23164
|
1 |
(* Title: HOL/nat_simprocs.ML
|
|
2 |
ID: $Id$
|
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
|
|
4 |
Copyright 2000 University of Cambridge
|
|
5 |
|
|
6 |
Simprocs for nat numerals.
|
|
7 |
*)
|
|
8 |
|
|
9 |
structure Nat_Numeral_Simprocs =
|
|
10 |
struct
|
|
11 |
|
|
12 |
(*Maps n to #n for n = 0, 1, 2*)
|
|
13 |
val numeral_syms =
|
23471
|
14 |
[@{thm nat_numeral_0_eq_0} RS sym, @{thm nat_numeral_1_eq_1} RS sym, @{thm numeral_2_eq_2} RS sym];
|
23164
|
15 |
val numeral_sym_ss = HOL_ss addsimps numeral_syms;
|
|
16 |
|
|
17 |
fun rename_numerals th =
|
|
18 |
simplify numeral_sym_ss (Thm.transfer (the_context ()) th);
|
|
19 |
|
|
20 |
(*Utilities*)
|
|
21 |
|
|
22 |
fun mk_number n = HOLogic.number_of_const HOLogic.natT $ HOLogic.mk_numeral n;
|
|
23 |
fun dest_number t = IntInf.max (0, snd (HOLogic.dest_number t));
|
|
24 |
|
|
25 |
fun find_first_numeral past (t::terms) =
|
|
26 |
((dest_number t, t, rev past @ terms)
|
|
27 |
handle TERM _ => find_first_numeral (t::past) terms)
|
|
28 |
| find_first_numeral past [] = raise TERM("find_first_numeral", []);
|
|
29 |
|
|
30 |
val zero = mk_number 0;
|
|
31 |
val mk_plus = HOLogic.mk_binop @{const_name HOL.plus};
|
|
32 |
|
|
33 |
(*Thus mk_sum[t] yields t+0; longer sums don't have a trailing zero*)
|
|
34 |
fun mk_sum [] = zero
|
|
35 |
| mk_sum [t,u] = mk_plus (t, u)
|
|
36 |
| mk_sum (t :: ts) = mk_plus (t, mk_sum ts);
|
|
37 |
|
|
38 |
(*this version ALWAYS includes a trailing zero*)
|
|
39 |
fun long_mk_sum [] = HOLogic.zero
|
|
40 |
| long_mk_sum (t :: ts) = mk_plus (t, mk_sum ts);
|
|
41 |
|
|
42 |
val dest_plus = HOLogic.dest_bin @{const_name HOL.plus} HOLogic.natT;
|
|
43 |
|
|
44 |
|
|
45 |
(** Other simproc items **)
|
|
46 |
|
|
47 |
val trans_tac = Int_Numeral_Simprocs.trans_tac;
|
|
48 |
|
|
49 |
val bin_simps =
|
23471
|
50 |
[@{thm nat_numeral_0_eq_0} RS sym, @{thm nat_numeral_1_eq_1} RS sym,
|
|
51 |
@{thm add_nat_number_of}, @{thm nat_number_of_add_left},
|
|
52 |
@{thm diff_nat_number_of}, @{thm le_number_of_eq_not_less},
|
|
53 |
@{thm mult_nat_number_of}, @{thm nat_number_of_mult_left},
|
|
54 |
@{thm less_nat_number_of},
|
|
55 |
@{thm Let_number_of}, @{thm nat_number_of}] @
|
23164
|
56 |
arith_simps @ rel_simps;
|
|
57 |
|
|
58 |
fun prep_simproc (name, pats, proc) =
|
|
59 |
Simplifier.simproc (the_context ()) name pats proc;
|
|
60 |
|
|
61 |
|
|
62 |
(*** CancelNumerals simprocs ***)
|
|
63 |
|
|
64 |
val one = mk_number 1;
|
|
65 |
val mk_times = HOLogic.mk_binop @{const_name HOL.times};
|
|
66 |
|
|
67 |
fun mk_prod [] = one
|
|
68 |
| mk_prod [t] = t
|
|
69 |
| mk_prod (t :: ts) = if t = one then mk_prod ts
|
|
70 |
else mk_times (t, mk_prod ts);
|
|
71 |
|
|
72 |
val dest_times = HOLogic.dest_bin @{const_name HOL.times} HOLogic.natT;
|
|
73 |
|
|
74 |
fun dest_prod t =
|
|
75 |
let val (t,u) = dest_times t
|
|
76 |
in dest_prod t @ dest_prod u end
|
|
77 |
handle TERM _ => [t];
|
|
78 |
|
|
79 |
(*DON'T do the obvious simplifications; that would create special cases*)
|
|
80 |
fun mk_coeff (k,t) = mk_times (mk_number k, t);
|
|
81 |
|
|
82 |
(*Express t as a product of (possibly) a numeral with other factors, sorted*)
|
|
83 |
