sets. And pairwise moved to Set.thy.
paulson <lp15@cam.ac.uk>
parents: 61245
diff changeset
  1906
apply (fastforce simp add: open_closed [symmetric])
9dd394c866fc New theorems about connected sets. And pairwise moved to Set.thy.
paulson <lp15@cam.ac.uk>
parents: 61245
diff changeset
  1907
done
9dd394c866fc New theorems about connected sets. And pairwise moved to Set.thy.
paulson <lp15@cam.ac.uk>
parents: 61245
diff changeset
  1908
9dd394c866fc New theorems about connected sets. And pairwise moved to Set.thy.
paulson <lp15@cam.ac.uk>
parents: 61245
diff changeset
  1909
9dd394c866fc New theorems about connected sets. And pairwise moved to Set.thy.
paulson <lp15@cam.ac.uk>
parents: 61245
diff changeset
  1910
lemma connected_Union:
9dd394c866fc New theorems about connected sets. And pairwise moved to Set.thy.
paulson <lp15@cam.ac.uk>
parents: 61245
diff changeset
  1911
  assumes cs: "\<And>s. s \<in> S \<Longrightarrow> connected s" and ne: "\<Inter>S \<noteq> {}"
9dd394c866fc New theorems about connected sets. And pairwise moved to Set.thy.
paulson <lp15@cam.ac.uk>
parents: 61245
diff changeset
  1912
    shows "connected(\<Union>S)"
9dd394c866fc New theorems about connected sets. And pairwise moved to Set.thy.
paulson <lp15@cam.ac.uk>
parents: 61245
diff changeset
  1913
proof (rule connectedI)
9dd394c866fc New theorems about connected sets. And pairwise moved to Set.thy.
paulson <lp15@cam.ac.uk>
parents: 61245
diff changeset
  1914
  fix A B
9dd394c866fc New theorems about connected sets. And pairwise moved to Set.thy.
paulson <lp15@cam.ac.uk>
parents: 61245
diff changeset
  1915
  assume A: "open A" and B: "open B" and Alap: "A \<inter> \<Union>S \<noteq> {}" and Blap: "B \<inter> \<Union>S \<noteq> {}"
9dd394c866fc New theorems about connected sets. And pairwise moved to Set.thy.
paulson <lp15@cam.ac.uk>
parents: 61245
diff changeset
  1916
     and disj: "A \<inter> B \<inter> \<Union>S = {}" and cover: "\<Union>S \<subseteq> A \<union> B"
9dd394c866fc New theorems about connected sets. And pairwise moved to Set.thy.
paulson <lp15@cam.ac.uk>
parents: 61245
diff changeset
  1917
  have disjs:"\<And>s. s \<in> S \<Longrightarrow> A \<inter> B \<inter> s = {}"
9dd394c866fc New theorems about connected sets. And pairwise moved to Set.thy.
paulson <lp15@cam.ac.uk>
parents: 61245
diff changeset
  1918
    using disj by auto
9dd394c866fc New theorems about connected sets. And pairwise moved to Set.thy.
paulson <lp15@cam.ac.uk>
parents: 61245
diff changeset
  1919
  obtain sa where sa: "sa \<in> S" "A \<inter> sa \<noteq> {}"
9dd394c866fc New theorems about connected sets. And pairwise moved to Set.thy.
paulson <lp15@cam.ac.uk>
parents: 61245
diff changeset
  1920
    using Alap by auto
9dd394c866fc New theorems about connected sets. And pairwise moved to Set.thy.
paulson <lp15@cam.ac.uk>
parents: 61245
diff changeset
  1921
  obtain sb where sb: "sb \<in> S" "B \<inter> sb \<noteq> {}"
9dd394c866fc New theorems about connected sets. And pairwise moved to Set.thy.
paulson <lp15@cam.ac.uk>
parents: 61245
diff changeset
  1922
    using Blap by auto
9dd394c866fc New theorems about connected sets. And pairwise moved to Set.thy.
paulson <lp15@cam.ac.uk>
parents: 61245
diff changeset
  1923
  obtain x where x: "\<And>s. s \<in> S \<Longrightarrow> x \<in> s"
9dd394c866fc New theorems about connected sets. And pairwise moved to Set.thy.
paulson <lp15@cam.ac.uk>
parents: 61245
diff changeset
  1924
    using ne by auto
9dd394c866fc New theorems about connected sets. And pairwise moved to Set.thy.
paulson <lp15@cam.ac.uk>
parents: 61245
diff changeset
  1925
  then have "x \<in> \<Union>S"
61342
b98cd131e2b5 isabelle update_cartouches;
wenzelm
parents: 61306
diff changeset
  1926
    using \<open>sa \<in> S\<close> by blast
61306
9dd394c866fc New theorems about connected sets. And pairwise moved to Set.thy.
paulson <lp15@cam.ac.uk>
parents: 61245
diff changeset
  1927
  then have "x \<in> A \<or> x \<in> B"
9dd394c866fc New theorems about connected sets. And pairwise moved to Set.thy.
paulson <lp15@cam.ac.uk>
parents: 61245
diff changeset
  1928
    using cover by auto
9dd394c866fc New theorems about connected sets. And pairwise moved to Set.thy.
paulson <lp15@cam.ac.uk>
parents: 61245
diff changeset
  1929
  then show False
9dd394c866fc New theorems about connected sets. And pairwise moved to Set.thy.
paulson <lp15@cam.ac.uk>
parents: 61245
diff changeset
  1930
    using cs [unfolded connected_def]
9dd394c866fc New theorems about connected sets. And pairwise moved to Set.thy.
paulson <lp15@cam.ac.uk>
parents: 61245
diff changeset
  1931
    by (metis A B IntI Sup_upper sa sb disjs x cover empty_iff subset_trans)
9dd394c866fc New theorems about connected sets. And pairwise moved to Set.thy.
paulson <lp15@cam.ac.uk>
parents: 61245
diff changeset
  1932
qed
9dd394c866fc New theorems about connected sets. And pairwise moved to Set.thy.
paulson <lp15@cam.ac.uk>
parents: 61245
diff changeset
  1933
9dd394c866fc New theorems about connected sets. And pairwise moved to Set.thy.
