| author | blanchet | 
| Wed, 25 Sep 2013 12:00:22 +0200 | |
| changeset 53870 | 5d45882b4f36 | 
| parent 53676 | 476ef9b468d2 | 
| child 54230 | b1d955791529 | 
| permissions | -rw-r--r-- | 
| 36648 | 1 | (* Title: HOL/Library/Convex.thy | 
| 2 | Author: Armin Heller, TU Muenchen | |
| 3 | Author: Johannes Hoelzl, TU Muenchen | |
| 4 | *) | |
| 5 | ||
| 6 | header {* Convexity in real vector spaces *}
 | |
| 7 | ||
| 36623 | 8 | theory Convex | 
| 9 | imports Product_Vector | |
| 10 | begin | |
| 11 | ||
| 12 | subsection {* Convexity. *}
 | |
| 13 | ||
| 49609 | 14 | definition convex :: "'a::real_vector set \<Rightarrow> bool" | 
| 15 | where "convex s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u\<ge>0. \<forall>v\<ge>0. u + v = 1 \<longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> s)" | |
| 36623 | 16 | |
| 53676 | 17 | lemma convexI: | 
| 18 | assumes "\<And>x y u v. x \<in> s \<Longrightarrow> y \<in> s \<Longrightarrow> 0 \<le> u \<Longrightarrow> 0 \<le> v \<Longrightarrow> u + v = 1 \<Longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> s" | |
| 19 | shows "convex s" | |
| 20 | using assms unfolding convex_def by fast | |
| 21 | ||
| 22 | lemma convexD: | |
| 23 | assumes "convex s" and "x \<in> s" and "y \<in> s" and "0 \<le> u" and "0 \<le> v" and "u + v = 1" | |
| 24 | shows "u *\<^sub>R x + v *\<^sub>R y \<in> s" | |
| 25 | using assms unfolding convex_def by fast | |
| 26 | ||
| 36623 | 27 | lemma convex_alt: | 
| 28 | "convex s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u. 0 \<le> u \<and> u \<le> 1 \<longrightarrow> ((1 - u) *\<^sub>R x + u *\<^sub>R y) \<in> s)" | |
| 29 | (is "_ \<longleftrightarrow> ?alt") | |
| 30 | proof | |
| 31 | assume alt[rule_format]: ?alt | |
| 32 |   { fix x y and u v :: real assume mem: "x \<in> s" "y \<in> s"
 | |
| 49609 | 33 | assume "0 \<le> u" "0 \<le> v" | 
| 34 | moreover assume "u + v = 1" then have "u = 1 - v" by auto | |
| 36623 | 35 | ultimately have "u *\<^sub>R x + v *\<^sub>R y \<in> s" using alt[OF mem] by auto } | 
| 49609 | 36 | then show "convex s" unfolding convex_def by auto | 
| 36623 | 37 | qed (auto simp: convex_def) | 
| 38 | ||
| 39 | lemma mem_convex: | |
| 40 | assumes "convex s" "a \<in> s" "b \<in> s" "0 \<le> u" "u \<le> 1" | |
| 41 | shows "((1 - u) *\<^sub>R a + u *\<^sub>R b) \<in> s" | |
| 42 | using assms unfolding convex_alt by auto | |
| 43 | ||
| 44 | lemma convex_empty[intro]: "convex {}"
 | |
| 45 | unfolding convex_def by simp | |
| 46 | ||
| 47 | lemma convex_singleton[intro]: "convex {a}"
 | |
| 48 | unfolding convex_def by (auto simp: scaleR_left_distrib[symmetric]) | |
| 49 | ||
| 50 | lemma convex_UNIV[intro]: "convex UNIV" | |
| 51 | unfolding convex_def by auto | |
| 52 | ||
| 53 | lemma convex_Inter: "(\<forall>s\<in>f. convex s) ==> convex(\<Inter> f)" | |
| 54 | unfolding convex_def by auto | |
| 55 | ||
| 56 | lemma convex_Int: "convex s \<Longrightarrow> convex t \<Longrightarrow> convex (s \<inter> t)" | |
| 57 | unfolding convex_def by auto | |
| 58 | ||
| 53596 | 59 | lemma convex_INT: "\<forall>i\<in>A. convex (B i) \<Longrightarrow> convex (\<Inter>i\<in>A. B i)" | 
| 60 | unfolding convex_def by auto | |
| 61 | ||
| 62 | lemma convex_Times: "convex s \<Longrightarrow> convex t \<Longrightarrow> convex (s \<times> t)" | |