fun dest_coeff t =
|
|
84 |
let val ts = sort Term.term_ord (dest_prod t)
|
|
85 |
val (n, _, ts') = find_first_numeral [] ts
|
|
86 |
handle TERM _ => (1, one, ts)
|
|
87 |
in (n, mk_prod ts') end;
|
|
88 |
|
|
89 |
(*Find first coefficient-term THAT MATCHES u*)
|
|
90 |
fun find_first_coeff past u [] = raise TERM("find_first_coeff", [])
|
|
91 |
| find_first_coeff past u (t::terms) =
|
|
92 |
let val (n,u') = dest_coeff t
|
|
93 |
in if u aconv u' then (n, rev past @ terms)
|
|
94 |
else find_first_coeff (t::past) u terms
|
|
95 |
end
|
|
96 |
handle TERM _ => find_first_coeff (t::past) u terms;
|
|
97 |
|
|
98 |
|
|
99 |
(*Split up a sum into the list of its constituent terms, on the way removing any
|
|
100 |
Sucs and counting them.*)
|
|
101 |
fun dest_Suc_sum (Const ("Suc", _) $ t, (k,ts)) = dest_Suc_sum (t, (k+1,ts))
|
|
102 |
| dest_Suc_sum (t, (k,ts)) =
|
|
103 |
let val (t1,t2) = dest_plus t
|
|
104 |
in dest_Suc_sum (t1, dest_Suc_sum (t2, (k,ts))) end
|
|
105 |
handle TERM _ => (k, t::ts);
|
|
106 |
|
|
107 |
(*Code for testing whether numerals are already used in the goal*)
|
|
108 |
fun is_numeral (Const(@{const_name Numeral.number_of}, _) $ w) = true
|
|
109 |
| is_numeral _ = false;
|
|
110 |
|
|
111 |
fun prod_has_numeral t = exists is_numeral (dest_prod t);
|
|
112 |
|
|
113 |
(*The Sucs found in the term are converted to a binary numeral. If relaxed is false,
|
|
114 |
an exception is raised unless the original expression contains at least one
|
|
115 |
numeral in a coefficient position. This prevents nat_combine_numerals from
|
|
116 |
introducing numerals to goals.*)
|
|
117 |
fun dest_Sucs_sum relaxed t =
|
|
118 |
let val (k,ts) = dest_Suc_sum (t,(0,[]))
|
|
119 |
in
|
|
120 |
if relaxed orelse exists prod_has_numeral ts then
|
|
121 |
if k=0 then ts
|
|
122 |
else mk_number (IntInf.fromInt k) :: ts
|
|
123 |
else raise TERM("Nat_Numeral_Simprocs.dest_Sucs_sum", [t])
|
|
124 |
end;
|
|
125 |
|
|
126 |
|
|
127 |
(*Simplify 1*n and n*1 to n*)
|
23881
|
128 |
val add_0s = map rename_numerals [@{thm add_0}, @{thm add_0_right}];
|
23164
|
129 |
val mult_1s = map rename_numerals [@{thm nat_mult_1}, @{thm nat_mult_1_right}];
|
|
130 |
|
|
131 |
(*Final simplification: cancel + and *; replace Numeral0 by 0 and Numeral1 by 1*)
|
|
132 |
|
|
133 |
(*And these help the simproc return False when appropriate, which helps
|
|
134 |
the arith prover.*)
|
23881
|
135 |
val contra_rules = [@{thm add_Suc}, @{thm add_Suc_right}, @{thm Zero_not_Suc},
|
|
136 |
@{thm Suc_not_Zero}, @{thm le_0_eq}];
|
23164
|
137 |
|
|
138 |
val simplify_meta_eq =
|
|
139 |
Int_Numeral_Simprocs.simplify_meta_eq
|
23471
|
140 |
([@{thm nat_numeral_0_eq_0}, @{thm numeral_1_eq_Suc_0}, @{thm add_0}, @{thm add_0_right},
|
|
141 |
@{thm mult_0}, @{thm mult_0_right}, @{thm mult_1}, @{thm mult_1_right}] @ contra_rules);
|
23164
|
142 |
|
|
143 |
|
|
144 |
(*Like HOL_ss but with an ordering that brings numerals to the front
|
|
145 |
under AC-rewriting.*)
|
|
146 |
val num_ss = Int_Numeral_Simprocs.num_ss;
|
|
147 |
|
|
148 |
(*** Applying CancelNumeralsFun ***)
|
|
149 |
|
|
150 |
structure CancelNumeralsCommon =
|
|
151 |
struct
|
|
152 |
val mk_sum = (fn T:typ => mk_sum)
