src/HOL/Euclidean_Division.thy
author wenzelm
Sat, 30 Jul 2022 14:00:03 +0200
changeset 75731 5d225d786177
parent 75669 43f5dfb7fa35
child 75875 48d032035744
permissions -rw-r--r--
tuned;
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
64785
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
     1
(*  Title:      HOL/Euclidean_Division.thy
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
     2
    Author:     Manuel Eberl, TU Muenchen
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
     3
    Author:     Florian Haftmann, TU Muenchen
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
     4
*)
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
     5
66817
0b12755ccbb2 euclidean rings need no normalization
haftmann
parents: 66816
diff changeset
     6
section \<open>Division in euclidean (semi)rings\<close>
64785
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
     7
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
     8
theory Euclidean_Division
66817
0b12755ccbb2 euclidean rings need no normalization
haftmann
parents: 66816
diff changeset
     9
  imports Int Lattices_Big
64785
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
    10
begin
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
    11
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
    12
subsection \<open>Euclidean (semi)rings with explicit division and remainder\<close>
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
    13
  
66817
0b12755ccbb2 euclidean rings need no normalization
haftmann
parents: 66816
diff changeset
    14
class euclidean_semiring = semidom_modulo + 
64785
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
    15
  fixes euclidean_size :: "'a \<Rightarrow> nat"
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
    16
  assumes size_0 [simp]: "euclidean_size 0 = 0"
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
    17
  assumes mod_size_less: 
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
    18
    "b \<noteq> 0 \<Longrightarrow> euclidean_size (a mod b) < euclidean_size b"
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
    19
  assumes size_mult_mono:
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
    20
    "b \<noteq> 0 \<Longrightarrow> euclidean_size a \<le> euclidean_size (a * b)"
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
    21
begin
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
    22
66840
0d689d71dbdc canonical multiplicative euclidean size
haftmann
parents: 66839
diff changeset
    23
lemma euclidean_size_eq_0_iff [simp]:
0d689d71dbdc canonical multiplicative euclidean size
haftmann
parents: 66839
diff changeset
    24
  "euclidean_size b = 0 \<longleftrightarrow> b = 0"
0d689d71dbdc canonical multiplicative euclidean size
haftmann
parents: 66839
diff changeset
    25
proof
0d689d71dbdc canonical multiplicative euclidean size
haftmann
parents: 66839
diff changeset
    26
  assume "b = 0"
0d689d71dbdc canonical multiplicative euclidean size
haftmann
parents: 66839
diff changeset
    27
  then show "euclidean_size b = 0"
0d689d71dbdc canonical multiplicative euclidean size
haftmann
parents: 66839
diff changeset
    28
    by simp
0d689d71dbdc canonical multiplicative euclidean size
haftmann
parents: 66839
diff changeset
    29
next
0d689d71dbdc canonical multiplicative euclidean size
haftmann
parents: 66839
diff changeset
    30
  assume "euclidean_size b = 0"
0d689d71dbdc canonical multiplicative euclidean size
haftmann
parents: 66839
diff changeset
    31
  show "b = 0"
0d689d71dbdc canonical multiplicative euclidean size
haftmann
parents: 66839
diff changeset
    32
  proof (rule ccontr)
0d689d71dbdc canonical multiplicative euclidean size
haftmann
parents: 66839
diff changeset
    33
    assume "b \<noteq> 0"
0d689d71dbdc canonical multiplicative euclidean size
haftmann
parents: 66839
diff changeset
    34
    with mod_size_less have "euclidean_size (b mod b) < euclidean_size b" .
0d689d71dbdc canonical multiplicative euclidean size
haftmann
parents: 66839
diff changeset
    35
    with \<open>euclidean_size b = 0\<close> show False
0d689d71dbdc canonical multiplicative euclidean size
haftmann
parents: 66839
diff changeset
    36
      by simp
0d689d71dbdc canonical multiplicative euclidean size
haftmann
parents: 66839
diff changeset
    37
  qed
0d689d71dbdc canonical multiplicative euclidean size
haftmann
parents: 66839
diff changeset
    38
qed
0d689d71dbdc canonical multiplicative euclidean size
haftmann
parents: 66839
diff changeset
    39
0d689d71dbdc canonical multiplicative euclidean size
haftmann
parents: 66839
diff changeset
    40
lemma euclidean_size_greater_0_iff [simp]:
0d689d71dbdc canonical multiplicative euclidean size
haftmann
parents: 66839
diff changeset
    41
  "euclidean_size b > 0 \<longleftrightarrow> b \<noteq> 0"
0d689d71dbdc canonical multiplicative euclidean size
haftmann
parents: 66839
diff changeset
    42
  using euclidean_size_eq_0_iff [symmetric, of b] by safe simp
0d689d71dbdc canonical multiplicative euclidean size
haftmann
parents: 66839
diff changeset
    43
64785
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
    44
lemma size_mult_mono': "b \<noteq> 0 \<Longrightarrow> euclidean_size a \<le> euclidean_size (b * a)"
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
    45
  by (subst mult.commute) (rule size_mult_mono)
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
    46
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
    47
lemma dvd_euclidean_size_eq_imp_dvd:
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
    48
  assumes "a \<noteq> 0" and "euclidean_size a = euclidean_size b"
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
    49
    and "b dvd a" 
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
    50
  shows "a dvd b"
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
    51
proof (rule ccontr)
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
    52
  assume "\<not> a dvd b"
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
    53
  hence "b mod a \<noteq> 0" using mod_0_imp_dvd [of b a] by blast
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
    54
  then have "b mod a \<noteq> 0" by (simp add: mod_eq_0_iff_dvd)
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
    55
  from \<open>b dvd a\<close> have "b dvd b mod a" by (simp add: dvd_mod_iff)
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
    56
  then obtain c where "b mod a = b * c" unfolding dvd_def by blast
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
    57
    with \<open>b mod a \<noteq> 0\<close> have "c \<noteq> 0" by auto
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
    58
  with \<open>b mod a = b * c\<close> have "euclidean_size (b mod a) \<ge> euclidean_size b"
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
    59
    using size_mult_mono by force
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
    60
  moreover from \<open>\<not> a dvd b\<close> and \<open>a \<noteq> 0\<close>
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
    61
  have "euclidean_size (b mod a) < euclidean_size a"
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
    62
    using mod_size_less by blast
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
    63
  ultimately show False using \<open>euclidean_size a = euclidean_size b\<close>
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
    64
    by simp
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
    65
qed
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
    66
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
    67
lemma euclidean_size_times_unit:
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
    68
  assumes "is_unit a"
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
    69
  shows   "euclidean_size (a * b) = euclidean_size b"
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
    70
proof (rule antisym)
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
    71
  from assms have [simp]: "a \<noteq> 0" by auto
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
    72
  thus "euclidean_size (a * b) \<ge> euclidean_size b" by (rule size_mult_mono')
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
    73
  from assms have "is_unit (1 div a)" by simp
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
    74
  hence "1 div a \<noteq> 0" by (intro notI) simp_all
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
    75
  hence "euclidean_size (a * b) \<le> euclidean_size ((1 div a) * (a * b))"
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
    76
    by (rule size_mult_mono')
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
    77
  also from assms have "(1 div a) * (a * b) = b"
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
    78
    by (simp add: algebra_simps unit_div_mult_swap)
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
    79
  finally show "euclidean_size (a * b) \<le> euclidean_size b" .
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
    80
qed
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
    81
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
    82
lemma euclidean_size_unit:
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
    83
  "is_unit a \<Longrightarrow> euclidean_size a = euclidean_size 1"
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
    84
  using euclidean_size_times_unit [of a 1] by simp
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
    85
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
    86
lemma unit_iff_euclidean_size: 
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
    87
  "is_unit a \<longleftrightarrow> euclidean_size a = euclidean_size 1 \<and> a \<noteq> 0"
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
    88
proof safe
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
    89
  assume A: "a \<noteq> 0" and B: "euclidean_size a = euclidean_size 1"
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
    90
  show "is_unit a"
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
    91
    by (rule dvd_euclidean_size_eq_imp_dvd [OF A B]) simp_all
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
    92
qed (auto intro: euclidean_size_unit)
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
    93
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
    94
lemma euclidean_size_times_nonunit:
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
    95
  assumes "a \<noteq> 0" "b \<noteq> 0" "\<not> is_unit a"
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
    96
  shows   "euclidean_size b < euclidean_size (a * b)"
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
    97
proof (rule ccontr)
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
    98
  assume "\<not>euclidean_size b < euclidean_size (a * b)"
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
    99
  with size_mult_mono'[OF assms(1), of b] 
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   100
    have eq: "euclidean_size (a * b) = euclidean_size b" by simp
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   101
  have "a * b dvd b"
75669
43f5dfb7fa35 tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents: 74592
diff changeset
   102
    by (rule dvd_euclidean_size_eq_imp_dvd [OF _ eq])
43f5dfb7fa35 tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents: 74592
diff changeset
   103
       (use assms in simp_all)
64785
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   104
  hence "a * b dvd 1 * b" by simp
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   105
  with \<open>b \<noteq> 0\<close> have "is_unit a" by (subst (asm) dvd_times_right_cancel_iff)
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   106
  with assms(3) show False by contradiction
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   107
qed
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   108
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   109
lemma dvd_imp_size_le:
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   110
  assumes "a dvd b" "b \<noteq> 0" 
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   111
  shows   "euclidean_size a \<le> euclidean_size b"
75669
43f5dfb7fa35 tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents: 74592
diff changeset
   112
  using assms by (auto simp: size_mult_mono)
64785
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   113
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   114
lemma dvd_proper_imp_size_less:
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   115
  assumes "a dvd b" "\<not> b dvd a" "b \<noteq> 0" 
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   116
  shows   "euclidean_size a < euclidean_size b"
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   117
proof -
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   118
  from assms(1) obtain c where "b = a * c" by (erule dvdE)
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   119
  hence z: "b = c * a" by (simp add: mult.commute)
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   120
  from z assms have "\<not>is_unit c" by (auto simp: mult.commute mult_unit_dvd_iff)
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   121
  with z assms show ?thesis
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   122
    by (auto intro!: euclidean_size_times_nonunit)
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   123
qed
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   124
66798
39bb2462e681 fundamental property of division by units
haftmann
parents: 64785
diff changeset
   125
lemma unit_imp_mod_eq_0:
39bb2462e681 fundamental property of division by units
haftmann
parents: 64785
diff changeset
   126
  "a mod b = 0" if "is_unit b"
39bb2462e681 fundamental property of division by units
haftmann
parents: 64785
diff changeset
   127
  using that by (simp add: mod_eq_0_iff_dvd unit_imp_dvd)
39bb2462e681 fundamental property of division by units
haftmann
parents: 64785
diff changeset
   128
69695
753ae9e9773d algebraized more material from theory Divides
haftmann
parents: 69593
diff changeset
   129
lemma mod_eq_self_iff_div_eq_0:
753ae9e9773d algebraized more material from theory Divides
haftmann
parents: 69593
diff changeset
   130
  "a mod b = a \<longleftrightarrow> a div b = 0" (is "?P \<longleftrightarrow> ?Q")
753ae9e9773d algebraized more material from theory Divides
haftmann
parents: 69593
diff changeset
   131
proof
753ae9e9773d algebraized more material from theory Divides
haftmann
parents: 69593
diff changeset
   132
  assume ?P
753ae9e9773d algebraized more material from theory Divides
haftmann
parents: 69593
diff changeset
   133
  with div_mult_mod_eq [of a b] show ?Q
753ae9e9773d algebraized more material from theory Divides
haftmann
parents: 69593
diff changeset
   134
    by auto
753ae9e9773d algebraized more material from theory Divides
haftmann
parents: 69593
diff changeset
   135
next
753ae9e9773d algebraized more material from theory Divides
haftmann
parents: 69593
diff changeset
   136
  assume ?Q
753ae9e9773d algebraized more material from theory Divides
haftmann
parents: 69593
diff changeset
   137
  with div_mult_mod_eq [of a b] show ?P
753ae9e9773d algebraized more material from theory Divides
haftmann
parents: 69593
diff changeset
   138
    by simp
753ae9e9773d algebraized more material from theory Divides
haftmann
parents: 69593
diff changeset
   139
qed
753ae9e9773d algebraized more material from theory Divides
haftmann
parents: 69593
diff changeset
   140
67051
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66886
diff changeset
   141
lemma coprime_mod_left_iff [simp]:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66886
diff changeset
   142
  "coprime (a mod b) b \<longleftrightarrow> coprime a b" if "b \<noteq> 0"
75669
43f5dfb7fa35 tuned (some HOL lints, by Yecine Megdiche);
Fabian Huch <huch@in.tum.de>
parents: 74592
diff changeset
   143
  by (rule iffI; rule coprimeI)
67051
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66886
diff changeset
   144
    (use that in \<open>auto dest!: dvd_mod_imp_dvd coprime_common_divisor simp add: dvd_mod_iff\<close>)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66886
diff changeset
   145
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66886
diff changeset
   146
lemma coprime_mod_right_iff [simp]:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66886
diff changeset
   147
  "coprime a (b mod a) \<longleftrightarrow> coprime a b" if "a \<noteq> 0"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66886
diff changeset
   148
  using that coprime_mod_left_iff [of a b] by (simp add: ac_simps)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66886
diff changeset
   149
64785
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   150
end
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   151
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   152
class euclidean_ring = idom_modulo + euclidean_semiring
66886
960509bfd47e added lemmas and tuned proofs
haftmann
parents: 66840
diff changeset
   153
begin
960509bfd47e added lemmas and tuned proofs
haftmann
parents: 66840
diff changeset
   154
67087
733017b19de9 generalized more lemmas
haftmann
parents: 67083
diff changeset
   155
lemma dvd_diff_commute [ac_simps]:
66886
960509bfd47e added lemmas and tuned proofs
haftmann
parents: 66840
diff changeset
   156
  "a dvd c - b \<longleftrightarrow> a dvd b - c"
960509bfd47e added lemmas and tuned proofs
haftmann
parents: 66840
diff changeset
   157
proof -
960509bfd47e added lemmas and tuned proofs
haftmann
parents: 66840
diff changeset
   158
  have "a dvd c - b \<longleftrightarrow> a dvd (c - b) * - 1"
960509bfd47e added lemmas and tuned proofs
haftmann
parents: 66840
diff changeset
   159
    by (subst dvd_mult_unit_iff) simp_all
960509bfd47e added lemmas and tuned proofs
haftmann
parents: 66840
diff changeset
   160
  then show ?thesis
960509bfd47e added lemmas and tuned proofs
haftmann
parents: 66840
diff changeset
   161
    by simp
960509bfd47e added lemmas and tuned proofs
haftmann
parents: 66840
diff changeset
   162
qed
960509bfd47e added lemmas and tuned proofs
haftmann
parents: 66840
diff changeset
   163
 
960509bfd47e added lemmas and tuned proofs
haftmann
parents: 66840
diff changeset
   164
end
64785
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   165
66840
0d689d71dbdc canonical multiplicative euclidean size
haftmann
parents: 66839
diff changeset
   166
66806
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   167
subsection \<open>Euclidean (semi)rings with cancel rules\<close>
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   168
70147
1657688a6406 backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
haftmann
parents: 70094
diff changeset
   169
class euclidean_semiring_cancel = euclidean_semiring +
1657688a6406 backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
haftmann
parents: 70094
diff changeset
   170
  assumes div_mult_self1 [simp]: "b \<noteq> 0 \<Longrightarrow> (a + c * b) div b = c + a div b"
1657688a6406 backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
haftmann
parents: 70094
diff changeset
   171
  and div_mult_mult1 [simp]: "c \<noteq> 0 \<Longrightarrow> (c * a) div (c * b) = a div b"
66806
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   172
begin
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   173
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   174
lemma div_mult_self2 [simp]:
70147
1657688a6406 backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
haftmann
parents: 70094
diff changeset
   175
  assumes "b \<noteq> 0"
1657688a6406 backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
haftmann
parents: 70094
diff changeset
   176
  shows "(a + b * c) div b = c + a div b"
1657688a6406 backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
haftmann
parents: 70094
diff changeset
   177
  using assms div_mult_self1 [of b a c] by (simp add: mult.commute)
66806
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   178
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   179
lemma div_mult_self3 [simp]:
70147
1657688a6406 backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
haftmann
parents: 70094
diff changeset
   180
  assumes "b \<noteq> 0"
1657688a6406 backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
haftmann
parents: 70094
diff changeset
   181
  shows "(c * b + a) div b = c + a div b"
1657688a6406 backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
haftmann
parents: 70094
diff changeset
   182
  using assms by (simp add: add.commute)
66806
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   183
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   184
lemma div_mult_self4 [simp]:
70147
1657688a6406 backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
haftmann
parents: 70094
diff changeset
   185
  assumes "b \<noteq> 0"
1657688a6406 backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
haftmann
parents: 70094
diff changeset
   186
  shows "(b * c + a) div b = c + a div b"
1657688a6406 backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
haftmann
parents: 70094
diff changeset
   187
  using assms by (simp add: add.commute)
66806
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   188
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   189
lemma mod_mult_self1 [simp]: "(a + c * b) mod b = a mod b"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   190
proof (cases "b = 0")
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   191
  case True then show ?thesis by simp
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   192
next
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   193
  case False
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   194
  have "a + c * b = (a + c * b) div b * b + (a + c * b) mod b"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   195
    by (simp add: div_mult_mod_eq)
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   196
  also from False div_mult_self1 [of b a c] have
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   197
    "\<dots> = (c + a div b) * b + (a + c * b) mod b"
70147
1657688a6406 backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
haftmann
parents: 70094
diff changeset
   198
      by (simp add: algebra_simps)
66806
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   199
  finally have "a = a div b * b + (a + c * b) mod b"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   200
    by (simp add: add.commute [of a] add.assoc distrib_right)
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   201
  then have "a div b * b + (a + c * b) mod b = a div b * b + a mod b"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   202
    by (simp add: div_mult_mod_eq)
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   203
  then show ?thesis by simp
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   204
qed
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   205
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   206
lemma mod_mult_self2 [simp]:
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   207
  "(a + b * c) mod b = a mod b"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   208
  by (simp add: mult.commute [of b])
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   209
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   210
lemma mod_mult_self3 [simp]:
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   211
  "(c * b + a) mod b = a mod b"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   212
  by (simp add: add.commute)
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   213
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   214
lemma mod_mult_self4 [simp]:
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   215
  "(b * c + a) mod b = a mod b"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   216
  by (simp add: add.commute)
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   217
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   218
lemma mod_mult_self1_is_0 [simp]:
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   219
  "b * a mod b = 0"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   220
  using mod_mult_self2 [of 0 b a] by simp
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   221
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   222
lemma mod_mult_self2_is_0 [simp]:
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   223
  "a * b mod b = 0"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   224
  using mod_mult_self1 [of 0 a b] by simp
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   225
70147
1657688a6406 backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
haftmann
parents: 70094
diff changeset
   226
lemma div_add_self1:
1657688a6406 backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
haftmann
parents: 70094
diff changeset
   227
  assumes "b \<noteq> 0"
1657688a6406 backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
haftmann
parents: 70094
diff changeset
   228
  shows "(b + a) div b = a div b + 1"
1657688a6406 backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
haftmann
parents: 70094
diff changeset
   229
  using assms div_mult_self1 [of b a 1] by (simp add: add.commute)
1657688a6406 backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
haftmann
parents: 70094
diff changeset
   230
1657688a6406 backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
haftmann
parents: 70094
diff changeset
   231
lemma div_add_self2:
1657688a6406 backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
haftmann
parents: 70094
diff changeset
   232
  assumes "b \<noteq> 0"
1657688a6406 backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
haftmann
parents: 70094
diff changeset
   233
  shows "(a + b) div b = a div b + 1"
1657688a6406 backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
haftmann
parents: 70094
diff changeset
   234
  using assms div_add_self1 [of b a] by (simp add: add.commute)
1657688a6406 backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
haftmann
parents: 70094
diff changeset
   235
66806
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   236
lemma mod_add_self1 [simp]:
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   237
  "(b + a) mod b = a mod b"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   238
  using mod_mult_self1 [of a 1 b] by (simp add: add.commute)
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   239
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   240
lemma mod_add_self2 [simp]:
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   241
  "(a + b) mod b = a mod b"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   242
  using mod_mult_self1 [of a 1 b] by simp
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   243
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   244
lemma mod_div_trivial [simp]:
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   245
  "a mod b div b = 0"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   246
proof (cases "b = 0")
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   247
  assume "b = 0"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   248
  thus ?thesis by simp
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   249
next
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   250
  assume "b \<noteq> 0"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   251
  hence "a div b + a mod b div b = (a mod b + a div b * b) div b"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   252
    by (rule div_mult_self1 [symmetric])
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   253
  also have "\<dots> = a div b"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   254
    by (simp only: mod_div_mult_eq)
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   255
  also have "\<dots> = a div b + 0"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   256
    by simp
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   257
  finally show ?thesis
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   258
    by (rule add_left_imp_eq)
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   259
qed
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   260
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   261
lemma mod_mod_trivial [simp]:
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   262
  "a mod b mod b = a mod b"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   263
proof -
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   264
  have "a mod b mod b = (a mod b + a div b * b) mod b"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   265
    by (simp only: mod_mult_self1)
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   266
  also have "\<dots> = a mod b"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   267
    by (simp only: mod_div_mult_eq)
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   268
  finally show ?thesis .