| 63 | unfolding convex_def by auto | |
| 64 | ||
| 36623 | 65 | lemma convex_halfspace_le: "convex {x. inner a x \<le> b}"
 | 
| 66 | unfolding convex_def | |
| 44142 | 67 | by (auto simp: inner_add intro!: convex_bound_le) | 
| 36623 | 68 | |
| 69 | lemma convex_halfspace_ge: "convex {x. inner a x \<ge> b}"
 | |
| 70 | proof - | |
| 49609 | 71 |   have *: "{x. inner a x \<ge> b} = {x. inner (-a) x \<le> -b}" by auto
 | 
| 36623 | 72 | show ?thesis unfolding * using convex_halfspace_le[of "-a" "-b"] by auto | 
| 73 | qed | |
| 74 | ||
| 75 | lemma convex_hyperplane: "convex {x. inner a x = b}"
 | |
| 49609 | 76 | proof - | 
| 77 |   have *: "{x. inner a x = b} = {x. inner a x \<le> b} \<inter> {x. inner a x \<ge> b}" by auto
 | |
| 36623 | 78 | show ?thesis using convex_halfspace_le convex_halfspace_ge | 
| 79 | by (auto intro!: convex_Int simp: *) | |
| 80 | qed | |
| 81 | ||
| 82 | lemma convex_halfspace_lt: "convex {x. inner a x < b}"
 | |
| 83 | unfolding convex_def | |
| 84 | by (auto simp: convex_bound_lt inner_add) | |
| 85 | ||
| 86 | lemma convex_halfspace_gt: "convex {x. inner a x > b}"
 | |
| 87 | using convex_halfspace_lt[of "-a" "-b"] by auto | |
| 88 | ||
| 89 | lemma convex_real_interval: | |
| 90 | fixes a b :: "real" | |
| 91 |   shows "convex {a..}" and "convex {..b}"
 | |
| 49609 | 92 |     and "convex {a<..}" and "convex {..<b}"
 | 
| 93 |     and "convex {a..b}" and "convex {a<..b}"
 | |
| 94 |     and "convex {a..<b}" and "convex {a<..<b}"
 | |
| 36623 | 95 | proof - | 
| 96 |   have "{a..} = {x. a \<le> inner 1 x}" by auto
 | |
| 49609 | 97 |   then show 1: "convex {a..}" by (simp only: convex_halfspace_ge)
 | 
| 36623 | 98 |   have "{..b} = {x. inner 1 x \<le> b}" by auto
 | 
| 49609 | 99 |   then show 2: "convex {..b}" by (simp only: convex_halfspace_le)
 | 
| 36623 | 100 |   have "{a<..} = {x. a < inner 1 x}" by auto
 | 
| 49609 | 101 |   then show 3: "convex {a<..}" by (simp only: convex_halfspace_gt)
 | 
| 36623 | 102 |   have "{..<b} = {x. inner 1 x < b}" by auto
 | 
| 49609 | 103 |   then show 4: "convex {..<b}" by (simp only: convex_halfspace_lt)
 | 
| 36623 | 104 |   have "{a..b} = {a..} \<inter> {..b}" by auto
 | 
| 49609 | 105 |   then show "convex {a..b}" by (simp only: convex_Int 1 2)
 | 
| 36623 | 106 |   have "{a<..b} = {a<..} \<inter> {..b}" by auto
 | 
| 49609 | 107 |   then show "convex {a<..b}" by (simp only: convex_Int 3 2)
 | 
| 36623 | 108 |   have "{a..<b} = {a..} \<inter> {..<b}" by auto
 | 
| 49609 | 109 |   then show "convex {a..<b}" by (simp only: convex_Int 1 4)
 | 
| 36623 | 110 |   have "{a<..<b} = {a<..} \<inter> {..<b}" by auto
 | 
| 49609 | 111 |   then show "convex {a<..<b}" by (simp only: convex_Int 3 4)
 | 
| 36623 | 112 | qed | 
| 113 | ||
| 49609 | 114 | |
| 36623 | 115 | subsection {* Explicit expressions for convexity in terms of arbitrary sums. *}
 | 
| 116 | ||
| 117 | lemma convex_setsum: | |
| 118 | fixes C :: "'a::real_vector set" | |
| 119 | assumes "finite s" and "convex C" and "(\<Sum> i \<in> s. a i) = 1" | |
| 49609 | 120 | assumes "\<And>i. i \<in> s \<Longrightarrow> a i \<ge> 0" and "\<And>i. i \<in> s \<Longrightarrow> y i \<in> C" | 
| 36623 | 121 | shows "(\<Sum> j \<in> s. a j *\<^sub>R y j) \<in> C" | 
| 49609 | 122 | using assms | 
| 123 | proof (induct s arbitrary:a rule: finite_induct) | |