|
|
153 |
val dest_sum = dest_Sucs_sum true
|
|
154 |
val mk_coeff = mk_coeff
|
|
155 |
val dest_coeff = dest_coeff
|
|
156 |
val find_first_coeff = find_first_coeff []
|
|
157 |
val trans_tac = fn _ => trans_tac
|
|
158 |
|
|
159 |
val norm_ss1 = num_ss addsimps numeral_syms @ add_0s @ mult_1s @
|
23881
|
160 |
[@{thm Suc_eq_add_numeral_1_left}] @ @{thms add_ac}
|
|
161 |
val norm_ss2 = num_ss addsimps bin_simps @ @{thms add_ac} @ @{thms mult_ac}
|
23164
|
162 |
fun norm_tac ss =
|
|
163 |
ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss1))
|
|
164 |
THEN ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss2))
|
|
165 |
|
|
166 |
val numeral_simp_ss = HOL_ss addsimps add_0s @ bin_simps;
|
|
167 |
fun numeral_simp_tac ss = ALLGOALS (simp_tac (Simplifier.inherit_context ss numeral_simp_ss));
|
|
168 |
val simplify_meta_eq = simplify_meta_eq
|
|
169 |
end;
|
|
170 |
|
|
171 |
|
|
172 |
structure EqCancelNumerals = CancelNumeralsFun
|
|
173 |
(open CancelNumeralsCommon
|
|
174 |
val prove_conv = Int_Numeral_Base_Simprocs.prove_conv
|
|
175 |
val mk_bal = HOLogic.mk_eq
|
|
176 |
val dest_bal = HOLogic.dest_bin "op =" HOLogic.natT
|
23471
|
177 |
val bal_add1 = @{thm nat_eq_add_iff1} RS trans
|
|
178 |
val bal_add2 = @{thm nat_eq_add_iff2} RS trans
|
23164
|
179 |
);
|
|
180 |
|
|
181 |
structure LessCancelNumerals = CancelNumeralsFun
|
|
182 |
(open CancelNumeralsCommon
|
|
183 |
val prove_conv = Int_Numeral_Base_Simprocs.prove_conv
|
23881
|
184 |
val mk_bal = HOLogic.mk_binrel @{const_name HOL.less}
|
|
185 |
val dest_bal = HOLogic.dest_bin @{const_name HOL.less} HOLogic.natT
|
23471
|
186 |
val bal_add1 = @{thm nat_less_add_iff1} RS trans
|
|
187 |
val bal_add2 = @{thm nat_less_add_iff2} RS trans
|
23164
|
188 |
);
|
|
189 |
|
|
190 |
structure LeCancelNumerals = CancelNumeralsFun
|
|
191 |
(open CancelNumeralsCommon
|
|
192 |
val prove_conv = Int_Numeral_Base_Simprocs.prove_conv
|
23881
|
193 |
val mk_bal = HOLogic.mk_binrel @{const_name HOL.less_eq}
|
|
194 |
val dest_bal = HOLogic.dest_bin @{const_name HOL.less_eq} HOLogic.natT
|
23471
|
195 |
val bal_add1 = @{thm nat_le_add_iff1} RS trans
|
|
196 |
val bal_add2 = @{thm nat_le_add_iff2} RS trans
|
23164
|
197 |
);
|
|
198 |
|
|
199 |
structure DiffCancelNumerals = CancelNumeralsFun
|
|
200 |
(open CancelNumeralsCommon
|
|
201 |
val prove_conv = Int_Numeral_Base_Simprocs.prove_conv
|
|
202 |
val mk_bal = HOLogic.mk_binop @{const_name HOL.minus}
|
|
203 |
val dest_bal = HOLogic.dest_bin @{const_name HOL.minus} HOLogic.natT
|
23471
|
204 |
val bal_add1 = @{thm nat_diff_add_eq1} RS trans
|
|
205 |
val bal_add2 = @{thm nat_diff_add_eq2} RS trans
|
23164
|
206 |
);
|
|
207 |
|
|
208 |
|
|
209 |
val cancel_numerals =
|
|
210 |
map prep_simproc
|
|
211 |
[("nateq_cancel_numerals",
|
|
212 |
["(l::nat) + m = n", "(l::nat) = m + n",
|
|
213 |
"(l::nat) * m = n", "(l::nat) = m * n",
|
|
214 |
"Suc m = n", "m = Suc n"],
|
|
215 |
K EqCancelNumerals.proc),
|
|
216 |
("natless_cancel_numerals",
|
|
217 |
["(l::nat) + m < n", "(l::nat) < m + n",
|
|
218 |
"(l::nat) * m < n", "(l::nat) < m * n",
|
|
219 |
"Suc m < n", "m < Suc n"],
|
|
220 |
K LessCancelNumerals.proc),
|
|
221 |