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   269
qed
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   270
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   271
lemma mod_mod_cancel:
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   272
  assumes "c dvd b"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   273
  shows "a mod b mod c = a mod c"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   274
proof -
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   275
  from \<open>c dvd b\<close> obtain k where "b = c * k"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   276
    by (rule dvdE)
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   277
  have "a mod b mod c = a mod (c * k) mod c"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   278
    by (simp only: \<open>b = c * k\<close>)
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   279
  also have "\<dots> = (a mod (c * k) + a div (c * k) * k * c) mod c"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   280
    by (simp only: mod_mult_self1)
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   281
  also have "\<dots> = (a div (c * k) * (c * k) + a mod (c * k)) mod c"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   282
    by (simp only: ac_simps)
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   283
  also have "\<dots> = a mod c"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   284
    by (simp only: div_mult_mod_eq)
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   285
  finally show ?thesis .
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   286
qed
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   287
70147
1657688a6406 backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
haftmann
parents: 70094
diff changeset
   288
lemma div_mult_mult2 [simp]:
1657688a6406 backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
haftmann
parents: 70094
diff changeset
   289
  "c \<noteq> 0 \<Longrightarrow> (a * c) div (b * c) = a div b"
1657688a6406 backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
haftmann
parents: 70094
diff changeset
   290
  by (drule div_mult_mult1) (simp add: mult.commute)
1657688a6406 backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
haftmann
parents: 70094
diff changeset
   291
1657688a6406 backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
haftmann
parents: 70094
diff changeset
   292
lemma div_mult_mult1_if [simp]:
1657688a6406 backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
haftmann
parents: 70094
diff changeset
   293
  "(c * a) div (c * b) = (if c = 0 then 0 else a div b)"
1657688a6406 backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
haftmann
parents: 70094
diff changeset
   294
  by simp_all
1657688a6406 backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
haftmann
parents: 70094
diff changeset
   295
66806
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   296
lemma mod_mult_mult1:
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   297
  "(c * a) mod (c * b) = c * (a mod b)"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   298
proof (cases "c = 0")
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   299
  case True then show ?thesis by simp
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   300
next
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   301
  case False
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   302
  from div_mult_mod_eq
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   303
  have "((c * a) div (c * b)) * (c * b) + (c * a) mod (c * b) = c * a" .
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   304
  with False have "c * ((a div b) * b + a mod b) + (c * a) mod (c * b)
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   305
    = c * a + c * (a mod b)" by (simp add: algebra_simps)
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   306
  with div_mult_mod_eq show ?thesis by simp
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   307
qed
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   308
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   309
lemma mod_mult_mult2:
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   310
  "(a * c) mod (b * c) = (a mod b) * c"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   311
  using mod_mult_mult1 [of c a b] by (simp add: mult.commute)
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   312
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   313
lemma mult_mod_left: "(a mod b) * c = (a * c) mod (b * c)"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   314
  by (fact mod_mult_mult2 [symmetric])
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   315
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   316
lemma mult_mod_right: "c * (a mod b) = (c * a) mod (c * b)"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   317
  by (fact mod_mult_mult1 [symmetric])
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   318
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   319
lemma dvd_mod: "k dvd m \<Longrightarrow> k dvd n \<Longrightarrow> k dvd (m mod n)"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   320
  unfolding dvd_def by (auto simp add: mod_mult_mult1)
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   321
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   322
lemma div_plus_div_distrib_dvd_left:
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   323
  "c dvd a \<Longrightarrow> (a + b) div c = a div c + b div c"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   324
  by (cases "c = 0") (auto elim: dvdE)
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   325
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   326
lemma div_plus_div_distrib_dvd_right:
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   327
  "c dvd b \<Longrightarrow> (a + b) div c = a div c + b div c"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   328
  using div_plus_div_distrib_dvd_left [of c b a]
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   329
  by (simp add: ac_simps)
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   330
71413
65ffe9e910d4 more specific class assumptions
haftmann
parents: 71412
diff changeset
   331
lemma sum_div_partition:
65ffe9e910d4 more specific class assumptions
haftmann
parents: 71412
diff changeset
   332
  \<open>(\<Sum>a\<in>A. f a) div b = (\<Sum>a\<in>A \<inter> {a. b dvd f a}. f a div b) + (\<Sum>a\<in>A \<inter> {a. \<not> b dvd f a}. f a) div b\<close>
65ffe9e910d4 more specific class assumptions
haftmann
parents: 71412
diff changeset
   333
    if \<open>finite A\<close>
65ffe9e910d4 more specific class assumptions
haftmann
parents: 71412
diff changeset
   334
proof -
65ffe9e910d4 more specific class assumptions
haftmann
parents: 71412
diff changeset
   335
  have \<open>A = A \<inter> {a. b dvd f a} \<union> A \<inter> {a. \<not> b dvd f a}\<close>
65ffe9e910d4 more specific class assumptions
haftmann
parents: 71412
diff changeset
   336
    by auto
65ffe9e910d4 more specific class assumptions
haftmann
parents: 71412
diff changeset
   337
  then have \<open>(\<Sum>a\<in>A. f a) = (\<Sum>a\<in>A \<inter> {a. b dvd f a} \<union> A \<inter> {a. \<not> b dvd f a}. f a)\<close>
65ffe9e910d4 more specific class assumptions
haftmann
parents: 71412
diff changeset
   338
    by simp
65ffe9e910d4 more specific class assumptions
haftmann
parents: 71412
diff changeset
   339
  also have \<open>\<dots> = (\<Sum>a\<in>A \<inter> {a. b dvd f a}. f a) + (\<Sum>a\<in>A \<inter> {a. \<not> b dvd f a}. f a)\<close>
65ffe9e910d4 more specific class assumptions
haftmann
parents: 71412
diff changeset
   340
    using \<open>finite A\<close> by (auto intro: sum.union_inter_neutral)
65ffe9e910d4 more specific class assumptions
haftmann
parents: 71412
diff changeset
   341
  finally have *: \<open>sum f A = sum f (A \<inter> {a. b dvd f a}) + sum f (A \<inter> {a. \<not> b dvd f a})\<close> .
65ffe9e910d4 more specific class assumptions
haftmann
parents: 71412
diff changeset
   342
  define B where B: \<open>B = A \<inter> {a. b dvd f a}\<close>
65ffe9e910d4 more specific class assumptions
haftmann
parents: 71412
diff changeset
   343
  with \<open>finite A\<close> have \<open>finite B\<close> and \<open>a \<in> B \<Longrightarrow> b dvd f a\<close> for a
65ffe9e910d4 more specific class assumptions
haftmann
parents: 71412
diff changeset
   344
    by simp_all
65ffe9e910d4 more specific class assumptions
haftmann
parents: 71412
diff changeset
   345
  then have \<open>(\<Sum>a\<in>B. f a) div b = (\<Sum>a\<in>B. f a div b)\<close> and \<open>b dvd (\<Sum>a\<in>B. f a)\<close>
65ffe9e910d4 more specific class assumptions
haftmann
parents: 71412
diff changeset
   346
    by induction (simp_all add: div_plus_div_distrib_dvd_left)
65ffe9e910d4 more specific class assumptions
haftmann
parents: 71412
diff changeset
   347
  then show ?thesis using *
65ffe9e910d4 more specific class assumptions
haftmann
parents: 71412
diff changeset
   348
    by (simp add: B div_plus_div_distrib_dvd_left)
65ffe9e910d4 more specific class assumptions
haftmann
parents: 71412
diff changeset
   349
qed
65ffe9e910d4 more specific class assumptions
haftmann
parents: 71412
diff changeset
   350
66806
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   351
named_theorems mod_simps
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   352
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   353
text \<open>Addition respects modular equivalence.\<close>
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   354
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   355
lemma mod_add_left_eq [mod_simps]:
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   356
  "(a mod c + b) mod c = (a + b) mod c"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   357
proof -
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   358
  have "(a + b) mod c = (a div c * c + a mod c + b) mod c"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   359
    by (simp only: div_mult_mod_eq)
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   360
  also have "\<dots> = (a mod c + b + a div c * c) mod c"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   361
    by (simp only: ac_simps)
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   362
  also have "\<dots> = (a mod c + b) mod c"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   363
    by (rule mod_mult_self1)
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   364
  finally show ?thesis
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   365
    by (rule sym)
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   366
qed
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   367
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   368
lemma mod_add_right_eq [mod_simps]:
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   369
  "(a + b mod c) mod c = (a + b) mod c"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   370
  using mod_add_left_eq [of b c a] by (simp add: ac_simps)
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   371
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   372
lemma mod_add_eq:
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   373
  "(a mod c + b mod c) mod c = (a + b) mod c"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   374
  by (simp add: mod_add_left_eq mod_add_right_eq)
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   375
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   376
lemma mod_sum_eq [mod_simps]:
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   377
  "(\<Sum>i\<in>A. f i mod a) mod a = sum f A mod a"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   378
proof (induct A rule: infinite_finite_induct)
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   379
  case (insert i A)
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   380
  then have "(\<Sum>i\<in>insert i A. f i mod a) mod a
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   381
    = (f i mod a + (\<Sum>i\<in>A. f i mod a)) mod a"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   382
    by simp
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   383
  also have "\<dots> = (f i + (\<Sum>i\<in>A. f i mod a) mod a) mod a"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   384
    by (simp add: mod_simps)
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   385
  also have "\<dots> = (f i + (\<Sum>i\<in>A. f i) mod a) mod a"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   386
    by (simp add: insert.hyps)
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   387
  finally show ?case
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   388
    by (simp add: insert.hyps mod_simps)
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   389
qed simp_all
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   390
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   391
lemma mod_add_cong:
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   392
  assumes "a mod c = a' mod c"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   393
  assumes "b mod c = b' mod c"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   394
  shows "(a + b) mod c = (a' + b') mod c"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   395
proof -
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   396
  have "(a mod c + b mod c) mod c = (a' mod c + b' mod c) mod c"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   397
    unfolding assms ..
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   398
  then show ?thesis
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   399
    by (simp add: mod_add_eq)
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   400
qed
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   401
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   402
text \<open>Multiplication respects modular equivalence.\<close>
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   403
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   404
lemma mod_mult_left_eq [mod_simps]:
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   405
  "((a mod c) * b) mod c = (a * b) mod c"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   406
proof -
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   407
  have "(a * b) mod c = ((a div c * c + a mod c) * b) mod c"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   408
    by (simp only: div_mult_mod_eq)
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   409
  also have "\<dots> = (a mod c * b + a div c * b * c) mod c"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   410
    by (simp only: algebra_simps)
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   411
  also have "\<dots> = (a mod c * b) mod c"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   412
    by (rule mod_mult_self1)
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   413
  finally show ?thesis
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   414
    by (rule sym)
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   415
qed
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   416
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   417
lemma mod_mult_right_eq [mod_simps]:
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   418
  "(a * (b mod c)) mod c = (a * b) mod c"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   419
  using mod_mult_left_eq [of b c a] by (simp add: ac_simps)
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   420
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   421
lemma mod_mult_eq:
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   422
  "((a mod c) * (b mod c)) mod c = (a * b) mod c"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   423
  by (simp add: mod_mult_left_eq mod_mult_right_eq)
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   424
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   425
lemma mod_prod_eq [mod_simps]:
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   426
  "(\<Prod>i\<in>A. f i mod a) mod a = prod f A mod a"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   427
proof (induct A rule: infinite_finite_induct)
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   428
  case (insert i A)
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   429
  then have "(\<Prod>i\<in>insert i A. f i mod a) mod a
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   430
    = (f i mod a * (\<Prod>i\<in>A. f i mod a)) mod a"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   431
    by simp
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   432
  also have "\<dots> = (f i * ((\<Prod>i\<in>A. f i mod a) mod a)) mod a"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   433
    by (simp add: mod_simps)
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   434
  also have "\<dots> = (f i * ((\<Prod>i\<in>A. f i) mod a)) mod a"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   435
    by (simp add: insert.hyps)
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   436
  finally show ?case
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   437
    by (simp add: insert.hyps mod_simps)
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   438
qed simp_all
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   439
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   440
lemma mod_mult_cong:
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   441
  assumes "a mod c = a' mod c"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   442
  assumes "b mod c = b' mod c"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   443
  shows "(a * b) mod c = (a' * b') mod c"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   444
proof -
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   445
  have "(a mod c * (b mod c)) mod c = (a' mod c * (b' mod c)) mod c"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   446
    unfolding assms ..
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   447
  then show ?thesis
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   448
    by (simp add: mod_mult_eq)
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   449
qed
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   450
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   451
text \<open>Exponentiation respects modular equivalence.\<close>
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   452
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   453
lemma power_mod [mod_simps]: 
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   454
  "((a mod b) ^ n) mod b = (a ^ n) mod b"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   455
proof (induct n)
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   456
  case 0
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   457
  then show ?case by simp
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   458
next
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   459
  case (Suc n)
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   460
  have "(a mod b) ^ Suc n mod b = (a mod b) * ((a mod b) ^ n mod b) mod b"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   461
    by (simp add: mod_mult_right_eq)
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   462
  with Suc show ?case
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   463
    by (simp add: mod_mult_left_eq mod_mult_right_eq)
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   464
qed
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   465
71413
65ffe9e910d4 more specific class assumptions
haftmann
parents: 71412
diff changeset
   466
lemma power_diff_power_eq:
65ffe9e910d4 more specific class assumptions
haftmann
parents: 71412
diff changeset
   467
  \<open>a ^ m div a ^ n = (if n \<le> m then a ^ (m - n) else 1 div a ^ (n - m))\<close>
65ffe9e910d4 more specific class assumptions
haftmann
parents: 71412
diff changeset
   468
    if \<open>a \<noteq> 0\<close>
65ffe9e910d4 more specific class assumptions
haftmann
parents: 71412
diff changeset
   469
proof (cases \<open>n \<le> m\<close>)
65ffe9e910d4 more specific class assumptions
haftmann
parents: 71412
diff changeset
   470
  case True
65ffe9e910d4 more specific class assumptions
haftmann
parents: 71412
diff changeset
   471
  with that power_diff [symmetric, of a n m] show ?thesis by simp
65ffe9e910d4 more specific class assumptions
haftmann
parents: 71412
diff changeset
   472
next
65ffe9e910d4 more specific class assumptions
haftmann
parents: 71412
diff changeset
   473
  case False
65ffe9e910d4 more specific class assumptions
haftmann
parents: 71412
diff changeset
   474
  then obtain q where n: \<open>n = m + Suc q\<close>
65ffe9e910d4 more specific class assumptions
haftmann
parents: 71412
diff changeset
   475
    by (auto simp add: not_le dest: less_imp_Suc_add)
65ffe9e910d4 more specific class assumptions
haftmann
parents: 71412
diff changeset
   476
  then have \<open>a ^ m div a ^ n = (a ^ m * 1) div (a ^ m * a ^ Suc q)\<close>
65ffe9e910d4 more specific class assumptions
haftmann
parents: 71412
diff changeset
   477
    by (simp add: power_add ac_simps)
65ffe9e910d4 more specific class assumptions
haftmann
parents: 71412
diff changeset
   478
  moreover from that have \<open>a ^ m \<noteq> 0\<close>
65ffe9e910d4 more specific class assumptions
haftmann
parents: 71412
diff changeset
   479
    by simp
65ffe9e910d4 more specific class assumptions
haftmann
parents: 71412
diff changeset
   480
  ultimately have \<open>a ^ m div a ^ n = 1 div a ^ Suc q\<close>
65ffe9e910d4 more specific class assumptions
haftmann
parents: 71412
diff changeset
   481
    by (subst (asm) div_mult_mult1) simp
65ffe9e910d4 more specific class assumptions
haftmann
parents: 71412
diff changeset
   482
  with False n show ?thesis
65ffe9e910d4 more specific class assumptions
haftmann
parents: 71412
diff changeset
   483
    by simp
65ffe9e910d4 more specific class assumptions
haftmann
parents: 71412
diff changeset
   484
qed
65ffe9e910d4 more specific class assumptions
haftmann
parents: 71412
diff changeset
   485
66806
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   486
end
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   487
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   488
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   489
class euclidean_ring_cancel = euclidean_ring + euclidean_semiring_cancel
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   490
begin
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   491
70147
1657688a6406 backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
haftmann
parents: 70094
diff changeset
   492
subclass idom_divide ..