paulson <lp15@cam.ac.uk>
parents: 61245
diff changeset
  1934
lemma connected_Un: "\<lbrakk>connected s; connected t; s \<inter> t \<noteq> {}\<rbrakk> \<Longrightarrow> connected (s \<union> t)"
9dd394c866fc New theorems about connected sets. And pairwise moved to Set.thy.
paulson <lp15@cam.ac.uk>
parents: 61245
diff changeset
  1935
  using connected_Union [of "{s,t}"] by auto
9dd394c866fc New theorems about connected sets. And pairwise moved to Set.thy.
paulson <lp15@cam.ac.uk>
parents: 61245
diff changeset
  1936
9dd394c866fc New theorems about connected sets. And pairwise moved to Set.thy.
paulson <lp15@cam.ac.uk>
parents: 61245
diff changeset
  1937
lemma connected_diff_open_from_closed:
9dd394c866fc New theorems about connected sets. And pairwise moved to Set.thy.
paulson <lp15@cam.ac.uk>
parents: 61245
diff changeset
  1938
  assumes st: "s \<subseteq> t" and tu: "t \<subseteq> u" and s: "open s"
9dd394c866fc New theorems about connected sets. And pairwise moved to Set.thy.
paulson <lp15@cam.ac.uk>
parents: 61245
diff changeset
  1939
      and t: "closed t" and u: "connected u" and ts: "connected (t - s)"
9dd394c866fc New theorems about connected sets. And pairwise moved to Set.thy.
paulson <lp15@cam.ac.uk>
parents: 61245
diff changeset
  1940
  shows "connected(u - s)"
9dd394c866fc New theorems about connected sets. And pairwise moved to Set.thy.
paulson <lp15@cam.ac.uk>
parents: 61245
diff changeset
  1941
proof (rule connectedI)
9dd394c866fc New theorems about connected sets. And pairwise moved to Set.thy.
paulson <lp15@cam.ac.uk>
parents: 61245
diff changeset
  1942
  fix A B
9dd394c866fc New theorems about connected sets. And pairwise moved to Set.thy.
paulson <lp15@cam.ac.uk>
parents: 61245
diff changeset
  1943
  assume AB: "open A" "open B" "A \<inter> (u - s) \<noteq> {}" "B \<inter> (u - s) \<noteq> {}"
9dd394c866fc New theorems about connected sets. And pairwise moved to Set.thy.
paulson <lp15@cam.ac.uk>
parents: 61245
diff changeset
  1944
     and disj: "A \<inter> B \<inter> (u - s) = {}" and cover: "u - s \<subseteq> A \<union> B"
9dd394c866fc New theorems about connected sets. And pairwise moved to Set.thy.
paulson <lp15@cam.ac.uk>
parents: 61245
diff changeset
  1945
  then consider "A \<inter> (t - s) = {}" | "B \<inter> (t - s) = {}"
9dd394c866fc New theorems about connected sets. And pairwise moved to Set.thy.
paulson <lp15@cam.ac.uk>
parents: 61245
diff changeset
  1946
    using st ts tu connectedD [of "t-s" "A" "B"]
9dd394c866fc New theorems about connected sets. And pairwise moved to Set.thy.
paulson <lp15@cam.ac.uk>
parents: 61245
diff changeset
  1947
    by auto
9dd394c866fc New theorems about connected sets. And pairwise moved to Set.thy.
paulson <lp15@cam.ac.uk>
parents: 61245
diff changeset
  1948
  then show False
9dd394c866fc New theorems about connected sets. And pairwise moved to Set.thy.
paulson <lp15@cam.ac.uk>
parents: 61245
diff changeset
  1949
  proof cases
9dd394c866fc New theorems about connected sets. And pairwise moved to Set.thy.
paulson <lp15@cam.ac.uk>
parents: 61245
diff changeset
  1950
    case 1
9dd394c866fc New theorems about connected sets. And pairwise moved to Set.thy.
paulson <lp15@cam.ac.uk>
parents: 61245
diff changeset
  1951
    then have "(A - t) \<inter> (B \<union> s) \<inter> u = {}"
9dd394c866fc New theorems about connected sets. And pairwise moved to Set.thy.
paulson <lp15@cam.ac.uk>
parents: 61245
diff changeset
  1952
      using disj st by auto
9dd394c866fc New theorems about connected sets. And pairwise moved to Set.thy.
paulson <lp15@cam.ac.uk>
parents: 61245
diff changeset
  1953
    moreover have  "u \<subseteq> (A - t) \<union> (B \<union> s)" using 1 cover by auto
9dd394c866fc New theorems about connected sets. And pairwise moved to Set.thy.
paulson <lp15@cam.ac.uk>
parents: 61245
diff changeset
  1954
    ultimately show False
9dd394c866fc New theorems about connected sets. And pairwise moved to Set.thy.
paulson <lp15@cam.ac.uk>
parents: 61245
diff changeset
  1955
      using connectedD [of u "A - t" "B \<union> s"] AB s t 1 u
9dd394c866fc New theorems about connected sets. And pairwise moved to Set.thy.
paulson <lp15@cam.ac.uk>
parents: 61245
diff changeset
  1956
      by auto
9dd394c866fc New theorems about connected sets. And pairwise moved to Set.thy.
paulson <lp15@cam.ac.uk>
parents: 61245
diff changeset
  1957
  next
9dd394c866fc New theorems about connected sets. And pairwise moved to Set.thy.
paulson <lp15@cam.ac.uk>
parents: 61245
diff changeset
  1958
    case 2
9dd394c866fc New theorems about connected sets. And pairwise moved to Set.thy.
paulson <lp15@cam.ac.uk>
parents: 61245
diff changeset
  1959
    then have "(A \<union> s) \<inter> (B - t) \<inter> u = {}"
9dd394c866fc New theorems about connected sets. And pairwise moved to Set.thy.
paulson <lp15@cam.ac.uk>
parents: 61245
diff changeset
  1960
      using disj st
9dd394c866fc New theorems about connected sets. And pairwise moved to Set.thy.
paulson <lp15@cam.ac.uk>
parents: 61245
diff changeset
  1961
      by auto
9dd394c866fc New theorems about connected sets. And pairwise moved to Set.thy.