("natle_cancel_numerals",
|
|
222 |
["(l::nat) + m <= n", "(l::nat) <= m + n",
|
|
223 |
"(l::nat) * m <= n", "(l::nat) <= m * n",
|
|
224 |
"Suc m <= n", "m <= Suc n"],
|
|
225 |
K LeCancelNumerals.proc),
|
|
226 |
("natdiff_cancel_numerals",
|
|
227 |
["((l::nat) + m) - n", "(l::nat) - (m + n)",
|
|
228 |
"(l::nat) * m - n", "(l::nat) - m * n",
|
|
229 |
"Suc m - n", "m - Suc n"],
|
|
230 |
K DiffCancelNumerals.proc)];
|
|
231 |
|
|
232 |
|
|
233 |
(*** Applying CombineNumeralsFun ***)
|
|
234 |
|
|
235 |
structure CombineNumeralsData =
|
|
236 |
struct
|
|
237 |
type coeff = IntInf.int
|
|
238 |
val iszero = (fn x : IntInf.int => x = 0)
|
|
239 |
val add = IntInf.+
|
|
240 |
val mk_sum = (fn T:typ => long_mk_sum) (*to work for 2*x + 3*x *)
|
|
241 |
val dest_sum = dest_Sucs_sum false
|
|
242 |
val mk_coeff = mk_coeff
|
|
243 |
val dest_coeff = dest_coeff
|
23471
|
244 |
val left_distrib = @{thm left_add_mult_distrib} RS trans
|
23164
|
245 |
val prove_conv = Int_Numeral_Base_Simprocs.prove_conv_nohyps
|
|
246 |
val trans_tac = fn _ => trans_tac
|
|
247 |
|
23881
|
248 |
val norm_ss1 = num_ss addsimps numeral_syms @ add_0s @ mult_1s @ [@{thm Suc_eq_add_numeral_1}] @ @{thms add_ac}
|
|
249 |
val norm_ss2 = num_ss addsimps bin_simps @ @{thms add_ac} @ @{thms mult_ac}
|
23164
|
250 |
fun norm_tac ss =
|
|
251 |
ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss1))
|
|
252 |
THEN ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss2))
|
|
253 |
|
|
254 |
val numeral_simp_ss = HOL_ss addsimps add_0s @ bin_simps;
|
|
255 |
fun numeral_simp_tac ss = ALLGOALS (simp_tac (Simplifier.inherit_context ss numeral_simp_ss))
|
|
256 |
val simplify_meta_eq = simplify_meta_eq
|
|
257 |
end;
|
|
258 |
|
|
259 |
structure CombineNumerals = CombineNumeralsFun(CombineNumeralsData);
|
|
260 |
|
|
261 |
val combine_numerals =
|
|
262 |
prep_simproc ("nat_combine_numerals", ["(i::nat) + j", "Suc (i + j)"], K CombineNumerals.proc);
|
|
263 |
|
|
264 |
|
|
265 |
(*** Applying CancelNumeralFactorFun ***)
|
|
266 |
|
|
267 |
structure CancelNumeralFactorCommon =
|
|
268 |
struct
|
|
269 |
val mk_coeff = mk_coeff
|
|
270 |
val dest_coeff = dest_coeff
|
|
271 |
val trans_tac = fn _ => trans_tac
|
|
272 |
|
|
273 |
val norm_ss1 = num_ss addsimps
|
23881
|
274 |
numeral_syms @ add_0s @ mult_1s @ [@{thm Suc_eq_add_numeral_1_left}] @ @{thms add_ac}
|
|
275 |
val norm_ss2 = num_ss addsimps bin_simps @ @{thms add_ac} @ @{thms mult_ac}
|
23164
|
276 |
fun norm_tac ss =
|
|
277 |
ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss1))
|
|
278 |
THEN ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss2))
|
|
279 |
|
|
280 |
val numeral_simp_ss = HOL_ss addsimps bin_simps
|
|
281 |
fun numeral_simp_tac ss = ALLGOALS (simp_tac (Simplifier.inherit_context ss numeral_simp_ss))
|
|
282 |
val simplify_meta_eq = simplify_meta_eq
|
|
283 |
end
|
|
284 |
|
|
285 |
structure DivCancelNumeralFactor = CancelNumeralFactorFun
|
|
286 |
(open CancelNumeralFactorCommon
|
|
287 |
val prove_conv = Int_Numeral_Base_Simprocs.prove_conv
|
|
288 |
val mk_bal = HOLogic.mk_binop @{const_name Divides.div}
|
|
289 |
val dest_bal = HOLogic.dest_bin @{const_name Divides.div} HOLogic.natT
|
23471
|
290 |