1657688a6406 backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
haftmann
parents: 70094
diff changeset
   493
1657688a6406 backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
haftmann
parents: 70094
diff changeset
   494
lemma div_minus_minus [simp]: "(- a) div (- b) = a div b"
1657688a6406 backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
haftmann
parents: 70094
diff changeset
   495
  using div_mult_mult1 [of "- 1" a b] by simp
66806
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   496
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   497
lemma mod_minus_minus [simp]: "(- a) mod (- b) = - (a mod b)"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   498
  using mod_mult_mult1 [of "- 1" a b] by simp
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   499
70147
1657688a6406 backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
haftmann
parents: 70094
diff changeset
   500
lemma div_minus_right: "a div (- b) = (- a) div b"
1657688a6406 backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
haftmann
parents: 70094
diff changeset
   501
  using div_minus_minus [of "- a" b] by simp
1657688a6406 backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
haftmann
parents: 70094
diff changeset
   502
66806
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   503
lemma mod_minus_right: "a mod (- b) = - ((- a) mod b)"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   504
  using mod_minus_minus [of "- a" b] by simp
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   505
70147
1657688a6406 backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
haftmann
parents: 70094
diff changeset
   506
lemma div_minus1_right [simp]: "a div (- 1) = - a"
1657688a6406 backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
haftmann
parents: 70094
diff changeset
   507
  using div_minus_right [of a 1] by simp
1657688a6406 backed out a93e6472ac9c, which does not bring anything substantial: division_ring is not commutative in multiplication but semidom_divide is
haftmann
parents: 70094
diff changeset
   508
66806
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   509
lemma mod_minus1_right [simp]: "a mod (- 1) = 0"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   510
  using mod_minus_right [of a 1] by simp
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   511
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   512
text \<open>Negation respects modular equivalence.\<close>
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   513
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   514
lemma mod_minus_eq [mod_simps]:
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   515
  "(- (a mod b)) mod b = (- a) mod b"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   516
proof -
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   517
  have "(- a) mod b = (- (a div b * b + a mod b)) mod b"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   518
    by (simp only: div_mult_mod_eq)
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   519
  also have "\<dots> = (- (a mod b) + - (a div b) * b) mod b"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   520
    by (simp add: ac_simps)
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   521
  also have "\<dots> = (- (a mod b)) mod b"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   522
    by (rule mod_mult_self1)
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   523
  finally show ?thesis
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   524
    by (rule sym)
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   525
qed
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   526
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   527
lemma mod_minus_cong:
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   528
  assumes "a mod b = a' mod b"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   529
  shows "(- a) mod b = (- a') mod b"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   530
proof -
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   531
  have "(- (a mod b)) mod b = (- (a' mod b)) mod b"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   532
    unfolding assms ..
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   533
  then show ?thesis
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   534
    by (simp add: mod_minus_eq)
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   535
qed
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   536
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   537
text \<open>Subtraction respects modular equivalence.\<close>
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   538
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   539
lemma mod_diff_left_eq [mod_simps]:
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   540
  "(a mod c - b) mod c = (a - b) mod c"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   541
  using mod_add_cong [of a c "a mod c" "- b" "- b"]
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   542
  by simp
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   543
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   544
lemma mod_diff_right_eq [mod_simps]:
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   545
  "(a - b mod c) mod c = (a - b) mod c"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   546
  using mod_add_cong [of a c a "- b" "- (b mod c)"] mod_minus_cong [of "b mod c" c b]
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   547
  by simp
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   548
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   549
lemma mod_diff_eq:
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   550
  "(a mod c - b mod c) mod c = (a - b) mod c"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   551
  using mod_add_cong [of a c "a mod c" "- b" "- (b mod c)"] mod_minus_cong [of "b mod c" c b]
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   552
  by simp
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   553
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   554
lemma mod_diff_cong:
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   555
  assumes "a mod c = a' mod c"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   556
  assumes "b mod c = b' mod c"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   557
  shows "(a - b) mod c = (a' - b') mod c"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   558
  using assms mod_add_cong [of a c a' "- b" "- b'"] mod_minus_cong [of b c "b'"]
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   559
  by simp
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   560
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   561
lemma minus_mod_self2 [simp]:
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   562
  "(a - b) mod b = a mod b"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   563
  using mod_diff_right_eq [of a b b]
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   564
  by (simp add: mod_diff_right_eq)
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   565
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   566
lemma minus_mod_self1 [simp]:
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   567
  "(b - a) mod b = - a mod b"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   568
  using mod_add_self2 [of "- a" b] by simp
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   569
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   570
lemma mod_eq_dvd_iff:
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   571
  "a mod c = b mod c \<longleftrightarrow> c dvd a - b" (is "?P \<longleftrightarrow> ?Q")
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   572
proof
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   573
  assume ?P
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   574
  then have "(a mod c - b mod c) mod c = 0"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   575
    by simp
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   576
  then show ?Q
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   577
    by (simp add: dvd_eq_mod_eq_0 mod_simps)
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   578
next
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   579
  assume ?Q
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   580
  then obtain d where d: "a - b = c * d" ..
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   581
  then have "a = c * d + b"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   582
    by (simp add: algebra_simps)
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   583
  then show ?P by simp
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   584
qed
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   585
66837
6ba663ff2b1c tuned proofs
haftmann
parents: 66817
diff changeset
   586
lemma mod_eqE:
6ba663ff2b1c tuned proofs
haftmann
parents: 66817
diff changeset
   587
  assumes "a mod c = b mod c"
6ba663ff2b1c tuned proofs
haftmann
parents: 66817
diff changeset
   588
  obtains d where "b = a + c * d"
6ba663ff2b1c tuned proofs
haftmann
parents: 66817
diff changeset
   589
proof -
6ba663ff2b1c tuned proofs
haftmann
parents: 66817
diff changeset
   590
  from assms have "c dvd a - b"
6ba663ff2b1c tuned proofs
haftmann
parents: 66817
diff changeset
   591
    by (simp add: mod_eq_dvd_iff)
6ba663ff2b1c tuned proofs
haftmann
parents: 66817
diff changeset
   592
  then obtain d where "a - b = c * d" ..
6ba663ff2b1c tuned proofs
haftmann
parents: 66817
diff changeset
   593
  then have "b = a + c * - d"
6ba663ff2b1c tuned proofs
haftmann
parents: 66817
diff changeset
   594
    by (simp add: algebra_simps)
6ba663ff2b1c tuned proofs
haftmann
parents: 66817
diff changeset
   595
  with that show thesis .
6ba663ff2b1c tuned proofs
haftmann
parents: 66817
diff changeset
   596
qed
6ba663ff2b1c tuned proofs
haftmann
parents: 66817
diff changeset
   597
67051
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66886
diff changeset
   598
lemma invertible_coprime:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66886
diff changeset
   599
  "coprime a c" if "a * b mod c = 1"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66886
diff changeset
   600
  by (rule coprimeI) (use that dvd_mod_iff [of _ c "a * b"] in auto)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66886
diff changeset
   601
66806
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   602
end
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   603
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   604
  
64785
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   605
subsection \<open>Uniquely determined division\<close>
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   606
  
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   607
class unique_euclidean_semiring = euclidean_semiring + 
66840
0d689d71dbdc canonical multiplicative euclidean size
haftmann
parents: 66839
diff changeset
   608
  assumes euclidean_size_mult: "euclidean_size (a * b) = euclidean_size a * euclidean_size b"
66838
17989f6bc7b2 clarified uniqueness criterion for euclidean rings
haftmann
parents: 66837
diff changeset
   609
  fixes division_segment :: "'a \<Rightarrow> 'a"
66839
909ba5ed93dd clarified parity
haftmann
parents: 66838
diff changeset
   610
  assumes is_unit_division_segment [simp]: "is_unit (division_segment a)"
66838
17989f6bc7b2 clarified uniqueness criterion for euclidean rings
haftmann
parents: 66837
diff changeset
   611
    and division_segment_mult:
17989f6bc7b2 clarified uniqueness criterion for euclidean rings
haftmann
parents: 66837
diff changeset
   612
    "a \<noteq> 0 \<Longrightarrow> b \<noteq> 0 \<Longrightarrow> division_segment (a * b) = division_segment a * division_segment b"
17989f6bc7b2 clarified uniqueness criterion for euclidean rings
haftmann
parents: 66837
diff changeset
   613
    and division_segment_mod:
17989f6bc7b2 clarified uniqueness criterion for euclidean rings
haftmann
parents: 66837
diff changeset
   614
    "b \<noteq> 0 \<Longrightarrow> \<not> b dvd a \<Longrightarrow> division_segment (a mod b) = division_segment b"
64785
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   615
  assumes div_bounded:
66838
17989f6bc7b2 clarified uniqueness criterion for euclidean rings
haftmann
parents: 66837
diff changeset
   616
    "b \<noteq> 0 \<Longrightarrow> division_segment r = division_segment b
64785
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   617
    \<Longrightarrow> euclidean_size r < euclidean_size b
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   618
    \<Longrightarrow> (q * b + r) div b = q"
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   619
begin
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   620
66839
909ba5ed93dd clarified parity
haftmann
parents: 66838
diff changeset
   621
lemma division_segment_not_0 [simp]:
909ba5ed93dd clarified parity
haftmann
parents: 66838
diff changeset
   622
  "division_segment a \<noteq> 0"
909ba5ed93dd clarified parity
haftmann
parents: 66838
diff changeset
   623
  using is_unit_division_segment [of a] is_unitE [of "division_segment a"] by blast
909ba5ed93dd clarified parity
haftmann
parents: 66838
diff changeset
   624
64785
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   625
lemma divmod_cases [case_names divides remainder by0]:
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   626
  obtains 
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   627
    (divides) q where "b \<noteq> 0"
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   628
      and "a div b = q"
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   629
      and "a mod b = 0"
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   630
      and "a = q * b"
66814
a24cde9588bb generalized some rules
haftmann
parents: 66813
diff changeset
   631
  | (remainder) q r where "b \<noteq> 0"
66838
17989f6bc7b2 clarified uniqueness criterion for euclidean rings
haftmann
parents: 66837
diff changeset
   632
      and "division_segment r = division_segment b"
64785
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   633
      and "euclidean_size r < euclidean_size b"
66814
a24cde9588bb generalized some rules
haftmann
parents: 66813
diff changeset
   634
      and "r \<noteq> 0"
64785
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   635
      and "a div b = q"
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   636
      and "a mod b = r"
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   637
      and "a = q * b + r"
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   638
  | (by0) "b = 0"
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   639
proof (cases "b = 0")
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   640
  case True
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   641
  then show thesis
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   642
  by (rule by0)
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   643
next
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   644
  case False
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   645
  show thesis
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   646
  proof (cases "b dvd a")
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   647
    case True
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   648
    then obtain q where "a = b * q" ..
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   649
    with \<open>b \<noteq> 0\<close> divides
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   650
    show thesis
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   651
      by (simp add: ac_simps)
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   652
  next
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   653
    case False
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   654
    then have "a mod b \<noteq> 0"
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   655
      by (simp add: mod_eq_0_iff_dvd)
66838
17989f6bc7b2 clarified uniqueness criterion for euclidean rings
haftmann
parents: 66837
diff changeset
   656
    moreover from \<open>b \<noteq> 0\<close> \<open>\<not> b dvd a\<close> have "division_segment (a mod b) = division_segment b"
17989f6bc7b2 clarified uniqueness criterion for euclidean rings
haftmann
parents: 66837
diff changeset
   657
      by (rule division_segment_mod)
64785
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   658
    moreover have "euclidean_size (a mod b) < euclidean_size b"
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   659
      using \<open>b \<noteq> 0\<close> by (rule mod_size_less)
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   660
    moreover have "a = a div b * b + a mod b"
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   661
      by (simp add: div_mult_mod_eq)
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   662
    ultimately show thesis
66838
17989f6bc7b2 clarified uniqueness criterion for euclidean rings
haftmann
parents: 66837
diff changeset
   663
      using \<open>b \<noteq> 0\<close> by (blast intro!: remainder)
64785
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   664
  qed
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   665
qed
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   666
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   667
lemma div_eqI:
66838
17989f6bc7b2 clarified uniqueness criterion for euclidean rings
haftmann
parents: 66837
diff changeset
   668
  "a div b = q" if "b \<noteq> 0" "division_segment r = division_segment b"
64785
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   669
    "euclidean_size r < euclidean_size b" "q * b + r = a"
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   670
proof -
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   671
  from that have "(q * b + r) div b = q"
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   672
    by (auto intro: div_bounded)
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   673
  with that show ?thesis
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   674
    by simp
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   675
qed
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   676
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   677
lemma mod_eqI:
66838
17989f6bc7b2 clarified uniqueness criterion for euclidean rings
haftmann
parents: 66837
diff changeset
   678
  "a mod b = r" if "b \<noteq> 0" "division_segment r = division_segment b"
64785
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   679
    "euclidean_size r < euclidean_size b" "q * b + r = a" 
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   680
proof -
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   681
  from that have "a div b = q"
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   682
    by (rule div_eqI)
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   683
  moreover have "a div b * b + a mod b = a"
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   684
    by (fact div_mult_mod_eq)
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   685
  ultimately have "a div b * b + a mod b = a div b * b + r"
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   686
    using \<open>q * b + r = a\<close> by simp
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   687
  then show ?thesis
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   688
    by simp
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   689
qed
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   690
66806
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   691
subclass euclidean_semiring_cancel
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   692
proof
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   693
  show "(a + c * b) div b = c + a div b" if "b \<noteq> 0" for a b c
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   694
  proof (cases a b rule: divmod_cases)
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   695
    case by0
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   696
    with \<open>b \<noteq> 0\<close> show ?thesis
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   697
      by simp
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   698
  next
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   699
    case (divides q)
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   700
    then show ?thesis
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   701
      by (simp add: ac_simps)
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   702
  next
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   703
    case (remainder q r)
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   704
    then show ?thesis
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   705
      by (auto intro: div_eqI simp add: algebra_simps)
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   706
  qed
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   707
next
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   708
  show"(c * a) div (c * b) = a div b" if "c \<noteq> 0" for a b c
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   709
  proof (cases a b rule: divmod_cases)
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   710
    case by0
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   711
    then show ?thesis
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   712
      by simp
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   713
  next
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   714
    case (divides q)
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   715
    with \<open>c \<noteq> 0\<close> show ?thesis
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   716
      by (simp add: mult.left_commute [of c])
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   717
  next
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   718
    case (remainder q r)
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   719
    from \<open>b \<noteq> 0\<close> \<open>c \<noteq> 0\<close> have "b * c \<noteq> 0"
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   720
      by simp
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   721
    from remainder \<open>c \<noteq> 0\<close>
66838
17989f6bc7b2 clarified uniqueness criterion for euclidean rings
haftmann
parents: 66837
diff changeset
   722
    have "division_segment (r * c) = division_segment (b * c)"
66806
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   723
      and "euclidean_size (r * c) < euclidean_size (b * c)"
66840
0d689d71dbdc canonical multiplicative euclidean size
haftmann
parents: 66839
diff changeset
   724
      by (simp_all add: division_segment_mult division_segment_mod euclidean_size_mult)
66806
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   725
    with remainder show ?thesis
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   726
      by (auto intro!: div_eqI [of _ "c * (a mod b)"] simp add: algebra_simps)
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   727
        (use \<open>b * c \<noteq> 0\<close> in simp)
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   728
  qed
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   729
qed
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   730
66814
a24cde9588bb generalized some rules
haftmann
parents: 66813
diff changeset
   731
lemma div_mult1_eq:
a24cde9588bb generalized some rules
haftmann
parents: 66813
diff changeset
   732
  "(a * b) div c = a * (b div c) + a * (b mod c) div c"
a24cde9588bb generalized some rules
haftmann
parents: 66813
diff changeset
   733
proof (cases "a * (b mod c)" c rule: divmod_cases)
a24cde9588bb generalized some rules
haftmann
parents: 66813
diff changeset
   734
  case (divides q)
a24cde9588bb generalized some rules
haftmann
parents: 66813
diff changeset
   735
  have "a * b = a * (b div c * c + b mod c)"
a24cde9588bb generalized some rules
haftmann
parents: 66813
diff changeset
   736
    by (simp add: div_mult_mod_eq)
a24cde9588bb generalized some rules
haftmann
parents: 66813
diff changeset
   737
  also have "\<dots> = (a * (b div c) + q) * c"
a24cde9588bb generalized some rules
haftmann
parents: 66813
diff changeset
   738
    using divides by (simp add: algebra_simps)
a24cde9588bb generalized some rules
haftmann
parents: 66813
diff changeset
   739
  finally have "(a * b) div c = \<dots> div c"
a24cde9588bb generalized some rules
haftmann
parents: 66813
diff changeset
   740
    by simp
a24cde9588bb generalized some rules
haftmann
parents: 66813
diff changeset
   741
  with divides show ?thesis
a24cde9588bb generalized some rules
haftmann
parents: 66813
diff changeset
   742
    by simp
a24cde9588bb generalized some rules
haftmann
parents: 66813
diff changeset
   743
next
a24cde9588bb generalized some rules
haftmann
parents: 66813
diff changeset
   744
  case (remainder q r)
a24cde9588bb generalized some rules
haftmann
parents: 66813
diff changeset
   745
  from remainder(1-3) show ?thesis
a24cde9588bb generalized some rules
haftmann
parents: 66813
diff changeset
   746
  proof (rule div_eqI)
a24cde9588bb generalized some rules
haftmann
parents: 66813
diff changeset
   747
    have "a * b = a * (b div c * c + b mod c)"
a24cde9588bb generalized some rules
haftmann
parents: 66813
diff changeset
   748
      by (simp add: div_mult_mod_eq)
a24cde9588bb generalized some rules
haftmann
parents: 66813
diff changeset
   749
    also have "\<dots> = a * c * (b div c) + q * c + r"
a24cde9588bb generalized some rules
haftmann
parents: 66813
diff changeset
   750
      using remainder by (simp add: algebra_simps)
a24cde9588bb generalized some rules
haftmann
parents: 66813
diff changeset
   751
    finally show "(a * (b div c) + a * (b mod c) div c) * c + r = a * b"
a24cde9588bb generalized some rules
haftmann
parents: 66813
diff changeset
   752
      using remainder(5-7) by (simp add: algebra_simps)
a24cde9588bb generalized some rules
haftmann
parents: 66813
diff changeset
   753
  qed
a24cde9588bb generalized some rules
haftmann
parents: 66813
diff changeset
   754
next
a24cde9588bb generalized some rules
haftmann
parents: 66813
diff changeset
   755
  case by0
a24cde9588bb generalized some rules
haftmann
parents: 66813
diff changeset
   756
  then show ?thesis
a24cde9588bb generalized some rules
haftmann
parents: 66813
diff changeset
   757
    by simp
a24cde9588bb generalized some rules
haftmann
parents: 66813
diff changeset
   758
qed
a24cde9588bb generalized some rules
haftmann
parents: 66813
diff changeset
   759
a24cde9588bb generalized some rules
haftmann
parents: 66813
diff changeset
   760
lemma div_add1_eq:
a24cde9588bb generalized some rules
haftmann
parents: 66813
diff changeset
   761
  "(a + b) div c = a div c + b div c + (a mod c + b mod c) div c"
a24cde9588bb generalized some rules
haftmann
parents: 66813
diff changeset
   762
proof (cases "a mod c + b mod c" c rule: divmod_cases)
a24cde9588bb generalized some rules
haftmann
parents: 66813
diff changeset
   763
  case (divides q)
a24cde9588bb generalized some rules
haftmann
parents: 66813
diff changeset
   764
  have "a + b = (a div c * c + a mod c) + (b div c * c + b mod c)"
a24cde9588bb generalized some rules
haftmann
parents: 66813
diff changeset
   765
    using mod_mult_div_eq [of a c] mod_mult_div_eq [of b c] by (simp add: ac_simps)
a24cde9588bb generalized some rules
haftmann
parents: 66813
diff changeset
   766
  also have "\<dots> = (a div c + b div c) * c + (a mod c + b mod c)"
a24cde9588bb generalized some rules
haftmann
parents: 66813
diff changeset
   767
    by (simp add: algebra_simps)
a24cde9588bb generalized some rules
haftmann
parents: 66813
diff changeset
   768
  also have "\<dots> = (a div c + b div c + q) * c"
a24cde9588bb generalized some rules
haftmann
parents: 66813
diff changeset
   769
    using divides by (simp add: algebra_simps)
a24cde9588bb generalized some rules
haftmann
parents: 66813
diff changeset
   770
  finally have "(a + b) div c = (a div c + b div c + q) * c div c"
a24cde9588bb generalized some rules
haftmann
parents: 66813
diff changeset
   771
    by simp
a24cde9588bb generalized some rules
haftmann
parents: 66813
diff changeset
   772
  with divides show ?thesis
a24cde9588bb generalized some rules
haftmann
parents: 66813
diff changeset
   773
    by simp
a24cde9588bb generalized some rules
haftmann
parents: 66813
diff changeset
   774
next
a24cde9588bb generalized some rules
haftmann
parents: 66813
diff changeset
   775
  case (remainder q r)
a24cde9588bb generalized some rules
haftmann
parents: 66813
diff changeset
   776
  from remainder(1-3) show ?thesis
a24cde9588bb generalized some rules
haftmann
parents: 66813
diff changeset
   777
  proof (rule div_eqI)
a24cde9588bb generalized some rules
haftmann
parents: 66813
diff changeset
   778
    have "(a div c + b div c + q) * c + r + (a mod c + b mod c) =
a24cde9588bb generalized some rules
haftmann
parents: 66813
diff changeset
   779
        (a div c * c + a mod c) + (b div c * c + b mod c) + q * c + r"
a24cde9588bb generalized some rules
haftmann
parents: 66813
diff changeset
   780
      by (simp add: algebra_simps)
a24cde9588bb generalized some rules
haftmann
parents: 66813
diff changeset
   781
    also have "\<dots> = a + b + (a mod c + b mod c)"
a24cde9588bb generalized some rules
haftmann
parents: 66813
diff changeset
   782
      by (simp add: div_mult_mod_eq remainder) (simp add: ac_simps)
a24cde9588bb generalized some rules
haftmann
parents: 66813
diff changeset
   783
    finally show "(a div c + b div c + (a mod c + b mod c) div c) * c + r = a + b"
a24cde9588bb generalized some rules
haftmann
parents: 66813
diff changeset
   784
      using remainder by simp
a24cde9588bb generalized some rules
haftmann
parents: 66813
diff changeset
   785
  qed
a24cde9588bb generalized some rules
haftmann
parents: 66813
diff changeset
   786
next
a24cde9588bb generalized some rules
haftmann
parents: 66813
diff changeset
   787
  case by0
a24cde9588bb generalized some rules
haftmann
parents: 66813
diff changeset
   788
  then show ?thesis
a24cde9588bb generalized some rules
haftmann
parents: 66813
diff changeset
   789
    by simp
a24cde9588bb generalized some rules
haftmann
parents: 66813
diff changeset
   790
qed
a24cde9588bb generalized some rules
haftmann
parents: 66813
diff changeset
   791
66886
960509bfd47e added lemmas and tuned proofs
haftmann
parents: 66840
diff changeset
   792
lemma div_eq_0_iff:
960509bfd47e added lemmas and tuned proofs
haftmann
parents: 66840
diff changeset
   793
  "a div b = 0 \<longleftrightarrow> euclidean_size a < euclidean_size b \<or> b = 0" (is "_ \<longleftrightarrow> ?P")
960509bfd47e added lemmas and tuned proofs
haftmann
parents: 66840
diff changeset
   794
  if "division_segment a = division_segment b"
960509bfd47e added lemmas and tuned proofs
haftmann
parents: 66840
diff changeset
   795
proof
960509bfd47e added lemmas and tuned proofs
haftmann
parents: 66840
diff changeset
   796
  assume ?P
960509bfd47e added lemmas and tuned proofs
haftmann
parents: 66840
diff changeset
   797
  with that show "a div b = 0"
960509bfd47e added lemmas and tuned proofs
haftmann
parents: 66840
diff changeset
   798
    by (cases "b = 0") (auto intro: div_eqI)
960509bfd47e added lemmas and tuned proofs
haftmann
parents: 66840
diff changeset
   799
next
960509bfd47e added lemmas and tuned proofs
haftmann
parents: 66840
diff changeset
   800
  assume "a div b = 0"
960509bfd47e added lemmas and tuned proofs
haftmann
parents: 66840
diff changeset
   801
  then have "a mod b = a"
960509bfd47e added lemmas and tuned proofs
haftmann
parents: 66840
diff changeset
   802
    using div_mult_mod_eq [of a b] by simp
960509bfd47e added lemmas and tuned proofs
haftmann
parents: 66840
diff changeset
   803
  with mod_size_less [of b a] show ?P
960509bfd47e added lemmas and tuned proofs
haftmann
parents: 66840
diff changeset
   804
    by auto
960509bfd47e added lemmas and tuned proofs
haftmann
parents: 66840
diff changeset
   805
qed
960509bfd47e added lemmas and tuned proofs
haftmann
parents: 66840
diff changeset
   806
64785
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   807
end
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   808
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   809
class unique_euclidean_ring = euclidean_ring + unique_euclidean_semiring
66806
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   810
begin
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   811
  
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   812
subclass euclidean_ring_cancel ..