paulson <lp15@cam.ac.uk>
parents: 61245
diff changeset
  1962
    moreover have "u \<subseteq> (A \<union> s) \<union> (B - t)" using 2 cover by auto
9dd394c866fc New theorems about connected sets. And pairwise moved to Set.thy.
paulson <lp15@cam.ac.uk>
parents: 61245
diff changeset
  1963
    ultimately show False
9dd394c866fc New theorems about connected sets. And pairwise moved to Set.thy.
paulson <lp15@cam.ac.uk>
parents: 61245
diff changeset
  1964
      using connectedD [of u "A \<union> s" "B - t"] AB s t 2 u
9dd394c866fc New theorems about connected sets. And pairwise moved to Set.thy.
paulson <lp15@cam.ac.uk>
parents: 61245
diff changeset
  1965
      by auto
9dd394c866fc New theorems about connected sets. And pairwise moved to Set.thy.
paulson <lp15@cam.ac.uk>
parents: 61245
diff changeset
  1966
  qed
9dd394c866fc New theorems about connected sets. And pairwise moved to Set.thy.
paulson <lp15@cam.ac.uk>
parents: 61245
diff changeset
  1967
qed
9dd394c866fc New theorems about connected sets. And pairwise moved to Set.thy.
paulson <lp15@cam.ac.uk>
parents: 61245
diff changeset
  1968
59106
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  1969
lemma connected_iff_const:
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  1970
  fixes S :: "'a::topological_space set"
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  1971
  shows "connected S \<longleftrightarrow> (\<forall>P::'a \<Rightarrow> bool. continuous_on S P \<longrightarrow> (\<exists>c. \<forall>s\<in>S. P s = c))"
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  1972
proof safe
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  1973
  fix P :: "'a \<Rightarrow> bool" assume "connected S" "continuous_on S P"
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  1974
  then have "\<And>b. \<exists>A. open A \<and> A \<inter> S = P -` {b} \<inter> S"
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  1975
    unfolding continuous_on_open_invariant by simp
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  1976
  from this[of True] this[of False]
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  1977
  obtain t f where "open t" "open f" and *: "f \<inter> S = P -` {False} \<inter> S" "t \<inter> S = P -` {True} \<inter> S"
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  1978
    by auto
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  1979
  then have "t \<inter> S = {} \<or> f \<inter> S = {}"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  1980
    by (intro connectedD[OF \<open>connected S\<close>])  auto
59106
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  1981
  then show "\<exists>c. \<forall>s\<in>S. P s = c"
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  1982
  proof (rule disjE)
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  1983
    assume "t \<inter> S = {}" then show ?thesis
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  1984
      unfolding * by (intro exI[of _ False]) auto
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  1985
  next
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  1986
    assume "f \<inter> S = {}" then show ?thesis
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  1987
      unfolding * by (intro exI[of _ True]) auto
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  1988
  qed
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  1989
next
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  1990
  assume P: "\<forall>P::'a \<Rightarrow> bool. continuous_on S P \<longrightarrow> (\<exists>c. \<forall>s\<in>S. P s = c)"
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  1991
  show "connected S"
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  1992
  proof (rule connectedI)
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  1993
    fix A B assume *: "open A" "open B" "A \<inter> S \<noteq> {}" "B \<inter> S \<noteq> {}" "A \<inter> B \<inter> S = {}" "S \<subseteq> A \<union> B"
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  1994
    have "continuous_on S (\<lambda>x. x \<in> A)"
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  1995
      unfolding continuous_on_open_invariant
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  1996
    proof safe
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  1997
      fix C :: "bool set"
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  1998
      have "C = UNIV \<or> C = {True} \<or> C = {False} \<or> C = {}"
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  1999
        using subset_UNIV[of C] unfolding UNIV_bool by auto
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  2000
      with * show "\<exists>T. open T \<and> T \<inter> S = (\<lambda>x. x \<in> A) -` C \<inter> S"
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  2001
        by (intro exI[of _ "(if True \<in> C then A else {}) \<union> (if False \<in> C then B else {})"]) auto
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  2002
    qed
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  2003
    from P[rule_format, OF this] obtain c where "\<And>s. s \<in> S \<Longrightarrow> (s \<in> A) = c" by blast
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  2004
    with * show False
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  2005
      by (cases c) auto
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  2006
  qed
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  2007
qed
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  2008
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  2009
lemma connectedD_const:
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  2010
  fixes P :: "'a::topological_space \<Rightarrow> bool"
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  2011
  shows "connected S \<Longrightarrow> continuous_on S P \<Longrightarrow> \<exists>c. \<forall>s\<in>S. P s = c"
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  2012
  unfolding connected_iff_const by auto
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  2013
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  2014
lemma connectedI_const:
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  2015
  "(\<And>P::'a::topological_space \<Rightarrow> bool. continuous_on S P \<Longrightarrow> \<exists>c. \<forall>s\<in>S. P s = c) \<Longrightarrow> connected S"
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  2016
  unfolding connected_iff_const by auto
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  2017
56329
9597a53b3429 add connected_local_const
hoelzl
parents: 56289
diff changeset
  2018
lemma connected_local_const:
9597a53b3429 add connected_local_const
hoelzl
parents: 56289
diff changeset
  2019
  assumes "connected A" "a \<in> A" "b \<in> A"
9597a53b3429 add connected_local_const
hoelzl
parents: 56289
diff changeset
  2020
  assumes *: "\<forall>a\<in>A. eventually (\<lambda>b. f a = f b) (at a within A)"
9597a53b3429 add connected_local_const
hoelzl
parents: 56289
diff changeset
  2021
  shows "f a = f b"
9597a53b3429 add connected_local_const
hoelzl
parents: 56289
diff changeset
  2022
proof -
9597a53b3429 add connected_local_const
hoelzl
parents: 56289
diff changeset
  2023
  obtain S where S: "\<And>a. a \<in> A \<Longrightarrow> a \<in> S a" "\<And>a. a \<in> A \<Longrightarrow> open (S a)"
9597a53b3429 add connected_local_const
hoelzl
parents: 56289
diff changeset
  2024
    "\<And>a x. a \<in> A \<Longrightarrow> x \<in> S a \<Longrightarrow> x \<in> A \<Longrightarrow> f a = f x"
9597a53b3429 add connected_local_const
hoelzl
parents: 56289
diff changeset
  2025
    using * unfolding eventually_at_topological by metis
9597a53b3429 add connected_local_const
hoelzl
parents: 56289
diff changeset
  2026
9597a53b3429 add connected_local_const
hoelzl
parents: 56289
diff changeset
  2027
  let ?P = "\<Union>b\<in>{b\<in>A. f a = f b}. S b" and ?N = "\<Union>b\<in>{b\<in>A. f a \<noteq> f b}. S b"
9597a53b3429 add connected_local_const
hoelzl
parents: 56289
diff changeset
  2028
  have "?P \<inter> A = {} \<or> ?N \<inter> A = {}"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  2029
    using \<open>connected A\<close> S \<open>a\<in>A\<close>