val cancel = @{thm nat_mult_div_cancel1} RS trans
|
23164
|
291 |
val neg_exchanges = false
|
|
292 |
)
|
|
293 |
|
23969
|
294 |
structure DvdCancelNumeralFactor = CancelNumeralFactorFun
|
|
295 |
(open CancelNumeralFactorCommon
|
|
296 |
val prove_conv = Int_Numeral_Base_Simprocs.prove_conv
|
|
297 |
val mk_bal = HOLogic.mk_binrel @{const_name Divides.dvd}
|
|
298 |
val dest_bal = HOLogic.dest_bin @{const_name Divides.dvd} HOLogic.natT
|
|
299 |
val cancel = @{thm nat_mult_dvd_cancel1} RS trans
|
|
300 |
val neg_exchanges = false
|
|
301 |
)
|
|
302 |
|
23164
|
303 |
structure EqCancelNumeralFactor = CancelNumeralFactorFun
|
|
304 |
(open CancelNumeralFactorCommon
|
|
305 |
val prove_conv = Int_Numeral_Base_Simprocs.prove_conv
|
|
306 |
val mk_bal = HOLogic.mk_eq
|
|
307 |
val dest_bal = HOLogic.dest_bin "op =" HOLogic.natT
|
23471
|
308 |
val cancel = @{thm nat_mult_eq_cancel1} RS trans
|
23164
|
309 |
val neg_exchanges = false
|
|
310 |
)
|
|
311 |
|
|
312 |
structure LessCancelNumeralFactor = CancelNumeralFactorFun
|
|
313 |
(open CancelNumeralFactorCommon
|
|
314 |
val prove_conv = Int_Numeral_Base_Simprocs.prove_conv
|
23881
|
315 |
val mk_bal = HOLogic.mk_binrel @{const_name HOL.less}
|
|
316 |
val dest_bal = HOLogic.dest_bin @{const_name HOL.less} HOLogic.natT
|
23471
|
317 |
val cancel = @{thm nat_mult_less_cancel1} RS trans
|
23164
|
318 |
val neg_exchanges = true
|
|
319 |
)
|
|
320 |
|
|
321 |
structure LeCancelNumeralFactor = CancelNumeralFactorFun
|
|
322 |
(open CancelNumeralFactorCommon
|
|
323 |
val prove_conv = Int_Numeral_Base_Simprocs.prove_conv
|
23881
|
324 |
val mk_bal = HOLogic.mk_binrel @{const_name HOL.less_eq}
|
|
325 |
val dest_bal = HOLogic.dest_bin @{const_name HOL.less_eq} HOLogic.natT
|
23471
|
326 |
val cancel = @{thm nat_mult_le_cancel1} RS trans
|
23164
|
327 |
val neg_exchanges = true
|
|
328 |
)
|
|
329 |
|
|
330 |
val cancel_numeral_factors =
|
|
331 |
map prep_simproc
|
|
332 |
[("nateq_cancel_numeral_factors",
|
|
333 |
["(l::nat) * m = n", "(l::nat) = m * n"],
|
|
334 |
K EqCancelNumeralFactor.proc),
|
|
335 |
("natless_cancel_numeral_factors",
|
|
336 |
["(l::nat) * m < n", "(l::nat) < m * n"],
|
|
337 |
K LessCancelNumeralFactor.proc),
|
|
338 |
("natle_cancel_numeral_factors",
|
|
339 |
["(l::nat) * m <= n", "(l::nat) <= m * n"],
|
|
340 |
K LeCancelNumeralFactor.proc),
|
|
341 |
("natdiv_cancel_numeral_factors",
|
|
342 |
["((l::nat) * m) div n", "(l::nat) div (m * n)"],
|
23969
|
343 |
K DivCancelNumeralFactor.proc),
|
|
344 |
("natdvd_cancel_numeral_factors",
|
|
345 |
["((l::nat) * m) dvd n", "(l::nat) dvd (m * n)"],
|
|
346 |
K DvdCancelNumeralFactor.proc)];
|
23164
|
347 |
|
|
348 |
|
|
349 |
|
|
350 |
(*** Applying ExtractCommonTermFun ***)
|
|
351 |
|
|
352 |
(*this version ALWAYS includes a trailing one*)
|
|
353 |
fun long_mk_prod [] = one
|
|
354 |
| long_mk_prod (t :: ts) = mk_times (t, mk_prod ts);
|
|
355 |
|
|
356 |
(*Find first term that matches u*)
|
|
357 |
fun find_first_t past u [] = raise TERM("find_first_t", [])
|
|
358 |
| find_first_t past u (t::terms) =
|
|
359 |
if u aconv t then (rev past @ terms)
|
|
360 |
else find_first_t (t::past) u terms
|
|
361 |