64785
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   813
ae0bbc8e45ad moved euclidean ring to HOL
haftmann
parents:
diff changeset
   814
end
66806
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   815
66808
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   816
69593
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 68536
diff changeset
   817
subsection \<open>Euclidean division on \<^typ>\<open>nat\<close>\<close>
66808
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   818
66816
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
   819
instantiation nat :: normalization_semidom
66808
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   820
begin
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   821
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   822
definition normalize_nat :: "nat \<Rightarrow> nat"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   823
  where [simp]: "normalize = (id :: nat \<Rightarrow> nat)"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   824
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   825
definition unit_factor_nat :: "nat \<Rightarrow> nat"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   826
  where "unit_factor n = (if n = 0 then 0 else 1 :: nat)"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   827
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   828
lemma unit_factor_simps [simp]:
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   829
  "unit_factor 0 = (0::nat)"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   830
  "unit_factor (Suc n) = 1"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   831
  by (simp_all add: unit_factor_nat_def)
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   832
66816
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
   833
definition divide_nat :: "nat \<Rightarrow> nat \<Rightarrow> nat"
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
   834
  where "m div n = (if n = 0 then 0 else Max {k::nat. k * n \<le> m})"
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
   835
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
   836
instance
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
   837
  by standard (auto simp add: divide_nat_def ac_simps unit_factor_nat_def intro: Max_eqI)
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
   838
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
   839
end
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
   840
67051
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66886
diff changeset
   841
lemma coprime_Suc_0_left [simp]:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66886
diff changeset
   842
  "coprime (Suc 0) n"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66886
diff changeset
   843
  using coprime_1_left [of n] by simp
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66886
diff changeset
   844
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66886
diff changeset
   845
lemma coprime_Suc_0_right [simp]:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66886
diff changeset
   846
  "coprime n (Suc 0)"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66886
diff changeset
   847
  using coprime_1_right [of n] by simp
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66886
diff changeset
   848
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66886
diff changeset
   849
lemma coprime_common_divisor_nat: "coprime a b \<Longrightarrow> x dvd a \<Longrightarrow> x dvd b \<Longrightarrow> x = 1"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66886
diff changeset
   850
  for a b :: nat
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66886
diff changeset
   851
  by (drule coprime_common_divisor [of _ _ x]) simp_all
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66886
diff changeset
   852
66816
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
   853
instantiation nat :: unique_euclidean_semiring
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
   854
begin
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
   855
66808
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   856
definition euclidean_size_nat :: "nat \<Rightarrow> nat"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   857
  where [simp]: "euclidean_size_nat = id"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   858
66838
17989f6bc7b2 clarified uniqueness criterion for euclidean rings
haftmann
parents: 66837
diff changeset
   859
definition division_segment_nat :: "nat \<Rightarrow> nat"
17989f6bc7b2 clarified uniqueness criterion for euclidean rings
haftmann
parents: 66837
diff changeset
   860
  where [simp]: "division_segment_nat n = 1"
66808
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   861
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   862
definition modulo_nat :: "nat \<Rightarrow> nat \<Rightarrow> nat"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   863
  where "m mod n = m - (m div n * (n::nat))"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   864
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   865
instance proof
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   866
  fix m n :: nat
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   867
  have ex: "\<exists>k. k * n \<le> l" for l :: nat
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   868
    by (rule exI [of _ 0]) simp
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   869
  have fin: "finite {k. k * n \<le> l}" if "n > 0" for l
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   870
  proof -
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   871
    from that have "{k. k * n \<le> l} \<subseteq> {k. k \<le> l}"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   872
      by (cases n) auto
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   873
    then show ?thesis
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   874
      by (rule finite_subset) simp
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   875
  qed
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   876
  have mult_div_unfold: "n * (m div n) = Max {l. l \<le> m \<and> n dvd l}"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   877
  proof (cases "n = 0")
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   878
    case True
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   879
    moreover have "{l. l = 0 \<and> l \<le> m} = {0::nat}"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   880
      by auto
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   881
    ultimately show ?thesis
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   882
      by simp
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   883
  next
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   884
    case False
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   885
    with ex [of m] fin have "n * Max {k. k * n \<le> m} = Max (times n ` {k. k * n \<le> m})"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   886
      by (auto simp add: nat_mult_max_right intro: hom_Max_commute)
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   887
    also have "times n ` {k. k * n \<le> m} = {l. l \<le> m \<and> n dvd l}"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   888
      by (auto simp add: ac_simps elim!: dvdE)
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   889
    finally show ?thesis
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   890
      using False by (simp add: divide_nat_def ac_simps)
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   891
  qed
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   892
  have less_eq: "m div n * n \<le> m"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   893
    by (auto simp add: mult_div_unfold ac_simps intro: Max.boundedI)
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   894
  then show "m div n * n + m mod n = m"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   895
    by (simp add: modulo_nat_def)
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   896
  assume "n \<noteq> 0" 
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   897
  show "euclidean_size (m mod n) < euclidean_size n"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   898
  proof -
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   899
    have "m < Suc (m div n) * n"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   900
    proof (rule ccontr)
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   901
      assume "\<not> m < Suc (m div n) * n"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   902
      then have "Suc (m div n) * n \<le> m"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   903
        by (simp add: not_less)
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   904
      moreover from \<open>n \<noteq> 0\<close> have "Max {k. k * n \<le> m} < Suc (m div n)"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   905
        by (simp add: divide_nat_def)
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   906
      with \<open>n \<noteq> 0\<close> ex fin have "\<And>k. k * n \<le> m \<Longrightarrow> k < Suc (m div n)"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   907
        by auto
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   908
      ultimately have "Suc (m div n) < Suc (m div n)"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   909
        by blast
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   910
      then show False
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   911
        by simp
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   912
    qed
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   913
    with \<open>n \<noteq> 0\<close> show ?thesis
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   914
      by (simp add: modulo_nat_def)
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   915
  qed
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   916
  show "euclidean_size m \<le> euclidean_size (m * n)"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   917
    using \<open>n \<noteq> 0\<close> by (cases n) simp_all
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   918
  fix q r :: nat
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   919
  show "(q * n + r) div n = q" if "euclidean_size r < euclidean_size n"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   920
  proof -
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   921
    from that have "r < n"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   922
      by simp
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   923
    have "k \<le> q" if "k * n \<le> q * n + r" for k
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   924
    proof (rule ccontr)
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   925
      assume "\<not> k \<le> q"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   926
      then have "q < k"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   927
        by simp
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   928
      then obtain l where "k = Suc (q + l)"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   929
        by (auto simp add: less_iff_Suc_add)
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   930
      with \<open>r < n\<close> that show False
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   931
        by (simp add: algebra_simps)
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   932
    qed
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   933
    with \<open>n \<noteq> 0\<close> ex fin show ?thesis
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   934
      by (auto simp add: divide_nat_def Max_eq_iff)
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   935
  qed
66816
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
   936
qed simp_all
66808
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   937
66806
a4e82b58d833 abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
haftmann
parents: 66798
diff changeset
   938
end
66808
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   939
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   940
text \<open>Tool support\<close>
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   941
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   942
ML \<open>
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   943
structure Cancel_Div_Mod_Nat = Cancel_Div_Mod
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   944
(
69593
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 68536
diff changeset
   945
  val div_name = \<^const_name>\<open>divide\<close>;
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 68536
diff changeset
   946
  val mod_name = \<^const_name>\<open>modulo\<close>;
66808
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   947
  val mk_binop = HOLogic.mk_binop;
69593
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 68536
diff changeset
   948
  val dest_plus = HOLogic.dest_bin \<^const_name>\<open>Groups.plus\<close> HOLogic.natT;
66813
351142796345 avoid variant of mk_sum
haftmann
parents: 66810
diff changeset
   949
  val mk_sum = Arith_Data.mk_sum;
66808
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   950
  fun dest_sum tm =
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   951
    if HOLogic.is_zero tm then []
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   952
    else
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   953
      (case try HOLogic.dest_Suc tm of
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   954
        SOME t => HOLogic.Suc_zero :: dest_sum t
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   955
      | NONE =>
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   956
          (case try dest_plus tm of
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   957
            SOME (t, u) => dest_sum t @ dest_sum u
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   958
          | NONE => [tm]));
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   959
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   960
  val div_mod_eqs = map mk_meta_eq @{thms cancel_div_mod_rules};
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   961
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   962
  val prove_eq_sums = Arith_Data.prove_conv2 all_tac
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   963
    (Arith_Data.simp_all_tac @{thms add_0_left add_0_right ac_simps})
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   964
)
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   965
\<close>
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   966
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   967
simproc_setup cancel_div_mod_nat ("(m::nat) + n") =
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   968
  \<open>K Cancel_Div_Mod_Nat.proc\<close>
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   969
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   970
lemma div_nat_eqI:
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   971
  "m div n = q" if "n * q \<le> m" and "m < n * Suc q" for m n q :: nat
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   972
  by (rule div_eqI [of _ "m - n * q"]) (use that in \<open>simp_all add: algebra_simps\<close>)
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   973
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   974
lemma mod_nat_eqI:
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   975
  "m mod n = r" if "r < n" and "r \<le> m" and "n dvd m - r" for m n r :: nat
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   976
  by (rule mod_eqI [of _ _ "(m - r) div n"]) (use that in \<open>simp_all add: algebra_simps\<close>)
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   977
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   978
lemma div_mult_self_is_m [simp]:
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   979
  "m * n div n = m" if "n > 0" for m n :: nat
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   980
  using that by simp
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   981
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   982
lemma div_mult_self1_is_m [simp]:
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   983
  "n * m div n = m" if "n > 0" for m n :: nat
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   984
  using that by simp
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   985
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   986
lemma mod_less_divisor [simp]:
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   987
  "m mod n < n" if "n > 0" for m n :: nat
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   988
  using mod_size_less [of n m] that by simp
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   989
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   990
lemma mod_le_divisor [simp]:
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   991
  "m mod n \<le> n" if "n > 0" for m n :: nat
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   992
  using that by (auto simp add: le_less)
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   993
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   994
lemma div_times_less_eq_dividend [simp]:
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   995
  "m div n * n \<le> m" for m n :: nat
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   996
  by (simp add: minus_mod_eq_div_mult [symmetric])
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   997
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   998
lemma times_div_less_eq_dividend [simp]:
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
   999
  "n * (m div n) \<le> m" for m n :: nat
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1000
  using div_times_less_eq_dividend [of m n]
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1001
  by (simp add: ac_simps)
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1002
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1003
lemma dividend_less_div_times:
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1004
  "m < n + (m div n) * n" if "0 < n" for m n :: nat
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1005
proof -
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1006
  from that have "m mod n < n"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1007
    by simp
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1008
  then show ?thesis
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1009
    by (simp add: minus_mod_eq_div_mult [symmetric])
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1010
qed
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1011
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1012
lemma dividend_less_times_div:
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1013
  "m < n + n * (m div n)" if "0 < n" for m n :: nat
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1014
  using dividend_less_div_times [of n m] that
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1015
  by (simp add: ac_simps)
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1016
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1017
lemma mod_Suc_le_divisor [simp]:
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1018
  "m mod Suc n \<le> n"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1019
  using mod_less_divisor [of "Suc n" m] by arith
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1020
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1021
lemma mod_less_eq_dividend [simp]:
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1022
  "m mod n \<le> m" for m n :: nat
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1023
proof (rule add_leD2)
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1024
  from div_mult_mod_eq have "m div n * n + m mod n = m" .