56329
9597a53b3429 add connected_local_const
hoelzl
parents: 56289
diff changeset
  2030
    by (intro connectedD) (auto, metis)
9597a53b3429 add connected_local_const
hoelzl
parents: 56289
diff changeset
  2031
  then show "f a = f b"
9597a53b3429 add connected_local_const
hoelzl
parents: 56289
diff changeset
  2032
  proof
9597a53b3429 add connected_local_const
hoelzl
parents: 56289
diff changeset
  2033
    assume "?N \<inter> A = {}"
9597a53b3429 add connected_local_const
hoelzl
parents: 56289
diff changeset
  2034
    then have "\<forall>x\<in>A. f a = f x"
9597a53b3429 add connected_local_const
hoelzl
parents: 56289
diff changeset
  2035
      using S(1) by auto
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  2036
    with \<open>b\<in>A\<close> show ?thesis by auto
56329
9597a53b3429 add connected_local_const
hoelzl
parents: 56289
diff changeset
  2037
  next
9597a53b3429 add connected_local_const
hoelzl
parents: 56289
diff changeset
  2038
    assume "?P \<inter> A = {}" then show ?thesis
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  2039
      using \<open>a \<in> A\<close> S(1)[of a] by auto
56329
9597a53b3429 add connected_local_const
hoelzl
parents: 56289
diff changeset
  2040
  qed
9597a53b3429 add connected_local_const
hoelzl
parents: 56289
diff changeset
  2041
qed
9597a53b3429 add connected_local_const
hoelzl
parents: 56289
diff changeset
  2042
51480
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  2043
lemma (in linorder_topology) connectedD_interval:
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  2044
  assumes "connected U" and xy: "x \<in> U" "y \<in> U" and "x \<le> z" "z \<le> y"
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  2045
  shows "z \<in> U"
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  2046
proof -
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  2047
  have eq: "{..<z} \<union> {z<..} = - {z}"
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  2048
    by auto
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  2049
  { assume "z \<notin> U" "x < z" "z < y"
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  2050
    with xy have "\<not> connected U"
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  2051
      unfolding connected_def simp_thms
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  2052
      apply (rule_tac exI[of _ "{..< z}"])
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  2053
      apply (rule_tac exI[of _ "{z <..}"])
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  2054
      apply (auto simp add: eq)
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  2055
      done }
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  2056
  with assms show "z \<in> U"
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  2057
    by (metis less_le)
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  2058
qed
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  2059
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  2060
lemma connected_continuous_image:
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  2061
  assumes *: "continuous_on s f"
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  2062
  assumes "connected s"
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  2063
  shows "connected (f ` s)"
59106
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  2064
proof (rule connectedI_const)
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  2065
  fix P :: "'b \<Rightarrow> bool" assume "continuous_on (f ` s) P"
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  2066
  then have "continuous_on s (P \<circ> f)"
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  2067
    by (rule continuous_on_compose[OF *])
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  2068
  from connectedD_const[OF \<open>connected s\<close> this] show "\<exists>c. \<forall>s\<in>f ` s. P s = c"
59106
af691e67f71f instance bool and enat as topologies
hoelzl
parents: 58889
diff changeset
  2069
    by auto
51480
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  2070
qed
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  2071
61306
9dd394c866fc New theorems about connected sets. And pairwise moved to Set.thy.
paulson <lp15@cam.ac.uk>
parents: 61245
diff changeset
  2072
9dd394c866fc New theorems about connected sets. And pairwise moved to Set.thy.
paulson <lp15@cam.ac.uk>
parents: 61245
diff changeset
  2073
section \<open>Linear Continuum Topologies\<close>
51518
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2074
51775
408d937c9486 revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
hoelzl
parents: 51774
diff changeset
  2075
class linear_continuum_topology = linorder_topology + linear_continuum
51518
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2076
begin
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2077
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2078
lemma Inf_notin_open:
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2079
  assumes A: "open A" and bnd: "\<forall>a\<in>A. x < a"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2080
  shows "Inf A \<notin> A"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2081
proof
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2082
  assume "Inf A \<in> A"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2083
  then obtain b where "b < Inf A" "{b <.. Inf A} \<subseteq> A"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2084
    using open_left[of A "Inf A" x] assms by auto
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2085
  with dense[of b "Inf A"] obtain c where "c < Inf A" "c \<in> A"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2086
    by (auto simp: subset_eq)
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2087
  then show False
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  2088
    using cInf_lower[OF \<open>c \<in> A\<close>] bnd by (metis not_le less_imp_le bdd_belowI)
51518
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2089
qed
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2090
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2091
lemma Sup_notin_open:
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2092
  assumes A: "open A" and bnd: "\<forall>a\<in>A. a < x"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2093
  shows "Sup A \<notin> A"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2094
proof
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2095
  assume "Sup A \<in> A"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2096
  then obtain b where "Sup A < b" "{Sup A ..< b} \<subseteq> A"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2097
    using open_right[of A "Sup A" x] assms by auto
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2098
  with dense[of "Sup A" b] obtain c where "Sup A < c" "c \<in> A"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2099
    by (auto simp: subset_eq)
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2100
  then show False
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  2101
    using cSup_upper[OF \<open>c \<in> A\<close>] bnd by (metis less_imp_le not_le bdd_aboveI)
51518
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2102
qed
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2103
51480
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  2104
end
3793c3a11378 move connected to HOL image; used to show intermediate value theorem
hoelzl
parents: 51479
diff changeset
  2105
51775
408d937c9486 revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
hoelzl
parents: 51774
diff changeset
  2106
instance linear_continuum_topology \<subseteq> perfect_space
408d937c9486 revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
hoelzl
parents: 51774
diff changeset
  2107
proof
408d937c9486 revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
hoelzl
parents: 51774
diff changeset
  2108
  fix x :: 'a
53381
355a4cac5440 tuned proofs -- less guessing;
wenzelm
parents: 53374
diff changeset
  2109
  obtain y where "x < y \<or> y < x"
355a4cac5440 tuned proofs -- less guessing;
wenzelm
parents: 53374
diff changeset
  2110
    using ex_gt_or_lt [of x] ..