handle TERM _ => find_first_t (t::past) u terms;
|
|
362 |
|
|
363 |
(** Final simplification for the CancelFactor simprocs **)
|
|
364 |
val simplify_one = Int_Numeral_Simprocs.simplify_meta_eq
|
|
365 |
[@{thm mult_1_left}, @{thm mult_1_right}, @{thm div_1}, @{thm numeral_1_eq_Suc_0}];
|
|
366 |
|
|
367 |
fun cancel_simplify_meta_eq cancel_th ss th =
|
|
368 |
simplify_one ss (([th, cancel_th]) MRS trans);
|
|
369 |
|
|
370 |
structure CancelFactorCommon =
|
|
371 |
struct
|
|
372 |
val mk_sum = (fn T:typ => long_mk_prod)
|
|
373 |
val dest_sum = dest_prod
|
|
374 |
val mk_coeff = mk_coeff
|
|
375 |
val dest_coeff = dest_coeff
|
|
376 |
val find_first = find_first_t []
|
|
377 |
val trans_tac = fn _ => trans_tac
|
23881
|
378 |
val norm_ss = HOL_ss addsimps mult_1s @ @{thms mult_ac}
|
23164
|
379 |
fun norm_tac ss = ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss))
|
|
380 |
end;
|
|
381 |
|
|
382 |
structure EqCancelFactor = ExtractCommonTermFun
|
|
383 |
(open CancelFactorCommon
|
|
384 |
val prove_conv = Int_Numeral_Base_Simprocs.prove_conv
|
|
385 |
val mk_bal = HOLogic.mk_eq
|
|
386 |
val dest_bal = HOLogic.dest_bin "op =" HOLogic.natT
|
23471
|
387 |
val simplify_meta_eq = cancel_simplify_meta_eq @{thm nat_mult_eq_cancel_disj}
|
23164
|
388 |
);
|
|
389 |
|
|
390 |
structure LessCancelFactor = ExtractCommonTermFun
|
|
391 |
(open CancelFactorCommon
|
|
392 |
val prove_conv = Int_Numeral_Base_Simprocs.prove_conv
|
23881
|
393 |
val mk_bal = HOLogic.mk_binrel @{const_name HOL.less}
|
|
394 |
val dest_bal = HOLogic.dest_bin @{const_name HOL.less} HOLogic.natT
|
23471
|
395 |
val simplify_meta_eq = cancel_simplify_meta_eq @{thm nat_mult_less_cancel_disj}
|
23164
|
396 |
);
|
|
397 |
|
|
398 |
structure LeCancelFactor = ExtractCommonTermFun
|
|
399 |
(open CancelFactorCommon
|
|
400 |
val prove_conv = Int_Numeral_Base_Simprocs.prove_conv
|
23881
|
401 |
val mk_bal = HOLogic.mk_binrel @{const_name HOL.less_eq}
|
|
402 |
val dest_bal = HOLogic.dest_bin @{const_name HOL.less_eq} HOLogic.natT
|
23471
|
403 |
val simplify_meta_eq = cancel_simplify_meta_eq @{thm nat_mult_le_cancel_disj}
|
23164
|
404 |
);
|
|
405 |
|
|
406 |
structure DivideCancelFactor = ExtractCommonTermFun
|
|
407 |
(open CancelFactorCommon
|
|
408 |
val prove_conv = Int_Numeral_Base_Simprocs.prove_conv
|
|
409 |
val mk_bal = HOLogic.mk_binop @{const_name Divides.div}
|
|
410 |
val dest_bal = HOLogic.dest_bin @{const_name Divides.div} HOLogic.natT
|
23471
|
411 |
val simplify_meta_eq = cancel_simplify_meta_eq @{thm nat_mult_div_cancel_disj}
|
23164
|
412 |
);
|
|
413 |
|
23969
|
414 |
structure DvdCancelFactor = ExtractCommonTermFun
|
|
415 |
(open CancelFactorCommon
|
|
416 |
val prove_conv = Int_Numeral_Base_Simprocs.prove_conv
|
|
417 |
val mk_bal = HOLogic.mk_binrel @{const_name Divides.dvd}
|
|
418 |
val dest_bal = HOLogic.dest_bin @{const_name Divides.dvd} HOLogic.natT
|
|
419 |
val simplify_meta_eq = cancel_simplify_meta_eq @{thm nat_mult_dvd_cancel_disj}
|
|
420 |
);
|
|
421 |
|
23164
|
422 |
val cancel_factor =
|
|
423 |
map prep_simproc
|
|
424 |
[("nat_eq_cancel_factor",
|
|
425 |
["(l::nat) * m = n", "(l::nat) = m * n"],
|
|
426 |
K EqCancelFactor.proc),
|
|
427 |