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1025
  then show "m div n * n + m mod n \<le> m" by auto
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1026
qed
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1027
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1028
lemma
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1029
  div_less [simp]: "m div n = 0"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1030
  and mod_less [simp]: "m mod n = m"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1031
  if "m < n" for m n :: nat
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1032
  using that by (auto intro: div_eqI mod_eqI) 
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1033
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1034
lemma le_div_geq:
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1035
  "m div n = Suc ((m - n) div n)" if "0 < n" and "n \<le> m" for m n :: nat
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1036
proof -
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1037
  from \<open>n \<le> m\<close> obtain q where "m = n + q"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1038
    by (auto simp add: le_iff_add)
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1039
  with \<open>0 < n\<close> show ?thesis
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1040
    by (simp add: div_add_self1)
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1041
qed
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1042
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1043
lemma le_mod_geq:
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1044
  "m mod n = (m - n) mod n" if "n \<le> m" for m n :: nat
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1045
proof -
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1046
  from \<open>n \<le> m\<close> obtain q where "m = n + q"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1047
    by (auto simp add: le_iff_add)
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1048
  then show ?thesis
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1049
    by simp
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1050
qed
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1051
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1052
lemma div_if:
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1053
  "m div n = (if m < n \<or> n = 0 then 0 else Suc ((m - n) div n))"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1054
  by (simp add: le_div_geq)
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1055
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1056
lemma mod_if:
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1057
  "m mod n = (if m < n then m else (m - n) mod n)" for m n :: nat
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1058
  by (simp add: le_mod_geq)
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1059
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1060
lemma div_eq_0_iff:
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1061
  "m div n = 0 \<longleftrightarrow> m < n \<or> n = 0" for m n :: nat
66886
960509bfd47e added lemmas and tuned proofs
haftmann
parents: 66840
diff changeset
  1062
  by (simp add: div_eq_0_iff)
66808
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1063
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1064
lemma div_greater_zero_iff:
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1065
  "m div n > 0 \<longleftrightarrow> n \<le> m \<and> n > 0" for m n :: nat
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1066
  using div_eq_0_iff [of m n] by auto
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1067
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1068
lemma mod_greater_zero_iff_not_dvd:
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1069
  "m mod n > 0 \<longleftrightarrow> \<not> n dvd m" for m n :: nat
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1070
  by (simp add: dvd_eq_mod_eq_0)
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1071
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1072
lemma div_by_Suc_0 [simp]:
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1073
  "m div Suc 0 = m"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1074
  using div_by_1 [of m] by simp
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1075
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1076
lemma mod_by_Suc_0 [simp]:
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1077
  "m mod Suc 0 = 0"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1078
  using mod_by_1 [of m] by simp
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1079
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1080
lemma div2_Suc_Suc [simp]:
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1081
  "Suc (Suc m) div 2 = Suc (m div 2)"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1082
  by (simp add: numeral_2_eq_2 le_div_geq)
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1083
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1084
lemma Suc_n_div_2_gt_zero [simp]:
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1085
  "0 < Suc n div 2" if "n > 0" for n :: nat
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1086
  using that by (cases n) simp_all
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1087
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1088
lemma div_2_gt_zero [simp]:
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1089
  "0 < n div 2" if "Suc 0 < n" for n :: nat
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1090
  using that Suc_n_div_2_gt_zero [of "n - 1"] by simp
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1091
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1092
lemma mod2_Suc_Suc [simp]:
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1093
  "Suc (Suc m) mod 2 = m mod 2"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1094
  by (simp add: numeral_2_eq_2 le_mod_geq)
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1095
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1096
lemma add_self_div_2 [simp]:
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1097
  "(m + m) div 2 = m" for m :: nat
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1098
  by (simp add: mult_2 [symmetric])
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1099
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1100
lemma add_self_mod_2 [simp]:
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1101
  "(m + m) mod 2 = 0" for m :: nat
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1102
  by (simp add: mult_2 [symmetric])
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1103
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1104
lemma mod2_gr_0 [simp]:
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1105
  "0 < m mod 2 \<longleftrightarrow> m mod 2 = 1" for m :: nat
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1106
proof -
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1107
  have "m mod 2 < 2"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1108
    by (rule mod_less_divisor) simp
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1109
  then have "m mod 2 = 0 \<or> m mod 2 = 1"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1110
    by arith
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1111
  then show ?thesis
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1112
    by auto     
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1113
qed
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1114
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1115
lemma mod_Suc_eq [mod_simps]:
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1116
  "Suc (m mod n) mod n = Suc m mod n"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1117
proof -
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1118
  have "(m mod n + 1) mod n = (m + 1) mod n"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1119
    by (simp only: mod_simps)
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1120
  then show ?thesis
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1121
    by simp
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1122
qed
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1123
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1124
lemma mod_Suc_Suc_eq [mod_simps]:
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1125
  "Suc (Suc (m mod n)) mod n = Suc (Suc m) mod n"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1126
proof -
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1127
  have "(m mod n + 2) mod n = (m + 2) mod n"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1128
    by (simp only: mod_simps)
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1129
  then show ?thesis
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1130
    by simp
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1131
qed
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1132
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1133
lemma
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1134
  Suc_mod_mult_self1 [simp]: "Suc (m + k * n) mod n = Suc m mod n"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1135
  and Suc_mod_mult_self2 [simp]: "Suc (m + n * k) mod n = Suc m mod n"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1136
  and Suc_mod_mult_self3 [simp]: "Suc (k * n + m) mod n = Suc m mod n"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1137
  and Suc_mod_mult_self4 [simp]: "Suc (n * k + m) mod n = Suc m mod n"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1138
  by (subst mod_Suc_eq [symmetric], simp add: mod_simps)+
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1139
67083
6b2c0681ef28 new simp rule
haftmann
parents: 67051
diff changeset
  1140
lemma Suc_0_mod_eq [simp]:
6b2c0681ef28 new simp rule
haftmann
parents: 67051
diff changeset
  1141
  "Suc 0 mod n = of_bool (n \<noteq> Suc 0)"
6b2c0681ef28 new simp rule
haftmann
parents: 67051
diff changeset
  1142
  by (cases n) simp_all
6b2c0681ef28 new simp rule
haftmann
parents: 67051
diff changeset
  1143
66808
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1144
context
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1145
  fixes m n q :: nat
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1146
begin
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1147
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1148
private lemma eucl_rel_mult2:
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1149
  "m mod n + n * (m div n mod q) < n * q"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1150
  if "n > 0" and "q > 0"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1151
proof -
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1152
  from \<open>n > 0\<close> have "m mod n < n"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1153
    by (rule mod_less_divisor)
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1154
  from \<open>q > 0\<close> have "m div n mod q < q"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1155
    by (rule mod_less_divisor)
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1156
  then obtain s where "q = Suc (m div n mod q + s)"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1157
    by (blast dest: less_imp_Suc_add)
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1158
  moreover have "m mod n + n * (m div n mod q) < n * Suc (m div n mod q + s)"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1159
    using \<open>m mod n < n\<close> by (simp add: add_mult_distrib2)
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1160
  ultimately show ?thesis
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1161
    by simp
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1162
qed
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1163
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1164
lemma div_mult2_eq:
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1165
  "m div (n * q) = (m div n) div q"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1166
proof (cases "n = 0 \<or> q = 0")
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1167
  case True
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1168
  then show ?thesis
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1169
    by auto
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1170
next
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1171
  case False
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1172
  with eucl_rel_mult2 show ?thesis
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1173
    by (auto intro: div_eqI [of _ "n * (m div n mod q) + m mod n"]
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1174
      simp add: algebra_simps add_mult_distrib2 [symmetric])
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1175
qed
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1176
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1177
lemma mod_mult2_eq:
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1178
  "m mod (n * q) = n * (m div n mod q) + m mod n"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1179
proof (cases "n = 0 \<or> q = 0")
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1180
  case True
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1181
  then show ?thesis
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1182
    by auto
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1183
next
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1184
  case False
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1185
  with eucl_rel_mult2 show ?thesis
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1186
    by (auto intro: mod_eqI [of _ _ "(m div n) div q"]
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1187
      simp add: algebra_simps add_mult_distrib2 [symmetric])
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1188
qed
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1189
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1190
end
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1191
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1192
lemma div_le_mono:
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1193
  "m div k \<le> n div k" if "m \<le> n" for m n k :: nat
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1194
proof -
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1195
  from that obtain q where "n = m + q"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1196
    by (auto simp add: le_iff_add)
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1197
  then show ?thesis
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1198
    by (simp add: div_add1_eq [of m q k])
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1199
qed
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1200
69593
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 68536
diff changeset
  1201
text \<open>Antimonotonicity of \<^const>\<open>divide\<close> in second argument\<close>
66808
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1202
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1203
lemma div_le_mono2:
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1204
  "k div n \<le> k div m" if "0 < m" and "m \<le> n" for m n k :: nat
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1205
using that proof (induct k arbitrary: m rule: less_induct)
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1206
  case (less k)
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1207
  show ?case
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1208
  proof (cases "n \<le> k")
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1209
    case False
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1210
    then show ?thesis
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1211
      by simp
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1212
  next
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1213
    case True
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1214
    have "(k - n) div n \<le> (k - m) div n"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1215
      using less.prems
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1216
      by (blast intro: div_le_mono diff_le_mono2)
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1217
    also have "\<dots> \<le> (k - m) div m"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1218
      using \<open>n \<le> k\<close> less.prems less.hyps [of "k - m" m]
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1219
      by simp
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1220
    finally show ?thesis
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1221
      using \<open>n \<le> k\<close> less.prems
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1222
      by (simp add: le_div_geq)
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1223
  qed
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1224
qed
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1225
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1226
lemma div_le_dividend [simp]:
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1227
  "m div n \<le> m" for m n :: nat
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1228
  using div_le_mono2 [of 1 n m] by (cases "n = 0") simp_all
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1229
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1230
lemma div_less_dividend [simp]:
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1231
  "m div n < m" if "1 < n" and "0 < m" for m n :: nat
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1232
using that proof (induct m rule: less_induct)
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1233
  case (less m)
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1234
  show ?case
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1235
  proof (cases "n < m")
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1236
    case False
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1237
    with less show ?thesis
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1238
      by (cases "n = m") simp_all
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1239
  next
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1240
    case True
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1241
    then show ?thesis
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1242
      using less.hyps [of "m - n"] less.prems
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1243
      by (simp add: le_div_geq)
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1244
  qed
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1245
qed
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1246
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1247
lemma div_eq_dividend_iff:
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1248
  "m div n = m \<longleftrightarrow> n = 1" if "m > 0" for m n :: nat
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1249
proof
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1250
  assume "n = 1"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1251
  then show "m div n = m"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1252
    by simp
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1253
next
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1254
  assume P: "m div n = m"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1255
  show "n = 1"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1256
  proof (rule ccontr)
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1257
    have "n \<noteq> 0"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1258
      by (rule ccontr) (use that P in auto)
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1259
    moreover assume "n \<noteq> 1"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1260
    ultimately have "n > 1"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1261
      by simp
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1262
    with that have "m div n < m"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1263
      by simp
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1264
    with P show False
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1265
      by simp
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1266
  qed
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1267
qed
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1268
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1269
lemma less_mult_imp_div_less:
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1270
  "m div n < i" if "m < i * n" for m n i :: nat
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1271
proof -
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1272
  from that have "i * n > 0"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1273
    by (cases "i * n = 0") simp_all
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1274
  then have "i > 0" and "n > 0"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1275
    by simp_all
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1276
  have "m div n * n \<le> m"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1277
    by simp
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1278
  then have "m div n * n < i * n"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1279
    using that by (rule le_less_trans)
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1280
  with \<open>n > 0\<close> show ?thesis
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1281
    by simp
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1282
qed
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1283
73853
52b829b18066 more lemmas
haftmann
parents: 73555
diff changeset
  1284
lemma div_less_iff_less_mult:
52b829b18066 more lemmas
haftmann
parents: 73555
diff changeset
  1285
  \<open>m div q < n \<longleftrightarrow> m < n * q\<close> (is \<open>?P \<longleftrightarrow> ?Q\<close>)
52b829b18066 more lemmas
haftmann
parents: 73555
diff changeset
  1286
  if \<open>q > 0\<close> for m n q :: nat
52b829b18066 more lemmas
haftmann
parents: 73555
diff changeset
  1287
proof
52b829b18066 more lemmas
haftmann
parents: 73555
diff changeset
  1288
  assume ?Q then show ?P
52b829b18066 more lemmas
haftmann
parents: 73555
diff changeset
  1289
    by (rule less_mult_imp_div_less)
52b829b18066 more lemmas
haftmann
parents: 73555
diff changeset
  1290
next
52b829b18066 more lemmas
haftmann
parents: 73555
diff changeset
  1291
  assume ?P
52b829b18066 more lemmas
haftmann
parents: 73555
diff changeset
  1292
  then obtain h where \<open>n = Suc (m div q + h)\<close>
52b829b18066 more lemmas
haftmann
parents: 73555
diff changeset
  1293
    using less_natE by blast
52b829b18066 more lemmas
haftmann
parents: 73555
diff changeset
  1294
  moreover have \<open>m < m + (Suc h * q - m mod q)\<close>
52b829b18066 more lemmas
haftmann
parents: 73555
diff changeset
  1295
    using that by (simp add: trans_less_add1)
52b829b18066 more lemmas
haftmann
parents: 73555
diff changeset
  1296
  ultimately show ?Q
52b829b18066 more lemmas
haftmann
parents: 73555
diff changeset
  1297
    by (simp add: algebra_simps flip: minus_mod_eq_mult_div)
52b829b18066 more lemmas
haftmann
parents: 73555
diff changeset
  1298
qed
52b829b18066 more lemmas
haftmann
parents: 73555
diff changeset
  1299
52b829b18066 more lemmas
haftmann
parents: 73555
diff changeset
  1300
lemma less_eq_div_iff_mult_less_eq:
52b829b18066 more lemmas
haftmann
parents: 73555
diff changeset
  1301
  \<open>m \<le> n div q \<longleftrightarrow> m * q \<le> n\<close> if \<open>q > 0\<close> for m n q :: nat
52b829b18066 more lemmas
haftmann
parents: 73555
diff changeset
  1302
  using div_less_iff_less_mult [of q n m] that by auto
52b829b18066 more lemmas
haftmann
parents: 73555
diff changeset
  1303
66808
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1304
text \<open>A fact for the mutilated chess board\<close>
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1305
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1306
lemma mod_Suc:
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1307
  "Suc m mod n = (if Suc (m mod n) = n then 0 else Suc (m mod n))" (is "_ = ?rhs")
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1308
proof (cases "n = 0")
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1309
  case True
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1310
  then show ?thesis
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1311
    by simp
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1312
next
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1313
  case False
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1314
  have "Suc m mod n = Suc (m mod n) mod n"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1315
    by (simp add: mod_simps)
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1316
  also have "\<dots> = ?rhs"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1317
    using False by (auto intro!: mod_nat_eqI intro: neq_le_trans simp add: Suc_le_eq)
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1318
  finally show ?thesis .
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1319
qed
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1320
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1321
lemma Suc_times_mod_eq:
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1322
  "Suc (m * n) mod m = 1" if "Suc 0 < m"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1323
  using that by (simp add: mod_Suc)
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1324
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1325
lemma Suc_times_numeral_mod_eq [simp]:
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1326
  "Suc (numeral k * n) mod numeral k = 1" if "numeral k \<noteq> (1::nat)"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1327
  by (rule Suc_times_mod_eq) (use that in simp)
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1328
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1329
lemma Suc_div_le_mono [simp]:
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1330
  "m div n \<le> Suc m div n"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1331
  by (simp add: div_le_mono)
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1332
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1333
text \<open>These lemmas collapse some needless occurrences of Suc:
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1334
  at least three Sucs, since two and fewer are rewritten back to Suc again!