51775
408d937c9486 revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
hoelzl
parents: 51774
diff changeset
  2111
  with Inf_notin_open[of "{x}" y] Sup_notin_open[of "{x}" y]
408d937c9486 revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
hoelzl
parents: 51774
diff changeset
  2112
  show "\<not> open {x}"
408d937c9486 revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
hoelzl
parents: 51774
diff changeset
  2113
    by auto
408d937c9486 revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
hoelzl
parents: 51774
diff changeset
  2114
qed
408d937c9486 revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
hoelzl
parents: 51774
diff changeset
  2115
51518
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2116
lemma connectedI_interval:
51775
408d937c9486 revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
hoelzl
parents: 51774
diff changeset
  2117
  fixes U :: "'a :: linear_continuum_topology set"
51518
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2118
  assumes *: "\<And>x y z. x \<in> U \<Longrightarrow> y \<in> U \<Longrightarrow> x \<le> z \<Longrightarrow> z \<le> y \<Longrightarrow> z \<in> U"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2119
  shows "connected U"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2120
proof (rule connectedI)
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2121
  { fix A B assume "open A" "open B" "A \<inter> B \<inter> U = {}" "U \<subseteq> A \<union> B"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2122
    fix x y assume "x < y" "x \<in> A" "y \<in> B" "x \<in> U" "y \<in> U"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2123
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2124
    let ?z = "Inf (B \<inter> {x <..})"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2125
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2126
    have "x \<le> ?z" "?z \<le> y"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  2127
      using \<open>y \<in> B\<close> \<open>x < y\<close> by (auto intro: cInf_lower cInf_greatest)
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  2128
    with \<open>x \<in> U\<close> \<open>y \<in> U\<close> have "?z \<in> U"
51518
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2129
      by (rule *)
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2130
    moreover have "?z \<notin> B \<inter> {x <..}"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  2131
      using \<open>open B\<close> by (intro Inf_notin_open) auto
51518
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2132
    ultimately have "?z \<in> A"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  2133
      using \<open>x \<le> ?z\<close> \<open>A \<inter> B \<inter> U = {}\<close> \<open>x \<in> A\<close> \<open>U \<subseteq> A \<union> B\<close> by auto
51518
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2134
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2135
    { assume "?z < y"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2136
      obtain a where "?z < a" "{?z ..< a} \<subseteq> A"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  2137
        using open_right[OF \<open>open A\<close> \<open>?z \<in> A\<close> \<open>?z < y\<close>] by auto
51518
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2138
      moreover obtain b where "b \<in> B" "x < b" "b < min a y"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  2139
        using cInf_less_iff[of "B \<inter> {x <..}" "min a y"] \<open>?z < a\<close> \<open>?z < y\<close> \<open>x < y\<close> \<open>y \<in> B\<close>
51518
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2140
        by (auto intro: less_imp_le)
53374
a14d2a854c02 tuned proofs -- clarified flow of facts wrt. calculation;
wenzelm
parents: 53215
diff changeset
  2141
      moreover have "?z \<le> b"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  2142
        using \<open>b \<in> B\<close> \<open>x < b\<close>
54258
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 53946
diff changeset
  2143
        by (intro cInf_lower) auto
51518
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2144
      moreover have "b \<in> U"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  2145
        using \<open>x \<le> ?z\<close> \<open>?z \<le> b\<close> \<open>b < min a y\<close>
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  2146
        by (intro *[OF \<open>x \<in> U\<close> \<open>y \<in> U\<close>]) (auto simp: less_imp_le)
51518
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2147
      ultimately have "\<exists>b\<in>B. b \<in> A \<and> b \<in> U"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2148
        by (intro bexI[of _ b]) auto }
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2149
    then have False
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  2150
      using \<open>?z \<le> y\<close> \<open>?z \<in> A\<close> \<open>y \<in> B\<close> \<open>y \<in> U\<close> \<open>A \<inter> B \<inter> U = {}\<close> unfolding le_less by blast }
51518
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2151
  note not_disjoint = this
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2152
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2153
  fix A B assume AB: "open A" "open B" "U \<subseteq> A \<union> B" "A \<inter> B \<inter> U = {}"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2154
  moreover assume "A \<inter> U \<noteq> {}" then obtain x where x: "x \<in> U" "x \<in> A" by auto
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2155
  moreover assume "B \<inter> U \<noteq> {}" then obtain y where y: "y \<in> U" "y \<in> B" by auto
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2156
  moreover note not_disjoint[of B A y x] not_disjoint[of A B x y]
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2157
  ultimately show False by (cases x y rule: linorder_cases) auto
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2158
qed
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2159
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2160
lemma connected_iff_interval:
51775
408d937c9486 revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
hoelzl
parents: 51774
diff changeset
  2161
  fixes U :: "'a :: linear_continuum_topology set"
51518
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2162
  shows "connected U \<longleftrightarrow> (\<forall>x\<in>U. \<forall>y\<in>U. \<forall>z. x \<le> z \<longrightarrow> z \<le> y \<longrightarrow> z \<in> U)"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2163
  by (auto intro: connectedI_interval dest: connectedD_interval)
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2164
51775
408d937c9486 revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
hoelzl
parents: 51774
diff changeset
  2165
lemma connected_UNIV[simp]: "connected (UNIV::'a::linear_continuum_topology set)"
51518
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2166
  unfolding connected_iff_interval by auto
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2167
51775
408d937c9486 revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
hoelzl
parents: 51774
diff changeset
  2168
lemma connected_Ioi[simp]: "connected {a::'a::linear_continuum_topology <..}"
51518
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2169
  unfolding connected_iff_interval by auto
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2170
51775
408d937c9486 revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
hoelzl
parents: 51774
diff changeset
  2171
lemma connected_Ici[simp]: "connected {a::'a::linear_continuum_topology ..}"
51518
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2172
  unfolding connected_iff_interval by auto