("nat_less_cancel_factor",
|
|
428 |
["(l::nat) * m < n", "(l::nat) < m * n"],
|
|
429 |
K LessCancelFactor.proc),
|
|
430 |
("nat_le_cancel_factor",
|
|
431 |
["(l::nat) * m <= n", "(l::nat) <= m * n"],
|
|
432 |
K LeCancelFactor.proc),
|
|
433 |
("nat_divide_cancel_factor",
|
|
434 |
["((l::nat) * m) div n", "(l::nat) div (m * n)"],
|
23969
|
435 |
K DivideCancelFactor.proc),
|
|
436 |
("nat_dvd_cancel_factor",
|
|
437 |
["((l::nat) * m) dvd n", "(l::nat) dvd (m * n)"],
|
|
438 |
K DvdCancelFactor.proc)];
|
23164
|
439 |
|
|
440 |
end;
|
|
441 |
|
|
442 |
|
|
443 |
Addsimprocs Nat_Numeral_Simprocs.cancel_numerals;
|
|
444 |
Addsimprocs [Nat_Numeral_Simprocs.combine_numerals];
|
|
445 |
Addsimprocs Nat_Numeral_Simprocs.cancel_numeral_factors;
|
|
446 |
Addsimprocs Nat_Numeral_Simprocs.cancel_factor;
|
|
447 |
|
|
448 |
|
|
449 |
(*examples:
|
|
450 |
print_depth 22;
|
|
451 |
set timing;
|
|
452 |
set trace_simp;
|
|
453 |
fun test s = (Goal s; by (Simp_tac 1));
|
|
454 |
|
|
455 |
(*cancel_numerals*)
|
|
456 |
test "l +( 2) + (2) + 2 + (l + 2) + (oo + 2) = (uu::nat)";
|
|
457 |
test "(2*length xs < 2*length xs + j)";
|
|
458 |
test "(2*length xs < length xs * 2 + j)";
|
|
459 |
test "2*u = (u::nat)";
|
|
460 |
test "2*u = Suc (u)";
|
|
461 |
test "(i + j + 12 + (k::nat)) - 15 = y";
|
|
462 |
test "(i + j + 12 + (k::nat)) - 5 = y";
|
|
463 |
test "Suc u - 2 = y";
|
|
464 |
test "Suc (Suc (Suc u)) - 2 = y";
|
|
465 |
test "(i + j + 2 + (k::nat)) - 1 = y";
|
|
466 |
test "(i + j + 1 + (k::nat)) - 2 = y";
|
|
467 |
|
|
468 |
test "(2*x + (u*v) + y) - v*3*u = (w::nat)";
|
|
469 |
test "(2*x*u*v + 5 + (u*v)*4 + y) - v*u*4 = (w::nat)";
|
|
470 |
test "(2*x*u*v + (u*v)*4 + y) - v*u = (w::nat)";
|
|
471 |
test "Suc (Suc (2*x*u*v + u*4 + y)) - u = w";
|
|
472 |
test "Suc ((u*v)*4) - v*3*u = w";
|
|
473 |
test "Suc (Suc ((u*v)*3)) - v*3*u = w";
|
|
474 |
|
|
475 |
test "(i + j + 12 + (k::nat)) = u + 15 + y";
|
|
476 |
test "(i + j + 32 + (k::nat)) - (u + 15 + y) = zz";
|
|
477 |
test "(i + j + 12 + (k::nat)) = u + 5 + y";
|
|
478 |
(*Suc*)
|
|
479 |
test "(i + j + 12 + k) = Suc (u + y)";
|
|
480 |
test "Suc (Suc (Suc (Suc (Suc (u + y))))) <= ((i + j) + 41 + k)";
|
|
481 |
test "(i + j + 5 + k) < Suc (Suc (Suc (Suc (Suc (u + y)))))";
|
|
482 |
test "Suc (Suc (Suc (Suc (Suc (u + y))))) - 5 = v";
|
|
483 |
test "(i + j + 5 + k) = Suc (Suc (Suc (Suc (Suc (Suc (Suc (u + y)))))))";
|
|
484 |
test "2*y + 3*z + 2*u = Suc (u)";
|
|
485 |
test "2*y + 3*z + 6*w + 2*y + 3*z + 2*u = Suc (u)";
|
|
486 |
test "2*y + 3*z + 6*w + 2*y + 3*z + 2*u = 2*y' + 3*z' + 6*w' + 2*y' + 3*z' + u + (vv::nat)";
|
|
487 |
test "6 + 2*y + 3*z + 4*u = Suc (vv + 2*u + z)";
|
|
488 |
test "(2*n*m) < (3*(m*n)) + (u::nat)";
|
|
489 |
|
|
490 |
test "(Suc (Suc (Suc (Suc (Suc (Suc (case length (f c) of 0 => 0 | Suc k => k)))))) <= Suc 0)";
|
|
491 |
|
|
492 |
test "Suc (Suc (Suc (Suc (Suc (Suc (length l1 + length l2)))))) <= length l1";
|
|
493 |
|
|
494 |
test "( (Suc (Suc (Suc (Suc (Suc (length (compT P E A ST mxr e) + length l3)))))) <= length (compT P E A ST mxr e))";
|
|
495 |
|
|
496 |
test "( (Suc (Suc (Suc (Suc (Suc (length (compT P E A ST mxr e) + length (compT P E (A Un \<A> e) ST mxr c))))))) <= length (compT P E A ST mxr e))";