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1335
  We already have some rules to simplify operands smaller than 3.\<close>
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1336
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1337
lemma div_Suc_eq_div_add3 [simp]:
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1338
  "m div Suc (Suc (Suc n)) = m div (3 + n)"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1339
  by (simp add: Suc3_eq_add_3)
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1340
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1341
lemma mod_Suc_eq_mod_add3 [simp]:
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1342
  "m mod Suc (Suc (Suc n)) = m mod (3 + n)"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1343
  by (simp add: Suc3_eq_add_3)
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1344
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1345
lemma Suc_div_eq_add3_div:
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1346
  "Suc (Suc (Suc m)) div n = (3 + m) div n"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1347
  by (simp add: Suc3_eq_add_3)
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1348
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1349
lemma Suc_mod_eq_add3_mod:
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1350
  "Suc (Suc (Suc m)) mod n = (3 + m) mod n"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1351
  by (simp add: Suc3_eq_add_3)
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1352
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1353
lemmas Suc_div_eq_add3_div_numeral [simp] =
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1354
  Suc_div_eq_add3_div [of _ "numeral v"] for v
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1355
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1356
lemmas Suc_mod_eq_add3_mod_numeral [simp] =
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1357
  Suc_mod_eq_add3_mod [of _ "numeral v"] for v
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1358
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1359
lemma (in field_char_0) of_nat_div:
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1360
  "of_nat (m div n) = ((of_nat m - of_nat (m mod n)) / of_nat n)"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1361
proof -
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1362
  have "of_nat (m div n) = ((of_nat (m div n * n + m mod n) - of_nat (m mod n)) / of_nat n :: 'a)"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1363
    unfolding of_nat_add by (cases "n = 0") simp_all
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1364
  then show ?thesis
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1365
    by simp
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1366
qed
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1367
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1368
text \<open>An ``induction'' law for modulus arithmetic.\<close>
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1369
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1370
lemma mod_induct [consumes 3, case_names step]:
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1371
  "P m" if "P n" and "n < p" and "m < p"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1372
    and step: "\<And>n. n < p \<Longrightarrow> P n \<Longrightarrow> P (Suc n mod p)"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1373
using \<open>m < p\<close> proof (induct m)
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1374
  case 0
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1375
  show ?case
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1376
  proof (rule ccontr)
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1377
    assume "\<not> P 0"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1378
    from \<open>n < p\<close> have "0 < p"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1379
      by simp
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1380
    from \<open>n < p\<close> obtain m where "0 < m" and "p = n + m"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1381
      by (blast dest: less_imp_add_positive)
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1382
    with \<open>P n\<close> have "P (p - m)"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1383
      by simp
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1384
    moreover have "\<not> P (p - m)"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1385
    using \<open>0 < m\<close> proof (induct m)
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1386
      case 0
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1387
      then show ?case
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1388
        by simp
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1389
    next
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1390
      case (Suc m)
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1391
      show ?case
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1392
      proof
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1393
        assume P: "P (p - Suc m)"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1394
        with \<open>\<not> P 0\<close> have "Suc m < p"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1395
          by (auto intro: ccontr) 
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1396
        then have "Suc (p - Suc m) = p - m"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1397
          by arith
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1398
        moreover from \<open>0 < p\<close> have "p - Suc m < p"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1399
          by arith
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1400
        with P step have "P ((Suc (p - Suc m)) mod p)"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1401
          by blast
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1402
        ultimately show False
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1403
          using \<open>\<not> P 0\<close> Suc.hyps by (cases "m = 0") simp_all
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1404
      qed
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1405
    qed
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1406
    ultimately show False
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1407
      by blast
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1408
  qed
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1409
next
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1410
  case (Suc m)
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1411
  then have "m < p" and mod: "Suc m mod p = Suc m"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1412
    by simp_all
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1413
  from \<open>m < p\<close> have "P m"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1414
    by (rule Suc.hyps)
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1415
  with \<open>m < p\<close> have "P (Suc m mod p)"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1416
    by (rule step)
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1417
  with mod show ?case
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1418
    by simp
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1419
qed
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1420
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1421
lemma split_div:
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1422
  "P (m div n) \<longleftrightarrow> (n = 0 \<longrightarrow> P 0) \<and> (n \<noteq> 0 \<longrightarrow>
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1423
     (\<forall>i j. j < n \<longrightarrow> m = n * i + j \<longrightarrow> P i))"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1424
     (is "?P = ?Q") for m n :: nat
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1425
proof (cases "n = 0")
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1426
  case True
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1427
  then show ?thesis
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1428
    by simp
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1429
next
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1430
  case False
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1431
  show ?thesis
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1432
  proof
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1433
    assume ?P
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1434
    with False show ?Q
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1435
      by auto
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1436
  next
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1437
    assume ?Q
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1438
    with False have *: "\<And>i j. j < n \<Longrightarrow> m = n * i + j \<Longrightarrow> P i"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1439
      by simp
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1440
    with False show ?P
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1441
      by (auto intro: * [of "m mod n"])
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1442
  qed
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1443
qed
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1444
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1445
lemma split_div':
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1446
  "P (m div n) \<longleftrightarrow> n = 0 \<and> P 0 \<or> (\<exists>q. (n * q \<le> m \<and> m < n * Suc q) \<and> P q)"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1447
proof (cases "n = 0")
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1448
  case True
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1449
  then show ?thesis
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1450
    by simp
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1451
next
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1452
  case False
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1453
  then have "n * q \<le> m \<and> m < n * Suc q \<longleftrightarrow> m div n = q" for q
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1454
    by (auto intro: div_nat_eqI dividend_less_times_div)
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1455
  then show ?thesis
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1456
    by auto
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1457
qed
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1458
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1459
lemma split_mod:
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1460
  "P (m mod n) \<longleftrightarrow> (n = 0 \<longrightarrow> P m) \<and> (n \<noteq> 0 \<longrightarrow>
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1461
     (\<forall>i j. j < n \<longrightarrow> m = n * i + j \<longrightarrow> P j))"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1462
     (is "?P \<longleftrightarrow> ?Q") for m n :: nat
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1463
proof (cases "n = 0")
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1464
  case True
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1465
  then show ?thesis
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1466
    by simp
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1467
next
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1468
  case False
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1469
  show ?thesis
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1470
  proof
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1471
    assume ?P
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1472
    with False show ?Q
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1473
      by auto
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1474
  next
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1475
    assume ?Q
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1476
    with False have *: "\<And>i j. j < n \<Longrightarrow> m = n * i + j \<Longrightarrow> P j"
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1477
      by simp
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1478
    with False show ?P
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1479
      by (auto intro: * [of _ "m div n"])
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1480
  qed
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1481
qed
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1482
73555
92783562ab78 collected combinatorial material
haftmann
parents: 73535
diff changeset
  1483
lemma funpow_mod_eq: \<^marker>\<open>contributor \<open>Lars Noschinski\<close>\<close>
92783562ab78 collected combinatorial material
haftmann
parents: 73535
diff changeset
  1484
  \<open>(f ^^ (m mod n)) x = (f ^^ m) x\<close> if \<open>(f ^^ n) x = x\<close>
92783562ab78 collected combinatorial material
haftmann
parents: 73535
diff changeset
  1485
proof -
92783562ab78 collected combinatorial material
haftmann
parents: 73535
diff changeset
  1486
  have \<open>(f ^^ m) x = (f ^^ (m mod n + m div n * n)) x\<close>
92783562ab78 collected combinatorial material
haftmann
parents: 73535
diff changeset
  1487
    by simp
92783562ab78 collected combinatorial material
haftmann
parents: 73535
diff changeset
  1488
  also have \<open>\<dots> = (f ^^ (m mod n)) (((f ^^ n) ^^ (m div n)) x)\<close>
92783562ab78 collected combinatorial material
haftmann
parents: 73535
diff changeset
  1489
    by (simp only: funpow_add funpow_mult ac_simps) simp
92783562ab78 collected combinatorial material
haftmann
parents: 73535
diff changeset
  1490
  also have \<open>((f ^^ n) ^^ q) x = x\<close> for q
92783562ab78 collected combinatorial material
haftmann
parents: 73535
diff changeset
  1491
    by (induction q) (use \<open>(f ^^ n) x = x\<close> in simp_all)
92783562ab78 collected combinatorial material
haftmann
parents: 73535
diff changeset
  1492
  finally show ?thesis
92783562ab78 collected combinatorial material
haftmann
parents: 73535
diff changeset
  1493
    by simp
92783562ab78 collected combinatorial material
haftmann
parents: 73535
diff changeset
  1494
qed
92783562ab78 collected combinatorial material
haftmann
parents: 73535
diff changeset
  1495
66808
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  1496
69593
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 68536
diff changeset
  1497
subsection \<open>Euclidean division on \<^typ>\<open>int\<close>\<close>
66816
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1498
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1499
instantiation int :: normalization_semidom
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1500
begin
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1501
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1502
definition normalize_int :: "int \<Rightarrow> int"
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1503
  where [simp]: "normalize = (abs :: int \<Rightarrow> int)"
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1504
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1505
definition unit_factor_int :: "int \<Rightarrow> int"
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1506
  where [simp]: "unit_factor = (sgn :: int \<Rightarrow> int)"
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1507
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1508
definition divide_int :: "int \<Rightarrow> int \<Rightarrow> int"
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1509
  where "k div l = (if l = 0 then 0
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1510
    else if sgn k = sgn l
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1511
      then int (nat \<bar>k\<bar> div nat \<bar>l\<bar>)
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1512
      else - int (nat \<bar>k\<bar> div nat \<bar>l\<bar> + of_bool (\<not> l dvd k)))"
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1513
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1514
lemma divide_int_unfold:
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1515
  "(sgn k * int m) div (sgn l * int n) =
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1516
   (if sgn l = 0 \<or> sgn k = 0 \<or> n = 0 then 0
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1517
    else if sgn k = sgn l
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1518
      then int (m div n)
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1519
      else - int (m div n + of_bool (\<not> n dvd m)))"
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1520
  by (auto simp add: divide_int_def sgn_0_0 sgn_1_pos sgn_mult abs_mult
67118
ccab07d1196c more simplification rules
haftmann
parents: 67087
diff changeset
  1521
    nat_mult_distrib)
66816
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1522
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1523
instance proof
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1524
  fix k :: int show "k div 0 = 0"
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1525
  by (simp add: divide_int_def)
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1526
next
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1527
  fix k l :: int
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1528
  assume "l \<noteq> 0"
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1529
  obtain n m and s t where k: "k = sgn s * int n" and l: "l = sgn t * int m" 
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1530
    by (blast intro: int_sgnE elim: that)
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1531
  then have "k * l = sgn (s * t) * int (n * m)"
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1532
    by (simp add: ac_simps sgn_mult)
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1533
  with k l \<open>l \<noteq> 0\<close> show "k * l div l = k"
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1534
    by (simp only: divide_int_unfold)
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1535
      (auto simp add: algebra_simps sgn_mult sgn_1_pos sgn_0_0)
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1536
qed (auto simp add: sgn_mult mult_sgn_abs abs_eq_iff')
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1537
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1538
end
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1539
67051
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66886
diff changeset
  1540
lemma coprime_int_iff [simp]:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66886
diff changeset
  1541
  "coprime (int m) (int n) \<longleftrightarrow> coprime m n" (is "?P \<longleftrightarrow> ?Q")
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66886
diff changeset
  1542
proof
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66886
diff changeset
  1543
  assume ?P
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66886
diff changeset
  1544
  show ?Q
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66886
diff changeset
  1545
  proof (rule coprimeI)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66886
diff changeset
  1546
    fix q
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66886
diff changeset
  1547
    assume "q dvd m" "q dvd n"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66886
diff changeset
  1548
    then have "int q dvd int m" "int q dvd int n"
67118
ccab07d1196c more simplification rules
haftmann
parents: 67087
diff changeset
  1549
      by simp_all
67051
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66886
diff changeset
  1550
    with \<open>?P\<close> have "is_unit (int q)"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66886
diff changeset
  1551
      by (rule coprime_common_divisor)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66886
diff changeset
  1552
    then show "is_unit q"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66886
diff changeset
  1553
      by simp
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66886
diff changeset
  1554
  qed
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66886
diff changeset
  1555
next
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66886
diff changeset
  1556
  assume ?Q
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66886
diff changeset
  1557
  show ?P
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66886
diff changeset
  1558
  proof (rule coprimeI)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66886
diff changeset
  1559
    fix k
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66886
diff changeset
  1560
    assume "k dvd int m" "k dvd int n"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66886
diff changeset
  1561
    then have "nat \<bar>k\<bar> dvd m" "nat \<bar>k\<bar> dvd n"
67118
ccab07d1196c more simplification rules
haftmann
parents: 67087
diff changeset
  1562
      by simp_all
67051
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66886
diff changeset
  1563
    with \<open>?Q\<close> have "is_unit (nat \<bar>k\<bar>)"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66886
diff changeset
  1564
      by (rule coprime_common_divisor)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66886
diff changeset
  1565
    then show "is_unit k"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66886
diff changeset
  1566
      by simp
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66886
diff changeset
  1567
  qed
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66886
diff changeset
  1568
qed
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66886
diff changeset
  1569
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66886
diff changeset
  1570
lemma coprime_abs_left_iff [simp]:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66886
diff changeset
  1571
  "coprime \<bar>k\<bar> l \<longleftrightarrow> coprime k l" for k l :: int
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66886
diff changeset
  1572
  using coprime_normalize_left_iff [of k l] by simp
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66886
diff changeset
  1573
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66886
diff changeset
  1574
lemma coprime_abs_right_iff [simp]:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66886
diff changeset
  1575
  "coprime k \<bar>l\<bar> \<longleftrightarrow> coprime k l" for k l :: int
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66886
diff changeset
  1576
  using coprime_abs_left_iff [of l k] by (simp add: ac_simps)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66886
diff changeset
  1577
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66886
diff changeset
  1578
lemma coprime_nat_abs_left_iff [simp]:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66886
diff changeset
  1579
  "coprime (nat \<bar>k\<bar>) n \<longleftrightarrow> coprime k (int n)"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66886
diff changeset
  1580
proof -
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66886
diff changeset
  1581
  define m where "m = nat \<bar>k\<bar>"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66886
diff changeset
  1582
  then have "\<bar>k\<bar> = int m"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66886
diff changeset
  1583
    by simp
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66886
diff changeset
  1584
  moreover have "coprime k (int n) \<longleftrightarrow> coprime \<bar>k\<bar> (int n)"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66886
diff changeset
  1585
    by simp
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66886
diff changeset
  1586
  ultimately show ?thesis
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66886
diff changeset
  1587
    by simp
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66886
diff changeset
  1588
qed
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66886
diff changeset
  1589
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66886
diff changeset
  1590
lemma coprime_nat_abs_right_iff [simp]:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66886
diff changeset
  1591
  "coprime n (nat \<bar>k\<bar>) \<longleftrightarrow> coprime (int n) k"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66886
diff changeset
  1592
  using coprime_nat_abs_left_iff [of k n] by (simp add: ac_simps)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66886
diff changeset
  1593
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66886
diff changeset
  1594
lemma coprime_common_divisor_int: "coprime a b \<Longrightarrow> x dvd a \<Longrightarrow> x dvd b \<Longrightarrow> \<bar>x\<bar> = 1"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66886
diff changeset
  1595
  for a b :: int
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66886
diff changeset
  1596
  by (drule coprime_common_divisor [of _ _ x]) simp_all
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66886
diff changeset
  1597
66838
17989f6bc7b2 clarified uniqueness criterion for euclidean rings
haftmann
parents: 66837
diff changeset
  1598
instantiation int :: idom_modulo
66816
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1599
begin
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1600
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1601
definition modulo_int :: "int \<Rightarrow> int \<Rightarrow> int"
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1602
  where "k mod l = (if l = 0 then k
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1603
    else if sgn k = sgn l
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1604
      then sgn l * int (nat \<bar>k\<bar> mod nat \<bar>l\<bar>)
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1605
      else sgn l * (\<bar>l\<bar> * of_bool (\<not> l dvd k) - int (nat \<bar>k\<bar> mod nat \<bar>l\<bar>)))"
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1606
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1607
lemma modulo_int_unfold:
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1608
  "(sgn k * int m) mod (sgn l * int n) =
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1609
   (if sgn l = 0 \<or> sgn k = 0 \<or> n = 0 then sgn k * int m
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1610
    else if sgn k = sgn l
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1611
      then sgn l * int (m mod n)
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1612
      else sgn l * (int (n * of_bool (\<not> n dvd m)) - int (m mod n)))"
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1613
  by (auto simp add: modulo_int_def sgn_0_0 sgn_1_pos sgn_mult abs_mult
67118
ccab07d1196c more simplification rules
haftmann
parents: 67087
diff changeset
  1614
    nat_mult_distrib)
66816
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1615
66838
17989f6bc7b2 clarified uniqueness criterion for euclidean rings
haftmann
parents: 66837
diff changeset
  1616
instance proof
17989f6bc7b2 clarified uniqueness criterion for euclidean rings
haftmann
parents: 66837
diff changeset
  1617
  fix k l :: int
17989f6bc7b2 clarified uniqueness criterion for euclidean rings
haftmann
parents: 66837
diff changeset
  1618
  obtain n m and s t where "k = sgn s * int n" and "l = sgn t * int m" 
17989f6bc7b2 clarified uniqueness criterion for euclidean rings
haftmann
parents: 66837
diff changeset
  1619
    by (blast intro: int_sgnE elim: that)
17989f6bc7b2 clarified uniqueness criterion for euclidean rings
haftmann
parents: 66837
diff changeset
  1620
  then show "k div l * l + k mod l = k"
17989f6bc7b2 clarified uniqueness criterion for euclidean rings
haftmann
parents: 66837
diff changeset
  1621
    by (auto simp add: divide_int_unfold modulo_int_unfold algebra_simps dest!: sgn_not_eq_imp)
17989f6bc7b2 clarified uniqueness criterion for euclidean rings
haftmann
parents: 66837
diff changeset
  1622
       (simp_all add: of_nat_mult [symmetric] of_nat_add [symmetric]
17989f6bc7b2 clarified uniqueness criterion for euclidean rings
haftmann
parents: 66837