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2173
51775
408d937c9486 revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
hoelzl
parents: 51774
diff changeset
  2174
lemma connected_Iio[simp]: "connected {..< a::'a::linear_continuum_topology}"
51518
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2175
  unfolding connected_iff_interval by auto
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2176
51775
408d937c9486 revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
hoelzl
parents: 51774
diff changeset
  2177
lemma connected_Iic[simp]: "connected {.. a::'a::linear_continuum_topology}"
51518
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2178
  unfolding connected_iff_interval by auto
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2179
51775
408d937c9486 revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
hoelzl
parents: 51774
diff changeset
  2180
lemma connected_Ioo[simp]: "connected {a <..< b::'a::linear_continuum_topology}"
51518
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2181
  unfolding connected_iff_interval by auto
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2182
51775
408d937c9486 revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
hoelzl
parents: 51774
diff changeset
  2183
lemma connected_Ioc[simp]: "connected {a <.. b::'a::linear_continuum_topology}"
51518
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2184
  unfolding connected_iff_interval by auto
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2185
51775
408d937c9486 revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
hoelzl
parents: 51774
diff changeset
  2186
lemma connected_Ico[simp]: "connected {a ..< b::'a::linear_continuum_topology}"
51518
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2187
  unfolding connected_iff_interval by auto
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2188
51775
408d937c9486 revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
hoelzl
parents: 51774
diff changeset
  2189
lemma connected_Icc[simp]: "connected {a .. b::'a::linear_continuum_topology}"
51518
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2190
  unfolding connected_iff_interval by auto
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2191
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2192
lemma connected_contains_Ioo: 
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2193
  fixes A :: "'a :: linorder_topology set"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2194
  assumes A: "connected A" "a \<in> A" "b \<in> A" shows "{a <..< b} \<subseteq> A"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2195
  using connectedD_interval[OF A] by (simp add: subset_eq Ball_def less_imp_le)
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2196
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
  2197
lemma connected_contains_Icc:
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
  2198
  assumes "connected (A :: ('a :: {linorder_topology}) set)" "a \<in> A" "b \<in> A"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
  2199
  shows   "{a..b} \<subseteq> A"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
  2200
proof
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
  2201
  fix x assume "x \<in> {a..b}"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
  2202
  hence "x = a \<or> x = b \<or> x \<in> {a<..<b}" by auto
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
  2203
  thus "x \<in> A" using assms connected_contains_Ioo[of A a b] by auto
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
  2204
qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61520
diff changeset
  2205
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  2206
subsection \<open>Intermediate Value Theorem\<close>
51518
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2207
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2208
lemma IVT':
51775
408d937c9486 revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
hoelzl
parents: 51774
diff changeset
  2209
  fixes f :: "'a :: linear_continuum_topology \<Rightarrow> 'b :: linorder_topology"
51518
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2210
  assumes y: "f a \<le> y" "y \<le> f b" "a \<le> b"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2211
  assumes *: "continuous_on {a .. b} f"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2212
  shows "\<exists>x. a \<le> x \<and> x \<le> b \<and> f x = y"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2213
proof -
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2214
  have "connected {a..b}"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2215
    unfolding connected_iff_interval by auto
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2216
  from connected_continuous_image[OF * this, THEN connectedD_interval, of "f a" "f b" y] y
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2217
  show ?thesis
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2218
    by (auto simp add: atLeastAtMost_def atLeast_def atMost_def)
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2219
qed
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2220
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2221
lemma IVT2':
51775
408d937c9486 revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
hoelzl
parents: 51774
diff changeset
  2222
  fixes f :: "'a :: linear_continuum_topology \<Rightarrow> 'b :: linorder_topology"
51518
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2223
  assumes y: "f b \<le> y" "y \<le> f a" "a \<le> b"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2224
  assumes *: "continuous_on {a .. b} f"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2225
  shows "\<exists>x. a \<le> x \<and> x \<le> b \<and> f x = y"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2226
proof -
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2227
  have "connected {a..b}"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2228
    unfolding connected_iff_interval by auto
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2229
  from connected_continuous_image[OF * this, THEN connectedD_interval, of "f b" "f a" y] y
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2230
  show ?thesis
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2231
    by (auto simp add: atLeastAtMost_def atLeast_def atMost_def)
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2232
qed
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2233
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2234
lemma IVT:
51775
408d937c9486 revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
hoelzl
parents: 51774
diff changeset
  2235
  fixes f :: "'a :: linear_continuum_topology \<Rightarrow> 'b :: linorder_topology"
51518
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2236
  shows "f a \<le> y \<Longrightarrow> y \<le> f b \<Longrightarrow> a \<le> b \<Longrightarrow> (\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont f x) \<Longrightarrow> \<exists>x. a \<le> x \<and> x \<le> b \<and> f x = y"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2237
  by (rule IVT') (auto intro: continuous_at_imp_continuous_on)
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2238
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2239
lemma IVT2:
51775
408d937c9486 revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
hoelzl
parents: 51774
diff changeset
  2240
  fixes f :: "'a :: linear_continuum_topology \<Rightarrow> 'b :: linorder_topology"
51518
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2241