|
|
497 |
|
|
498 |
|
|
499 |
(*negative numerals: FAIL*)
|
|
500 |
test "(i + j + -23 + (k::nat)) < u + 15 + y";
|
|
501 |
test "(i + j + 3 + (k::nat)) < u + -15 + y";
|
|
502 |
test "(i + j + -12 + (k::nat)) - 15 = y";
|
|
503 |
test "(i + j + 12 + (k::nat)) - -15 = y";
|
|
504 |
test "(i + j + -12 + (k::nat)) - -15 = y";
|
|
505 |
|
|
506 |
(*combine_numerals*)
|
|
507 |
test "k + 3*k = (u::nat)";
|
|
508 |
test "Suc (i + 3) = u";
|
|
509 |
test "Suc (i + j + 3 + k) = u";
|
|
510 |
test "k + j + 3*k + j = (u::nat)";
|
|
511 |
test "Suc (j*i + i + k + 5 + 3*k + i*j*4) = (u::nat)";
|
|
512 |
test "(2*n*m) + (3*(m*n)) = (u::nat)";
|
|
513 |
(*negative numerals: FAIL*)
|
|
514 |
test "Suc (i + j + -3 + k) = u";
|
|
515 |
|
|
516 |
(*cancel_numeral_factors*)
|
|
517 |
test "9*x = 12 * (y::nat)";
|
|
518 |
test "(9*x) div (12 * (y::nat)) = z";
|
|
519 |
test "9*x < 12 * (y::nat)";
|
|
520 |
test "9*x <= 12 * (y::nat)";
|
|
521 |
|
|
522 |
(*cancel_factor*)
|
|
523 |
test "x*k = k*(y::nat)";
|
|
524 |
test "k = k*(y::nat)";
|
|
525 |
test "a*(b*c) = (b::nat)";
|
|
526 |
test "a*(b*c) = d*(b::nat)*(x*a)";
|
|
527 |
|
|
528 |
test "x*k < k*(y::nat)";
|
|
529 |
test "k < k*(y::nat)";
|
|
530 |
test "a*(b*c) < (b::nat)";
|
|
531 |
test "a*(b*c) < d*(b::nat)*(x*a)";
|
|
532 |
|
|
533 |
test "x*k <= k*(y::nat)";
|
|
534 |
test "k <= k*(y::nat)";
|
|
535 |
test "a*(b*c) <= (b::nat)";
|
|
536 |
test "a*(b*c) <= d*(b::nat)*(x*a)";
|
|
537 |
|
|
538 |
test "(x*k) div (k*(y::nat)) = (uu::nat)";
|
|
539 |
test "(k) div (k*(y::nat)) = (uu::nat)";
|
|
540 |
test "(a*(b*c)) div ((b::nat)) = (uu::nat)";
|
|
541 |
test "(a*(b*c)) div (d*(b::nat)*(x*a)) = (uu::nat)";
|
|
542 |
*)
|
|
543 |
|
|
544 |
|
|
545 |
(*** Prepare linear arithmetic for nat numerals ***)
|
|
546 |
|
|
547 |
local
|
|
548 |
|
|
549 |
(* reduce contradictory <= to False *)
|
|
550 |
val add_rules =
|
23471
|
551 |
[@{thm Let_number_of}, @{thm Let_0}, @{thm Let_1}, @{thm nat_0}, @{thm nat_1},
|
|
552 |
@{thm add_nat_number_of}, @{thm diff_nat_number_of}, @{thm mult_nat_number_of},
|
|
553 |
@{thm eq_nat_number_of}, @{thm less_nat_number_of}, @{thm le_number_of_eq_not_less},
|
|
554 |
@{thm le_Suc_number_of}, @{thm le_number_of_Suc},
|
|
555 |
@{thm less_Suc_number_of}, @{thm less_number_of_Suc},
|
|
556 |
@{thm Suc_eq_number_of}, @{thm eq_number_of_Suc},
|
|
557 |
@{thm mult_Suc}, @{thm mult_Suc_right},
|
|
558 |
@{thm eq_number_of_0}, @{thm eq_0_number_of}, @{thm less_0_number_of},
|
|
559 |
@{thm of_int_number_of_eq}, @{thm of_nat_number_of_eq}, @{thm nat_number_of}, @{thm if_True}, @{thm if_False}];
|
23164
|
560 |
|
|
561 |
val simprocs = Nat_Numeral_Simprocs.combine_numerals
|
|
562 |
:: Nat_Numeral_Simprocs.cancel_numerals;
|
|
563 |
|
|
564 |
in
|
|
565 |
|
|
566 |
val nat_simprocs_setup =
|
24093
|
567 |
LinArith.map_data (fn {add_mono_thms, mult_mono_thms, inj_thms, lessD, neqE, simpset} =>
|
23164
|
568 |
{add_mono_thms = add_mono_thms, mult_mono_thms = mult_mono_thms,
|
|
569 |
inj_thms = inj_thms, lessD = lessD, neqE = neqE,
|
|
570 |
simpset = simpset addsimps add_rules
|
|
571 |
addsimprocs simprocs});
|
|
572 |
|
|
573 |
end;
|