diff changeset
  1623
         distrib_left [symmetric] minus_mult_right
17989f6bc7b2 clarified uniqueness criterion for euclidean rings
haftmann
parents: 66837
diff changeset
  1624
         del: of_nat_mult minus_mult_right [symmetric])
17989f6bc7b2 clarified uniqueness criterion for euclidean rings
haftmann
parents: 66837
diff changeset
  1625
qed
17989f6bc7b2 clarified uniqueness criterion for euclidean rings
haftmann
parents: 66837
diff changeset
  1626
17989f6bc7b2 clarified uniqueness criterion for euclidean rings
haftmann
parents: 66837
diff changeset
  1627
end
17989f6bc7b2 clarified uniqueness criterion for euclidean rings
haftmann
parents: 66837
diff changeset
  1628
17989f6bc7b2 clarified uniqueness criterion for euclidean rings
haftmann
parents: 66837
diff changeset
  1629
instantiation int :: unique_euclidean_ring
17989f6bc7b2 clarified uniqueness criterion for euclidean rings
haftmann
parents: 66837
diff changeset
  1630
begin
17989f6bc7b2 clarified uniqueness criterion for euclidean rings
haftmann
parents: 66837
diff changeset
  1631
17989f6bc7b2 clarified uniqueness criterion for euclidean rings
haftmann
parents: 66837
diff changeset
  1632
definition euclidean_size_int :: "int \<Rightarrow> nat"
17989f6bc7b2 clarified uniqueness criterion for euclidean rings
haftmann
parents: 66837
diff changeset
  1633
  where [simp]: "euclidean_size_int = (nat \<circ> abs :: int \<Rightarrow> nat)"
17989f6bc7b2 clarified uniqueness criterion for euclidean rings
haftmann
parents: 66837
diff changeset
  1634
17989f6bc7b2 clarified uniqueness criterion for euclidean rings
haftmann
parents: 66837
diff changeset
  1635
definition division_segment_int :: "int \<Rightarrow> int"
17989f6bc7b2 clarified uniqueness criterion for euclidean rings
haftmann
parents: 66837
diff changeset
  1636
  where "division_segment_int k = (if k \<ge> 0 then 1 else - 1)"
17989f6bc7b2 clarified uniqueness criterion for euclidean rings
haftmann
parents: 66837
diff changeset
  1637
17989f6bc7b2 clarified uniqueness criterion for euclidean rings
haftmann
parents: 66837
diff changeset
  1638
lemma division_segment_eq_sgn:
17989f6bc7b2 clarified uniqueness criterion for euclidean rings
haftmann
parents: 66837
diff changeset
  1639
  "division_segment k = sgn k" if "k \<noteq> 0" for k :: int
17989f6bc7b2 clarified uniqueness criterion for euclidean rings
haftmann
parents: 66837
diff changeset
  1640
  using that by (simp add: division_segment_int_def)
17989f6bc7b2 clarified uniqueness criterion for euclidean rings
haftmann
parents: 66837
diff changeset
  1641
17989f6bc7b2 clarified uniqueness criterion for euclidean rings
haftmann
parents: 66837
diff changeset
  1642
lemma abs_division_segment [simp]:
17989f6bc7b2 clarified uniqueness criterion for euclidean rings
haftmann
parents: 66837
diff changeset
  1643
  "\<bar>division_segment k\<bar> = 1" for k :: int
17989f6bc7b2 clarified uniqueness criterion for euclidean rings
haftmann
parents: 66837
diff changeset
  1644
  by (simp add: division_segment_int_def)
17989f6bc7b2 clarified uniqueness criterion for euclidean rings
haftmann
parents: 66837
diff changeset
  1645
66816
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1646
lemma abs_mod_less:
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1647
  "\<bar>k mod l\<bar> < \<bar>l\<bar>" if "l \<noteq> 0" for k l :: int
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1648
proof -
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1649
  obtain n m and s t where "k = sgn s * int n" and "l = sgn t * int m" 
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1650
    by (blast intro: int_sgnE elim: that)
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1651
  with that show ?thesis
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1652
    by (simp add: modulo_int_unfold sgn_0_0 sgn_1_pos sgn_1_neg
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1653
      abs_mult mod_greater_zero_iff_not_dvd)
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1654
qed
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1655
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1656
lemma sgn_mod:
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1657
  "sgn (k mod l) = sgn l" if "l \<noteq> 0" "\<not> l dvd k" for k l :: int
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1658
proof -
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1659
  obtain n m and s t where "k = sgn s * int n" and "l = sgn t * int m" 
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1660
    by (blast intro: int_sgnE elim: that)
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1661
  with that show ?thesis
73535
0f33c7031ec9 new lemmas
haftmann
parents: 72187
diff changeset
  1662
    by (simp add: modulo_int_unfold sgn_0_0 sgn_1_pos sgn_1_neg sgn_mult)
0f33c7031ec9 new lemmas
haftmann
parents: 72187
diff changeset
  1663
      (simp add: dvd_eq_mod_eq_0)
66816
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1664
qed
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1665
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1666
instance proof
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1667
  fix k l :: int
66838
17989f6bc7b2 clarified uniqueness criterion for euclidean rings
haftmann
parents: 66837
diff changeset
  1668
  show "division_segment (k mod l) = division_segment l" if
17989f6bc7b2 clarified uniqueness criterion for euclidean rings
haftmann
parents: 66837
diff changeset
  1669
    "l \<noteq> 0" and "\<not> l dvd k"
17989f6bc7b2 clarified uniqueness criterion for euclidean rings
haftmann
parents: 66837
diff changeset
  1670
    using that by (simp add: division_segment_eq_sgn dvd_eq_mod_eq_0 sgn_mod)
66816
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1671
next
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1672
  fix l q r :: int
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1673
  obtain n m and s t
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1674
     where l: "l = sgn s * int n" and q: "q = sgn t * int m"
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1675
    by (blast intro: int_sgnE elim: that)
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1676
  assume \<open>l \<noteq> 0\<close>
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1677
  with l have "s \<noteq> 0" and "n > 0"
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1678
    by (simp_all add: sgn_0_0)
66838
17989f6bc7b2 clarified uniqueness criterion for euclidean rings
haftmann
parents: 66837
diff changeset
  1679
  assume "division_segment r = division_segment l"
66816
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1680
  moreover have "r = sgn r * \<bar>r\<bar>"
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1681
    by (simp add: sgn_mult_abs)
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1682
  moreover define u where "u = nat \<bar>r\<bar>"
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1683
  ultimately have "r = sgn l * int u"
66838
17989f6bc7b2 clarified uniqueness criterion for euclidean rings
haftmann
parents: 66837
diff changeset
  1684
    using division_segment_eq_sgn \<open>l \<noteq> 0\<close> by (cases "r = 0") simp_all
66816
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1685
  with l \<open>n > 0\<close> have r: "r = sgn s * int u"
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1686
    by (simp add: sgn_mult)
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1687
  assume "euclidean_size r < euclidean_size l"
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1688
  with l r \<open>s \<noteq> 0\<close> have "u < n"
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1689
    by (simp add: abs_mult)
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1690
  show "(q * l + r) div l = q"
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1691
  proof (cases "q = 0 \<or> r = 0")
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1692
    case True
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1693
    then show ?thesis
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1694
    proof
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1695
      assume "q = 0"
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1696
      then show ?thesis
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1697
        using l r \<open>u < n\<close> by (simp add: divide_int_unfold)
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1698
    next
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1699
      assume "r = 0"
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1700
      from \<open>r = 0\<close> have *: "q * l + r = sgn (t * s) * int (n * m)"
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1701
        using q l by (simp add: ac_simps sgn_mult)
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1702
      from \<open>s \<noteq> 0\<close> \<open>n > 0\<close> show ?thesis
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1703
        by (simp only: *, simp only: q l divide_int_unfold)
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1704
          (auto simp add: sgn_mult sgn_0_0 sgn_1_pos)
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1705
    qed
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1706
  next
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1707
    case False
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1708
    with q r have "t \<noteq> 0" and "m > 0" and "s \<noteq> 0" and "u > 0"
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1709
      by (simp_all add: sgn_0_0)
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1710
    moreover from \<open>0 < m\<close> \<open>u < n\<close> have "u \<le> m * n"
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1711
      using mult_le_less_imp_less [of 1 m u n] by simp
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1712
    ultimately have *: "q * l + r = sgn (s * t)
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1713
      * int (if t < 0 then m * n - u else m * n + u)"
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1714
      using l q r
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1715
      by (simp add: sgn_mult algebra_simps of_nat_diff)
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1716
    have "(m * n - u) div n = m - 1" if "u > 0"
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1717
      using \<open>0 < m\<close> \<open>u < n\<close> that
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1718
      by (auto intro: div_nat_eqI simp add: algebra_simps)
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1719
    moreover have "n dvd m * n - u \<longleftrightarrow> n dvd u"
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1720
      using \<open>u \<le> m * n\<close> dvd_diffD1 [of n "m * n" u]
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1721
      by auto
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1722
    ultimately show ?thesis
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1723
      using \<open>s \<noteq> 0\<close> \<open>m > 0\<close> \<open>u > 0\<close> \<open>u < n\<close> \<open>u \<le> m * n\<close>
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1724
      by (simp only: *, simp only: l q divide_int_unfold)
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1725
        (auto simp add: sgn_mult sgn_0_0 sgn_1_pos algebra_simps dest: dvd_imp_le)
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1726
  qed
68536
e14848001c4c avoid pending shyps in global theory facts;
wenzelm
parents: 67118
diff changeset
  1727
qed (use mult_le_mono2 [of 1] in \<open>auto simp add: division_segment_int_def not_le zero_less_mult_iff mult_less_0_iff abs_mult sgn_mult abs_mod_less sgn_mod nat_mult_distrib\<close>)
66816
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1728
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1729
end
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1730
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1731
lemma pos_mod_bound [simp]:
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1732
  "k mod l < l" if "l > 0" for k l :: int
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1733
proof -
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1734
  obtain m and s where "k = sgn s * int m"
69695
753ae9e9773d algebraized more material from theory Divides
haftmann
parents: 69593
diff changeset
  1735
    by (rule int_sgnE)
66816
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1736
  moreover from that obtain n where "l = sgn 1 * int n"
69695
753ae9e9773d algebraized more material from theory Divides
haftmann
parents: 69593
diff changeset
  1737
    by (cases l) simp_all
753ae9e9773d algebraized more material from theory Divides
haftmann
parents: 69593
diff changeset
  1738
  moreover from this that have "n > 0"
753ae9e9773d algebraized more material from theory Divides
haftmann
parents: 69593
diff changeset
  1739
    by simp
66816
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1740
  ultimately show ?thesis
69695
753ae9e9773d algebraized more material from theory Divides
haftmann
parents: 69593
diff changeset
  1741
    by (simp only: modulo_int_unfold)
753ae9e9773d algebraized more material from theory Divides
haftmann
parents: 69593
diff changeset
  1742
      (simp add: mod_greater_zero_iff_not_dvd)
753ae9e9773d algebraized more material from theory Divides
haftmann
parents: 69593
diff changeset
  1743
qed
753ae9e9773d algebraized more material from theory Divides
haftmann
parents: 69593
diff changeset
  1744
753ae9e9773d algebraized more material from theory Divides
haftmann
parents: 69593
diff changeset
  1745
lemma neg_mod_bound [simp]:
753ae9e9773d algebraized more material from theory Divides
haftmann
parents: 69593
diff changeset
  1746
  "l < k mod l" if "l < 0" for k l :: int
753ae9e9773d algebraized more material from theory Divides
haftmann
parents: 69593
diff changeset
  1747
proof -
753ae9e9773d algebraized more material from theory Divides
haftmann
parents: 69593
diff changeset
  1748
  obtain m and s where "k = sgn s * int m"
753ae9e9773d algebraized more material from theory Divides
haftmann
parents: 69593
diff changeset
  1749
    by (rule int_sgnE)
753ae9e9773d algebraized more material from theory Divides
haftmann
parents: 69593
diff changeset
  1750
  moreover from that obtain q where "l = sgn (- 1) * int (Suc q)"
753ae9e9773d algebraized more material from theory Divides
haftmann
parents: 69593
diff changeset
  1751
    by (cases l) simp_all
753ae9e9773d algebraized more material from theory Divides
haftmann
parents: 69593
diff changeset
  1752
  moreover define n where "n = Suc q"
753ae9e9773d algebraized more material from theory Divides
haftmann
parents: 69593
diff changeset
  1753
  then have "Suc q = n"
753ae9e9773d algebraized more material from theory Divides
haftmann
parents: 69593
diff changeset
  1754
    by simp
753ae9e9773d algebraized more material from theory Divides
haftmann
parents: 69593
diff changeset
  1755
  ultimately show ?thesis
753ae9e9773d algebraized more material from theory Divides
haftmann
parents: 69593
diff changeset
  1756
    by (simp only: modulo_int_unfold)
66816
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1757
      (simp add: mod_greater_zero_iff_not_dvd)
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1758
qed
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1759
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1760
lemma pos_mod_sign [simp]:
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1761
  "0 \<le> k mod l" if "l > 0" for k l :: int
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1762
proof -
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1763
  obtain m and s where "k = sgn s * int m"
69695
753ae9e9773d algebraized more material from theory Divides
haftmann
parents: 69593
diff changeset
  1764
    by (rule int_sgnE)
66816
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1765
  moreover from that obtain n where "l = sgn 1 * int n"
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1766
    by (cases l) auto
69695
753ae9e9773d algebraized more material from theory Divides
haftmann
parents: 69593
diff changeset
  1767
  moreover from this that have "n > 0"
753ae9e9773d algebraized more material from theory Divides
haftmann
parents: 69593
diff changeset
  1768
    by simp
66816
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1769
  ultimately show ?thesis
69695
753ae9e9773d algebraized more material from theory Divides
haftmann
parents: 69593
diff changeset
  1770
    by (simp only: modulo_int_unfold) simp
753ae9e9773d algebraized more material from theory Divides
haftmann
parents: 69593
diff changeset
  1771
qed
753ae9e9773d algebraized more material from theory Divides
haftmann
parents: 69593
diff changeset
  1772
753ae9e9773d algebraized more material from theory Divides
haftmann
parents: 69593
diff changeset
  1773
lemma neg_mod_sign [simp]:
753ae9e9773d algebraized more material from theory Divides
haftmann
parents: 69593
diff changeset
  1774
  "k mod l \<le> 0" if "l < 0" for k l :: int
753ae9e9773d algebraized more material from theory Divides
haftmann
parents: 69593
diff changeset
  1775
proof -
753ae9e9773d algebraized more material from theory Divides
haftmann
parents: 69593
diff changeset
  1776
  obtain m and s where "k = sgn s * int m"
753ae9e9773d algebraized more material from theory Divides
haftmann
parents: 69593
diff changeset
  1777
    by (rule int_sgnE)
753ae9e9773d algebraized more material from theory Divides
haftmann
parents: 69593
diff changeset
  1778
  moreover from that obtain q where "l = sgn (- 1) * int (Suc q)"
753ae9e9773d algebraized more material from theory Divides
haftmann
parents: 69593
diff changeset
  1779
    by (cases l) simp_all
753ae9e9773d algebraized more material from theory Divides
haftmann
parents: 69593
diff changeset
  1780
  moreover define n where "n = Suc q"
753ae9e9773d algebraized more material from theory Divides
haftmann
parents: 69593
diff changeset
  1781
  then have "Suc q = n"
753ae9e9773d algebraized more material from theory Divides
haftmann
parents: 69593
diff changeset
  1782
    by simp
753ae9e9773d algebraized more material from theory Divides
haftmann
parents: 69593
diff changeset
  1783
  ultimately show ?thesis
753ae9e9773d algebraized more material from theory Divides
haftmann
parents: 69593
diff changeset
  1784
    by (simp only: modulo_int_unfold) simp
66816
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1785
qed
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1786
72187
e4aecb0c7296 more lemmas
haftmann
parents: 71535
diff changeset
  1787
lemma div_pos_pos_trivial [simp]:
e4aecb0c7296 more lemmas
haftmann
parents: 71535
diff changeset
  1788
  "k div l = 0" if "k \<ge> 0" and "k < l" for k l :: int
e4aecb0c7296 more lemmas
haftmann
parents: 71535
diff changeset
  1789
  using that by (simp add: unique_euclidean_semiring_class.div_eq_0_iff division_segment_int_def)
e4aecb0c7296 more lemmas
haftmann
parents: 71535
diff changeset
  1790
e4aecb0c7296 more lemmas
haftmann
parents: 71535
diff changeset
  1791
lemma mod_pos_pos_trivial [simp]:
e4aecb0c7296 more lemmas
haftmann
parents: 71535
diff changeset
  1792
  "k mod l = k" if "k \<ge> 0" and "k < l" for k l :: int
e4aecb0c7296 more lemmas
haftmann
parents: 71535
diff changeset
  1793
  using that by (simp add: mod_eq_self_iff_div_eq_0)
e4aecb0c7296 more lemmas
haftmann
parents: 71535
diff changeset
  1794
e4aecb0c7296 more lemmas
haftmann
parents: 71535
diff changeset
  1795
lemma div_neg_neg_trivial [simp]:
e4aecb0c7296 more lemmas
haftmann
parents: 71535
diff changeset
  1796
  "k div l = 0" if "k \<le> 0" and "l < k" for k l :: int
e4aecb0c7296 more lemmas
haftmann
parents: 71535
diff changeset
  1797
  using that by (cases "k = 0") (simp, simp add: unique_euclidean_semiring_class.div_eq_0_iff division_segment_int_def)
e4aecb0c7296 more lemmas
haftmann
parents: 71535
diff changeset
  1798
e4aecb0c7296 more lemmas
haftmann
parents: 71535
diff changeset
  1799
lemma mod_neg_neg_trivial [simp]:
e4aecb0c7296 more lemmas
haftmann
parents: 71535
diff changeset
  1800
  "k mod l = k" if "k \<le> 0" and "l < k" for k l :: int
e4aecb0c7296 more lemmas
haftmann
parents: 71535
diff changeset
  1801
  using that by (simp add: mod_eq_self_iff_div_eq_0)
e4aecb0c7296 more lemmas
haftmann
parents: 71535
diff changeset
  1802
e4aecb0c7296 more lemmas
haftmann
parents: 71535
diff changeset
  1803
lemma div_pos_neg_trivial:
e4aecb0c7296 more lemmas
haftmann
parents: 71535
diff changeset
  1804
  "k div l = - 1" if "0 < k" and "k + l \<le> 0" for k l :: int
e4aecb0c7296 more lemmas
haftmann
parents: 71535
diff changeset
  1805
proof (cases \<open>l = - k\<close>)
e4aecb0c7296 more lemmas
haftmann
parents: 71535
diff changeset
  1806
  case True
e4aecb0c7296 more lemmas
haftmann
parents: 71535
diff changeset
  1807
  with that show ?thesis
e4aecb0c7296 more lemmas
haftmann
parents: 71535
diff changeset
  1808
    by (simp add: divide_int_def)
e4aecb0c7296 more lemmas
haftmann
parents: 71535
diff changeset
  1809
next
e4aecb0c7296 more lemmas
haftmann
parents: 71535
diff changeset
  1810
  case False
e4aecb0c7296 more lemmas
haftmann
parents: 71535
diff changeset
  1811
  show ?thesis
e4aecb0c7296 more lemmas
haftmann
parents: 71535
diff changeset
  1812
    apply (rule div_eqI [of _ "k + l"])
e4aecb0c7296 more lemmas
haftmann
parents: 71535
diff changeset
  1813
    using False that apply (simp_all add: division_segment_int_def)
e4aecb0c7296 more lemmas
haftmann
parents: 71535
diff changeset
  1814
    done
e4aecb0c7296 more lemmas
haftmann
parents: 71535
diff changeset
  1815
qed
e4aecb0c7296 more lemmas
haftmann
parents: 71535
diff changeset
  1816
e4aecb0c7296 more lemmas
haftmann
parents: 71535
diff changeset
  1817
lemma mod_pos_neg_trivial:
e4aecb0c7296 more lemmas
haftmann
parents: 71535
diff changeset
  1818
  "k mod l = k + l" if "0 < k" and "k + l \<le> 0" for k l :: int
e4aecb0c7296 more lemmas
haftmann
parents: 71535
diff changeset
  1819
proof (cases \<open>l = - k\<close>)
e4aecb0c7296 more lemmas
haftmann
parents: 71535
diff changeset
  1820
  case True
e4aecb0c7296 more lemmas
haftmann
parents: 71535
diff changeset
  1821
  with that show ?thesis
e4aecb0c7296 more lemmas
haftmann
parents: 71535
diff changeset
  1822
    by (simp add: divide_int_def)
e4aecb0c7296 more lemmas
haftmann
parents: 71535
diff changeset
  1823
next
e4aecb0c7296 more lemmas
haftmann
parents: 71535
diff changeset
  1824
  case False
e4aecb0c7296 more lemmas
haftmann
parents: 71535
diff changeset
  1825
  show ?thesis
e4aecb0c7296 more lemmas
haftmann
parents: 71535
diff changeset
  1826
    apply (rule mod_eqI [of _ _ \<open>- 1\<close>])
e4aecb0c7296 more lemmas
haftmann
parents: 71535
diff changeset
  1827
    using False that apply (simp_all add: division_segment_int_def)
e4aecb0c7296 more lemmas
haftmann
parents: 71535
diff changeset
  1828
    done
e4aecb0c7296 more lemmas
haftmann
parents: 71535
diff changeset
  1829
qed
e4aecb0c7296 more lemmas
haftmann
parents: 71535
diff changeset
  1830
e4aecb0c7296 more lemmas
haftmann
parents: 71535
diff changeset
  1831
text \<open>There is neither \<open>div_neg_pos_trivial\<close> nor \<open>mod_neg_pos_trivial\<close>
e4aecb0c7296 more lemmas
haftmann
parents: 71535
diff changeset
  1832
  because \<^term>\<open>0 div l = 0\<close> would supersede it.\<close>
e4aecb0c7296 more lemmas
haftmann
parents: 71535
diff changeset
  1833
e4aecb0c7296 more lemmas
haftmann
parents: 71535
diff changeset
  1834
text \<open>Distributive laws for function \<open>nat\<close>.\<close>
e4aecb0c7296 more lemmas
haftmann
parents: 71535
diff changeset
  1835
e4aecb0c7296 more lemmas
haftmann
parents: 71535
diff changeset
  1836
lemma nat_div_distrib:
e4aecb0c7296 more lemmas
haftmann
parents: 71535
diff changeset
  1837
  \<open>nat (x div y) = nat x div nat y\<close> if \<open>0 \<le> x\<close>
e4aecb0c7296 more lemmas
haftmann
parents: 71535
diff changeset
  1838
  using that by (simp add: divide_int_def sgn_if)
e4aecb0c7296 more lemmas
haftmann
parents: 71535
diff changeset
  1839
e4aecb0c7296 more lemmas
haftmann
parents: 71535
diff changeset
  1840
lemma nat_div_distrib':
e4aecb0c7296 more lemmas
haftmann
parents: 71535
diff changeset
  1841
  \<open>nat (x div y) = nat x div nat y\<close> if \<open>0 \<le> y\<close>
e4aecb0c7296 more lemmas
haftmann
parents: 71535
diff changeset
  1842
  using that by (simp add: divide_int_def sgn_if)
e4aecb0c7296 more lemmas
haftmann
parents: 71535
diff changeset
  1843
e4aecb0c7296 more lemmas
haftmann
parents: 71535
diff changeset
  1844
lemma nat_mod_distrib: \<comment> \<open>Fails if y<0: the LHS collapses to (nat z) but the RHS doesn't\<close>
e4aecb0c7296 more lemmas
haftmann
parents: 71535
diff changeset
  1845
  \<open>nat (x mod y) = nat x mod nat y\<close> if \<open>0 \<le> x\<close> \<open>0 \<le> y\<close>
e4aecb0c7296 more lemmas
haftmann
parents: 71535
diff changeset
  1846
  using that by (simp add: modulo_int_def sgn_if)
e4aecb0c7296 more lemmas
haftmann
parents: 71535
diff changeset
  1847
66816
212a3334e7da more fundamental definition of div and mod on int
haftmann
parents: 66814
diff changeset
  1848
71157
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1849
subsection \<open>Special case: euclidean rings containing the natural numbers\<close>
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1850
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1851
class unique_euclidean_semiring_with_nat = semidom + semiring_char_0 + unique_euclidean_semiring +
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1852
  assumes of_nat_div: "of_nat (m div n) = of_nat m div of_nat n"
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1853
    and division_segment_of_nat [simp]: "division_segment (of_nat n) = 1"
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1854
    and division_segment_euclidean_size [simp]: "division_segment a * of_nat (euclidean_size a) = a"
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1855
begin
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1856
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1857
lemma division_segment_eq_iff:
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1858
  "a = b" if "division_segment a = division_segment b"
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1859
    and "euclidean_size a = euclidean_size b"
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1860
  using that division_segment_euclidean_size [of a] by simp
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1861
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1862
lemma euclidean_size_of_nat [simp]:
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1863
  "euclidean_size (of_nat n) = n"
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1864
proof -
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1865
  have "division_segment (of_nat n) * of_nat (euclidean_size (of_nat n)) = of_nat n"
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1866
    by (fact division_segment_euclidean_size)
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1867
  then show ?thesis by simp
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1868
qed
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1869
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1870
lemma of_nat_euclidean_size:
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1871
  "of_nat (euclidean_size a) = a div division_segment a"
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1872
proof -
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1873
  have "of_nat (euclidean_size a) = division_segment a * of_nat (euclidean_size a) div division_segment a"
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1874
    by (subst nonzero_mult_div_cancel_left) simp_all
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1875
  also have "\<dots> = a div division_segment a"
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1876
    by simp
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1877
  finally show ?thesis .