  shows "f b \<le> y \<Longrightarrow> y \<le> f a \<Longrightarrow> a \<le> b \<Longrightarrow> (\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont f x) \<Longrightarrow> \<exists>x. a \<le> x \<and> x \<le> b \<and> f x = y"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2242
  by (rule IVT2') (auto intro: continuous_at_imp_continuous_on)
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2243
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2244
lemma continuous_inj_imp_mono:
51775
408d937c9486 revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
hoelzl
parents: 51774
diff changeset
  2245
  fixes f :: "'a::linear_continuum_topology \<Rightarrow> 'b :: linorder_topology"
51518
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2246
  assumes x: "a < x" "x < b"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2247
  assumes cont: "continuous_on {a..b} f"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2248
  assumes inj: "inj_on f {a..b}"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2249
  shows "(f a < f x \<and> f x < f b) \<or> (f b < f x \<and> f x < f a)"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2250
proof -
61520
8f85bb443d33 Cauchy's integral formula, required lemmas, and a bit of reorganisation
paulson <lp15@cam.ac.uk>
parents: 61426
diff changeset
  2251
  note I = inj_on_eq_iff[OF inj]
51518
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2252
  { assume "f x < f a" "f x < f b"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2253
    then obtain s t where "x \<le> s" "s \<le> b" "a \<le> t" "t \<le> x" "f s = f t" "f x < f s"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2254
      using IVT'[of f x "min (f a) (f b)" b] IVT2'[of f x "min (f a) (f b)" a] x
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2255
      by (auto simp: continuous_on_subset[OF cont] less_imp_le)
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2256
    with x I have False by auto }
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2257
  moreover
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2258
  { assume "f a < f x" "f b < f x"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2259
    then obtain s t where "x \<le> s" "s \<le> b" "a \<le> t" "t \<le> x" "f s = f t" "f s < f x"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2260
      using IVT'[of f a "max (f a) (f b)" x] IVT2'[of f b "max (f a) (f b)" x] x
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2261
      by (auto simp: continuous_on_subset[OF cont] less_imp_le)
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2262
    with x I have False by auto }
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2263
  ultimately show ?thesis
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2264
    using I[of a x] I[of x b] x less_trans[OF x] by (auto simp add: le_less less_imp_neq neq_iff)
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2265
qed
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2266
59452
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2267
lemma continuous_at_Sup_mono:
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2268
  fixes f :: "'a :: {linorder_topology, conditionally_complete_linorder} \<Rightarrow> 'b :: {linorder_topology, conditionally_complete_linorder}"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2269
  assumes "mono f"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2270
  assumes cont: "continuous (at_left (Sup S)) f"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2271
  assumes S: "S \<noteq> {}" "bdd_above S"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2272
  shows "f (Sup S) = (SUP s:S. f s)"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2273
proof (rule antisym)
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2274
  have f: "(f ---> f (Sup S)) (at_left (Sup S))"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2275
    using cont unfolding continuous_within .
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2276
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2277
  show "f (Sup S) \<le> (SUP s:S. f s)"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2278
  proof cases
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2279
    assume "Sup S \<in> S" then show ?thesis
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  2280
      by (rule cSUP_upper) (auto intro: bdd_above_image_mono S \<open>mono f\<close>)
59452
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2281
  next
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2282
    assume "Sup S \<notin> S"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  2283
    from \<open>S \<noteq> {}\<close> obtain s where "s \<in> S"
59452
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2284
      by auto
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  2285
    with \<open>Sup S \<notin> S\<close> S have "s < Sup S"
59452
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2286
      unfolding less_le by (blast intro: cSup_upper)
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2287
    show ?thesis
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2288
    proof (rule ccontr)
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2289
      assume "\<not> ?thesis"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2290
      with order_tendstoD(1)[OF f, of "SUP s:S. f s"] obtain b where "b < Sup S"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2291
        and *: "\<And>y. b < y \<Longrightarrow> y < Sup S \<Longrightarrow> (SUP s:S. f s) < f y"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  2292
        by (auto simp: not_le eventually_at_left[OF \<open>s < Sup S\<close>])
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  2293
      with \<open>S \<noteq> {}\<close> obtain c where "c \<in> S" "b < c"
59452
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2294
        using less_cSupD[of S b] by auto
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  2295
      with \<open>Sup S \<notin> S\<close> S have "c < Sup S"
59452
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2296
        unfolding less_le by (blast intro: cSup_upper)
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  2297
      from *[OF \<open>b < c\<close> \<open>c < Sup S\<close>] cSUP_upper[OF \<open>c \<in> S\<close> bdd_above_image_mono[of f]]
59452
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2298
      show False
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2299
        by (auto simp: assms)
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2300
    qed
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2301
  qed
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  2302
qed (intro cSUP_least \<open>mono f\<close>[THEN monoD] cSup_upper S)
59452
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2303
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2304
lemma continuous_at_Sup_antimono:
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2305
  fixes f :: "'a :: {linorder_topology, conditionally_complete_linorder} \<Rightarrow> 'b :: {linorder_topology, conditionally_complete_linorder}"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2306
  assumes "antimono f"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2307
  assumes cont: "continuous (at_left (Sup S)) f"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2308
  assumes S: "S \<noteq> {}" "bdd_above S"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2309
  shows "f (Sup S) = (INF s:S. f s)"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2310
proof (rule antisym)
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2311
  have f: "(f ---> f (Sup S)) (at_left (Sup S))"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2312
    using cont unfolding continuous_within .