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1878
qed
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1879
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1880
lemma division_segment_1 [simp]:
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1881
  "division_segment 1 = 1"
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1882
  using division_segment_of_nat [of 1] by simp
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1883
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1884
lemma division_segment_numeral [simp]:
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1885
  "division_segment (numeral k) = 1"
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1886
  using division_segment_of_nat [of "numeral k"] by simp
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1887
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1888
lemma euclidean_size_1 [simp]:
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1889
  "euclidean_size 1 = 1"
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1890
  using euclidean_size_of_nat [of 1] by simp
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1891
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1892
lemma euclidean_size_numeral [simp]:
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1893
  "euclidean_size (numeral k) = numeral k"
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1894
  using euclidean_size_of_nat [of "numeral k"] by simp
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1895
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1896
lemma of_nat_dvd_iff:
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1897
  "of_nat m dvd of_nat n \<longleftrightarrow> m dvd n" (is "?P \<longleftrightarrow> ?Q")
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1898
proof (cases "m = 0")
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1899
  case True
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1900
  then show ?thesis
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1901
    by simp
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1902
next
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1903
  case False
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1904
  show ?thesis
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1905
  proof
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1906
    assume ?Q
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1907
    then show ?P
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1908
      by auto
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1909
  next
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1910
    assume ?P
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1911
    with False have "of_nat n = of_nat n div of_nat m * of_nat m"
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1912
      by simp
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1913
    then have "of_nat n = of_nat (n div m * m)"
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1914
      by (simp add: of_nat_div)
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1915
    then have "n = n div m * m"
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1916
      by (simp only: of_nat_eq_iff)
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1917
    then have "n = m * (n div m)"
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1918
      by (simp add: ac_simps)
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1919
    then show ?Q ..
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1920
  qed
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1921
qed
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1922
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1923
lemma of_nat_mod:
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1924
  "of_nat (m mod n) = of_nat m mod of_nat n"
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1925
proof -
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1926
  have "of_nat m div of_nat n * of_nat n + of_nat m mod of_nat n = of_nat m"
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1927
    by (simp add: div_mult_mod_eq)
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1928
  also have "of_nat m = of_nat (m div n * n + m mod n)"
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1929
    by simp
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1930
  finally show ?thesis
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1931
    by (simp only: of_nat_div of_nat_mult of_nat_add) simp
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1932
qed
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1933
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1934
lemma one_div_two_eq_zero [simp]:
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1935
  "1 div 2 = 0"
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1936
proof -
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1937
  from of_nat_div [symmetric] have "of_nat 1 div of_nat 2 = of_nat 0"
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1938
    by (simp only:) simp
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1939
  then show ?thesis
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1940
    by simp
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1941
qed
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1942
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1943
lemma one_mod_two_eq_one [simp]:
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1944
  "1 mod 2 = 1"
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1945
proof -
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1946
  from of_nat_mod [symmetric] have "of_nat 1 mod of_nat 2 = of_nat 1"
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1947
    by (simp only:) simp
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1948
  then show ?thesis
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1949
    by simp
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1950
qed
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1951
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1952
lemma one_mod_2_pow_eq [simp]:
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1953
  "1 mod (2 ^ n) = of_bool (n > 0)"
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1954
proof -
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1955
  have "1 mod (2 ^ n) = of_nat (1 mod (2 ^ n))"
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1956
    using of_nat_mod [of 1 "2 ^ n"] by simp
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1957
  also have "\<dots> = of_bool (n > 0)"
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1958
    by simp
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1959
  finally show ?thesis .
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1960
qed
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1961
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1962
lemma one_div_2_pow_eq [simp]:
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1963
  "1 div (2 ^ n) = of_bool (n = 0)"
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1964
  using div_mult_mod_eq [of 1 "2 ^ n"] by auto
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1965
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1966
lemma div_mult2_eq':
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1967
  "a div (of_nat m * of_nat n) = a div of_nat m div of_nat n"
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1968
proof (cases a "of_nat m * of_nat n" rule: divmod_cases)
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1969
  case (divides q)
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1970
  then show ?thesis
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1971
    using nonzero_mult_div_cancel_right [of "of_nat m" "q * of_nat n"]
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1972
    by (simp add: ac_simps)
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1973
next
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1974
  case (remainder q r)
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1975
  then have "division_segment r = 1"
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1976
    using division_segment_of_nat [of "m * n"] by simp
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1977
  with division_segment_euclidean_size [of r]
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1978
  have "of_nat (euclidean_size r) = r"
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1979
    by simp
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1980
  have "a mod (of_nat m * of_nat n) div (of_nat m * of_nat n) = 0"
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1981
    by simp
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1982
  with remainder(6) have "r div (of_nat m * of_nat n) = 0"
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1983
    by simp
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1984
  with \<open>of_nat (euclidean_size r) = r\<close>
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1985
  have "of_nat (euclidean_size r) div (of_nat m * of_nat n) = 0"
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1986
    by simp
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1987
  then have "of_nat (euclidean_size r div (m * n)) = 0"
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1988
    by (simp add: of_nat_div)
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1989
  then have "of_nat (euclidean_size r div m div n) = 0"
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1990
    by (simp add: div_mult2_eq)
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1991
  with \<open>of_nat (euclidean_size r) = r\<close> have "r div of_nat m div of_nat n = 0"
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1992
    by (simp add: of_nat_div)
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1993
  with remainder(1)
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1994
  have "q = (r div of_nat m + q * of_nat n * of_nat m div of_nat m) div of_nat n"
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1995
    by simp
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1996
  with remainder(5) remainder(7) show ?thesis
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1997
    using div_plus_div_distrib_dvd_right [of "of_nat m" "q * (of_nat m * of_nat n)" r]
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1998
    by (simp add: ac_simps)
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  1999
next
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2000
  case by0
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2001
  then show ?thesis
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2002
    by auto
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2003
qed
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2004
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2005
lemma mod_mult2_eq':
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2006
  "a mod (of_nat m * of_nat n) = of_nat m * (a div of_nat m mod of_nat n) + a mod of_nat m"
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2007
proof -
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2008
  have "a div (of_nat m * of_nat n) * (of_nat m * of_nat n) + a mod (of_nat m * of_nat n) = a div of_nat m div of_nat n * of_nat n * of_nat m + (a div of_nat m mod of_nat n * of_nat m + a mod of_nat m)"
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2009
    by (simp add: combine_common_factor div_mult_mod_eq)
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2010
  moreover have "a div of_nat m div of_nat n * of_nat n * of_nat m = of_nat n * of_nat m * (a div of_nat m div of_nat n)"
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2011
    by (simp add: ac_simps)
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2012
  ultimately show ?thesis
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2013
    by (simp add: div_mult2_eq' mult_commute)
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2014
qed
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2015
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2016
lemma div_mult2_numeral_eq:
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2017
  "a div numeral k div numeral l = a div numeral (k * l)" (is "?A = ?B")
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2018
proof -
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2019
  have "?A = a div of_nat (numeral k) div of_nat (numeral l)"
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2020
    by simp
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2021
  also have "\<dots> = a div (of_nat (numeral k) * of_nat (numeral l))"
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2022
    by (fact div_mult2_eq' [symmetric])
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2023
  also have "\<dots> = ?B"
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2024
    by simp
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2025
  finally show ?thesis .
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2026
qed
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2027
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2028
lemma numeral_Bit0_div_2:
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2029
  "numeral (num.Bit0 n) div 2 = numeral n"
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2030
proof -
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2031
  have "numeral (num.Bit0 n) = numeral n + numeral n"
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2032
    by (simp only: numeral.simps)
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2033
  also have "\<dots> = numeral n * 2"
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2034
    by (simp add: mult_2_right)
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2035
  finally have "numeral (num.Bit0 n) div 2 = numeral n * 2 div 2"
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2036
    by simp
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2037
  also have "\<dots> = numeral n"
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2038
    by (rule nonzero_mult_div_cancel_right) simp
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2039
  finally show ?thesis .
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2040
qed
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2041
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2042
lemma numeral_Bit1_div_2:
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2043
  "numeral (num.Bit1 n) div 2 = numeral n"
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2044
proof -
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2045
  have "numeral (num.Bit1 n) = numeral n + numeral n + 1"
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2046
    by (simp only: numeral.simps)
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2047
  also have "\<dots> = numeral n * 2 + 1"
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2048
    by (simp add: mult_2_right)
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2049
  finally have "numeral (num.Bit1 n) div 2 = (numeral n * 2 + 1) div 2"
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2050
    by simp
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2051
  also have "\<dots> = numeral n * 2 div 2 + 1 div 2"
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2052
    using dvd_triv_right by (rule div_plus_div_distrib_dvd_left)
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2053
  also have "\<dots> = numeral n * 2 div 2"
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2054
    by simp
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2055
  also have "\<dots> = numeral n"
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2056
    by (rule nonzero_mult_div_cancel_right) simp
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2057
  finally show ?thesis .
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2058
qed
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2059
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2060
lemma exp_mod_exp:
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2061
  \<open>2 ^ m mod 2 ^ n = of_bool (m < n) * 2 ^ m\<close>
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2062
proof -
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2063
  have \<open>(2::nat) ^ m mod 2 ^ n = of_bool (m < n) * 2 ^ m\<close> (is \<open>?lhs = ?rhs\<close>)
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2064
    by (auto simp add: not_less monoid_mult_class.power_add dest!: le_Suc_ex)
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2065
  then have \<open>of_nat ?lhs = of_nat ?rhs\<close>
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2066
    by simp
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2067
  then show ?thesis
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2068
    by (simp add: of_nat_mod)
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2069
qed
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2070
71412
96d126844adc more theorems
haftmann
parents: 71408
diff changeset
  2071
lemma mask_mod_exp:
71408
554385d4cf59 more theorems
haftmann
parents: 71157
diff changeset
  2072
  \<open>(2 ^ n - 1) mod 2 ^ m = 2 ^ min m n - 1\<close>
554385d4cf59 more theorems
haftmann
parents: 71157
diff changeset
  2073
proof -
554385d4cf59 more theorems
haftmann
parents: 71157
diff changeset
  2074
  have \<open>(2 ^ n - 1) mod 2 ^ m = 2 ^ min m n - (1::nat)\<close> (is \<open>?lhs = ?rhs\<close>)
554385d4cf59 more theorems
haftmann
parents: 71157
diff changeset
  2075
  proof (cases \<open>n \<le> m\<close>)
554385d4cf59 more theorems
haftmann
parents: 71157
diff changeset
  2076
    case True
554385d4cf59 more theorems
haftmann
parents: 71157
diff changeset
  2077
    then show ?thesis
554385d4cf59 more theorems
haftmann
parents: 71157
diff changeset
  2078
      by (simp add: Suc_le_lessD min.absorb2)
554385d4cf59 more theorems
haftmann
parents: 71157
diff changeset
  2079
  next
554385d4cf59 more theorems
haftmann
parents: 71157
diff changeset
  2080
    case False
554385d4cf59 more theorems
haftmann
parents: 71157
diff changeset
  2081
    then have \<open>m < n\<close>
554385d4cf59 more theorems
haftmann
parents: 71157
diff changeset
  2082
      by simp
554385d4cf59 more theorems
haftmann
parents: 71157
diff changeset
  2083
    then obtain q where n: \<open>n = Suc q + m\<close>
554385d4cf59 more theorems
haftmann
parents: 71157
diff changeset
  2084
      by (auto dest: less_imp_Suc_add)
554385d4cf59 more theorems
haftmann
parents: 71157
diff changeset
  2085
    then have \<open>min m n = m\<close>
554385d4cf59 more theorems
haftmann
parents: 71157
diff changeset
  2086
      by simp
554385d4cf59 more theorems
haftmann
parents: 71157
diff changeset
  2087
    moreover have \<open>(2::nat) ^ m \<le> 2 * 2 ^ q * 2 ^ m\<close>
554385d4cf59 more theorems
haftmann
parents: 71157
diff changeset
  2088
      using mult_le_mono1 [of 1 \<open>2 * 2 ^ q\<close> \<open>2 ^ m\<close>] by simp
554385d4cf59 more theorems
haftmann
parents: 71157
diff changeset
  2089
    with n have \<open>2 ^ n - 1 = (2 ^ Suc q - 1) * 2 ^ m + (2 ^ m - (1::nat))\<close>
554385d4cf59 more theorems
haftmann
parents: 71157
diff changeset
  2090
      by (simp add: monoid_mult_class.power_add algebra_simps)
554385d4cf59 more theorems
haftmann
parents: 71157
diff changeset
  2091
    ultimately show ?thesis
554385d4cf59 more theorems
haftmann
parents: 71157
diff changeset
  2092
      by (simp only: euclidean_semiring_cancel_class.mod_mult_self3) simp
554385d4cf59 more theorems
haftmann
parents: 71157
diff changeset
  2093
  qed
554385d4cf59 more theorems
haftmann
parents: 71157
diff changeset
  2094
  then have \<open>of_nat ?lhs = of_nat ?rhs\<close>
554385d4cf59 more theorems
haftmann
parents: 71157
diff changeset
  2095
    by simp
554385d4cf59 more theorems
haftmann
parents: 71157
diff changeset
  2096
  then show ?thesis
554385d4cf59 more theorems
haftmann
parents: 71157
diff changeset
  2097
    by (simp add: of_nat_mod of_nat_diff)
554385d4cf59 more theorems
haftmann
parents: 71157
diff changeset
  2098
qed
554385d4cf59 more theorems
haftmann
parents: 71157
diff changeset
  2099
71535
b612edee9b0c more frugal simp rules for bit operations; more pervasive use of bit selector
haftmann
parents: 71413
diff changeset
  2100
lemma of_bool_half_eq_0 [simp]:
b612edee9b0c more frugal simp rules for bit operations; more pervasive use of bit selector
haftmann
parents: 71413
diff changeset
  2101
  \<open>of_bool b div 2 = 0\<close>
b612edee9b0c more frugal simp rules for bit operations; more pervasive use of bit selector
haftmann
parents: 71413
diff changeset
  2102
  by simp
b612edee9b0c more frugal simp rules for bit operations; more pervasive use of bit selector
haftmann
parents: 71413
diff changeset
  2103
71157
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2104
end
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2105
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2106
class unique_euclidean_ring_with_nat = ring + unique_euclidean_semiring_with_nat
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2107
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2108
instance nat :: unique_euclidean_semiring_with_nat
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2109
  by standard (simp_all add: dvd_eq_mod_eq_0)
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2110
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2111
instance int :: unique_euclidean_ring_with_nat
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2112
  by standard (simp_all add: dvd_eq_mod_eq_0 divide_int_def division_segment_int_def)
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2113
74592
3c587b7c3d5c more generic bit/word lemmas for distribution
haftmann
parents: 73853
diff changeset
  2114
lemma zdiv_zmult2_eq:
3c587b7c3d5c more generic bit/word lemmas for distribution
haftmann
parents: 73853
diff changeset
  2115
  \<open>a div (b * c) = (a div b) div c\<close> if \<open>c \<ge> 0\<close> for a b c :: int
3c587b7c3d5c more generic bit/word lemmas for distribution
haftmann
parents: 73853
diff changeset
  2116
proof (cases \<open>b \<ge> 0\<close>)
3c587b7c3d5c more generic bit/word lemmas for distribution
haftmann
parents: 73853
diff changeset
  2117
  case True
3c587b7c3d5c more generic bit/word lemmas for distribution
haftmann
parents: 73853
diff changeset
  2118
  with that show ?thesis
3c587b7c3d5c more generic bit/word lemmas for distribution
haftmann
parents: 73853
diff changeset
  2119
    using div_mult2_eq' [of a \<open>nat b\<close> \<open>nat c\<close>] by simp
3c587b7c3d5c more generic bit/word lemmas for distribution
haftmann
parents: 73853
diff changeset
  2120
next
3c587b7c3d5c more generic bit/word lemmas for distribution
haftmann
parents: 73853
diff changeset
  2121
  case False
3c587b7c3d5c more generic bit/word lemmas for distribution
haftmann
parents: 73853
diff changeset
  2122
  with that show ?thesis
3c587b7c3d5c more generic bit/word lemmas for distribution
haftmann
parents: 73853
diff changeset
  2123
    using div_mult2_eq' [of \<open>- a\<close> \<open>nat (- b)\<close> \<open>nat c\<close>] by simp
3c587b7c3d5c more generic bit/word lemmas for distribution
haftmann
parents: 73853
diff changeset
  2124
qed
3c587b7c3d5c more generic bit/word lemmas for distribution
haftmann
parents: 73853
diff changeset
  2125
3c587b7c3d5c more generic bit/word lemmas for distribution
haftmann
parents: 73853
diff changeset
  2126
lemma zmod_zmult2_eq:
3c587b7c3d5c more generic bit/word lemmas for distribution
haftmann
parents: 73853
diff changeset
  2127
  \<open>a mod (b * c) = b * (a div b mod c) + a mod b\<close> if \<open>c \<ge> 0\<close> for a b c :: int
3c587b7c3d5c more generic bit/word lemmas for distribution
haftmann
parents: 73853
diff changeset
  2128
proof (cases \<open>b \<ge> 0\<close>)
3c587b7c3d5c more generic bit/word lemmas for distribution
haftmann
parents: 73853
diff changeset
  2129
  case True
3c587b7c3d5c more generic bit/word lemmas for distribution
haftmann
parents: 73853
diff changeset
  2130
  with that show ?thesis
3c587b7c3d5c more generic bit/word lemmas for distribution
haftmann
parents: 73853
diff changeset
  2131
    using mod_mult2_eq' [of a \<open>nat b\<close> \<open>nat c\<close>] by simp
3c587b7c3d5c more generic bit/word lemmas for distribution
haftmann
parents: 73853
diff changeset
  2132
next
3c587b7c3d5c more generic bit/word lemmas for distribution
haftmann
parents: 73853
diff changeset
  2133
  case False
3c587b7c3d5c more generic bit/word lemmas for distribution
haftmann
parents: 73853
diff changeset
  2134
  with that show ?thesis
3c587b7c3d5c more generic bit/word lemmas for distribution
haftmann
parents: 73853
diff changeset
  2135
    using mod_mult2_eq' [of \<open>- a\<close> \<open>nat (- b)\<close> \<open>nat c\<close>] by simp
3c587b7c3d5c more generic bit/word lemmas for distribution
haftmann
parents: 73853
diff changeset
  2136
qed
3c587b7c3d5c more generic bit/word lemmas for distribution
haftmann
parents: 73853
diff changeset
  2137
71157
8bdf3c36011c tuned theory structure
haftmann
parents: 70147
diff changeset
  2138
66808
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  2139
subsection \<open>Code generation\<close>
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  2140
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  2141
code_identifier
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  2142
  code_module Euclidean_Division \<rightharpoonup> (SML) Arith and (OCaml) Arith and (Haskell) Arith
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  2143
1907167b6038 elementary definition of division on natural numbers
haftmann
parents: 66807
diff changeset
  2144
end