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2313
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2314
  show "(INF s:S. f s) \<le> f (Sup S)"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2315
  proof cases
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2316
    assume "Sup S \<in> S" then show ?thesis
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  2317
      by (intro cINF_lower) (auto intro: bdd_below_image_antimono S \<open>antimono f\<close>)
59452
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2318
  next
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2319
    assume "Sup S \<notin> S"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  2320
    from \<open>S \<noteq> {}\<close> obtain s where "s \<in> S"
59452
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2321
      by auto
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  2322
    with \<open>Sup S \<notin> S\<close> S have "s < Sup S"
59452
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2323
      unfolding less_le by (blast intro: cSup_upper)
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2324
    show ?thesis
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2325
    proof (rule ccontr)
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2326
      assume "\<not> ?thesis"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2327
      with order_tendstoD(2)[OF f, of "INF s:S. f s"] obtain b where "b < Sup S"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2328
        and *: "\<And>y. b < y \<Longrightarrow> y < Sup S \<Longrightarrow> f y < (INF s:S. f s)"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  2329
        by (auto simp: not_le eventually_at_left[OF \<open>s < Sup S\<close>])
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  2330
      with \<open>S \<noteq> {}\<close> obtain c where "c \<in> S" "b < c"
59452
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2331
        using less_cSupD[of S b] by auto
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  2332
      with \<open>Sup S \<notin> S\<close> S have "c < Sup S"
59452
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2333
        unfolding less_le by (blast intro: cSup_upper)
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  2334
      from *[OF \<open>b < c\<close> \<open>c < Sup S\<close>] cINF_lower[OF bdd_below_image_antimono, of f S c] \<open>c \<in> S\<close>
59452
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2335
      show False
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2336
        by (auto simp: assms)
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2337
    qed
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2338
  qed
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  2339
qed (intro cINF_greatest \<open>antimono f\<close>[THEN antimonoD] cSup_upper S)
59452
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2340
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2341
lemma continuous_at_Inf_mono:
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2342
  fixes f :: "'a :: {linorder_topology, conditionally_complete_linorder} \<Rightarrow> 'b :: {linorder_topology, conditionally_complete_linorder}"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2343
  assumes "mono f"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2344
  assumes cont: "continuous (at_right (Inf S)) f"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2345
  assumes S: "S \<noteq> {}" "bdd_below S"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2346
  shows "f (Inf S) = (INF s:S. f s)"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2347
proof (rule antisym)
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2348
  have f: "(f ---> f (Inf S)) (at_right (Inf S))"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2349
    using cont unfolding continuous_within .
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2350
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2351
  show "(INF s:S. f s) \<le> f (Inf S)"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2352
  proof cases
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2353
    assume "Inf S \<in> S" then show ?thesis
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  2354
      by (rule cINF_lower[rotated]) (auto intro: bdd_below_image_mono S \<open>mono f\<close>)
59452
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2355
  next
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2356
    assume "Inf S \<notin> S"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  2357
    from \<open>S \<noteq> {}\<close> obtain s where "s \<in> S"
59452
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2358
      by auto
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  2359
    with \<open>Inf S \<notin> S\<close> S have "Inf S < s"
59452
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2360
      unfolding less_le by (blast intro: cInf_lower)
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2361
    show ?thesis
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2362
    proof (rule ccontr)
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2363
      assume "\<not> ?thesis"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2364
      with order_tendstoD(2)[OF f, of "INF s:S. f s"] obtain b where "Inf S < b"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2365
        and *: "\<And>y. Inf S < y \<Longrightarrow> y < b \<Longrightarrow> f y < (INF s:S. f s)"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  2366
        by (auto simp: not_le eventually_at_right[OF \<open>Inf S < s\<close>])
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  2367
      with \<open>S \<noteq> {}\<close> obtain c where "c \<in> S" "c < b"
59452
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2368
        using cInf_lessD[of S b] by auto
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  2369
      with \<open>Inf S \<notin> S\<close> S have "Inf S < c"
59452
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2370
        unfolding less_le by (blast intro: cInf_lower)
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  2371
      from *[OF \<open>Inf S < c\<close> \<open>c < b\<close>] cINF_lower[OF bdd_below_image_mono[of f] \<open>c \<in> S\<close>]
59452
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2372
      show False
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2373
        by (auto simp: assms)
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2374
    qed
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2375
  qed
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  2376
qed (intro cINF_greatest \<open>mono f\<close>[THEN monoD] cInf_lower \<open>bdd_below S\<close> \<open>S \<noteq> {}\<close>)
59452
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2377
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2378
lemma continuous_at_Inf_antimono:
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2379
  fixes f :: "'a :: {linorder_topology, conditionally_complete_linorder} \<Rightarrow> 'b :: {linorder_topology, conditionally_complete_linorder}"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2380
  assumes "antimono f"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2381
  assumes cont: "continuous (at_right (Inf S)) f"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2382
  assumes S: "S \<noteq> {}" "bdd_below S"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2383
  shows "f (Inf S) = (SUP s:S. f s)"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2384
proof (rule antisym)
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2385
  have f: "(f ---> f (Inf S)) (at_right (Inf S))"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2386
    using cont unfolding continuous_within .
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2387
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2388
  show "f (Inf S) \<le> (SUP s:S. f s)"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2389
  proof cases
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2390
    assume "Inf S \<in> S" then show ?thesis
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  2391
      by (rule cSUP_upper) (auto intro: bdd_above_image_antimono S \<open>antimono f\<close>)
59452
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2392
  next
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2393
    assume "Inf S \<notin> S"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  2394
    from \<open>S \<noteq> {}\<close> obtain s where "s \<in> S"
59452
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2395
      by auto
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  2396
    with \<open>Inf S \<notin> S\<close> S have "Inf S < s"
59452
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2397
      unfolding less_le by (blast intro: cInf_lower)
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2398
    show ?thesis
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2399
    proof (rule ccontr)
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2400
      assume "\<not> ?thesis"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2401
      with order_tendstoD(1)[OF f, of "SUP s:S. f s"] obtain b where "Inf S < b"
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2402
        and *: "\<And>y. Inf S < y \<Longrightarrow> y < b \<Longrightarrow> (SUP s:S. f s) < f y"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  2403
        by (auto simp: not_le eventually_at_right[OF \<open>Inf S < s\<close>])
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  2404
      with \<open>S \<noteq> {}\<close> obtain c where "c \<in> S" "c < b"
59452
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2405
        using cInf_lessD[of S b] by auto
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  2406
      with \<open>Inf S \<notin> S\<close> S have "Inf S < c"
59452
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2407
        unfolding less_le by (blast intro: cInf_lower)
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  2408
      from *[OF \<open>Inf S < c\<close> \<open>c < b\<close>] cSUP_upper[OF \<open>c \<in> S\<close> bdd_above_image_antimono[of f]]
59452
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2409
      show False
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2410
        by (auto simp: assms)
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2411
    qed
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2412
  qed
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60720
diff changeset
  2413
qed (intro cSUP_least \<open>antimono f\<close>[THEN antimonoD] cInf_lower S)
59452
2538b2c51769 ereal: tuned proofs concerning continuity and suprema
hoelzl
parents: 59106
diff changeset
  2414
51518
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51481
diff changeset
  2415
end