| 124 | case empty | |
| 125 | then show ?case by auto | |
| 36623 | 126 | next | 
| 127 | case (insert i s) note asms = this | |
| 128 |   { assume "a i = 1"
 | |
| 49609 | 129 | then have "(\<Sum> j \<in> s. a j) = 0" | 
| 36623 | 130 | using asms by auto | 
| 49609 | 131 | then have "\<And>j. j \<in> s \<Longrightarrow> a j = 0" | 
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
44282diff
changeset | 132 | using setsum_nonneg_0[where 'b=real] asms by fastforce | 
| 49609 | 133 | then have ?case using asms by auto } | 
| 36623 | 134 | moreover | 
| 135 |   { assume asm: "a i \<noteq> 1"
 | |
| 136 | from asms have yai: "y i \<in> C" "a i \<ge> 0" by auto | |
| 137 | have fis: "finite (insert i s)" using asms by auto | |
| 49609 | 138 | then have ai1: "a i \<le> 1" using setsum_nonneg_leq_bound[of "insert i s" a 1] asms by simp | 
| 139 | then have "a i < 1" using asm by auto | |
| 140 | then have i0: "1 - a i > 0" by auto | |
| 141 | let ?a = "\<lambda>j. a j / (1 - a i)" | |
| 36623 | 142 |     { fix j assume "j \<in> s"
 | 
| 49609 | 143 | then have "?a j \<ge> 0" | 
| 36623 | 144 | using i0 asms divide_nonneg_pos | 
| 49609 | 145 | by fastforce | 
| 146 | } note a_nonneg = this | |
| 36623 | 147 | have "(\<Sum> j \<in> insert i s. a j) = 1" using asms by auto | 
| 49609 | 148 | then have "(\<Sum> j \<in> s. a j) = 1 - a i" using setsum.insert asms by fastforce | 
| 149 | then have "(\<Sum> j \<in> s. a j) / (1 - a i) = 1" using i0 by auto | |
| 150 | then have a1: "(\<Sum> j \<in> s. ?a j) = 1" unfolding setsum_divide_distrib by simp | |
| 151 | with asms have "(\<Sum>j\<in>s. ?a j *\<^sub>R y j) \<in> C" using a_nonneg by fastforce | |
| 152 | then have "a i *\<^sub>R y i + (1 - a i) *\<^sub>R (\<Sum> j \<in> s. ?a j *\<^sub>R y j) \<in> C" | |
| 53676 | 153 | using asms yai ai1 by (auto intro: convexD) | 
| 49609 | 154 | then have "a i *\<^sub>R y i + (\<Sum> j \<in> s. (1 - a i) *\<^sub>R (?a j *\<^sub>R y j)) \<in> C" | 
| 36623 | 155 | using scaleR_right.setsum[of "(1 - a i)" "\<lambda> j. ?a j *\<^sub>R y j" s] by auto | 
| 49609 | 156 | then have "a i *\<^sub>R y i + (\<Sum> j \<in> s. a j *\<^sub>R y j) \<in> C" using i0 by auto | 
| 157 | then have ?case using setsum.insert asms by auto | |
| 158 | } | |
| 36623 | 159 | ultimately show ?case by auto | 
| 160 | qed | |
| 161 | ||
| 162 | lemma convex: | |
| 49609 | 163 |   "convex s \<longleftrightarrow> (\<forall>(k::nat) u x. (\<forall>i. 1\<le>i \<and> i\<le>k \<longrightarrow> 0 \<le> u i \<and> x i \<in>s) \<and> (setsum u {1..k} = 1)
 | 
| 164 |       \<longrightarrow> setsum (\<lambda>i. u i *\<^sub>R x i) {1..k} \<in> s)"
 | |
| 36623 | 165 | proof safe | 
| 49609 | 166 | fix k :: nat | 
| 167 | fix u :: "nat \<Rightarrow> real" | |
| 168 | fix x | |
| 36623 | 169 | assume "convex s" | 
| 170 | "\<forall>i. 1 \<le> i \<and> i \<le> k \<longrightarrow> 0 \<le> u i \<and> x i \<in> s" | |
| 171 |     "setsum u {1..k} = 1"
 | |
| 172 |   from this convex_setsum[of "{1 .. k}" s]
 | |
| 173 |   show "(\<Sum>j\<in>{1 .. k}. u j *\<^sub>R x j) \<in> s" by auto
 | |
| 174 | next | |
| 175 |   assume asm: "\<forall>k u x. (\<forall> i :: nat. 1 \<le> i \<and> i \<le> k \<longrightarrow> 0 \<le> u i \<and> x i \<in> s) \<and> setsum u {1..k} = 1
 | |
| 176 | \<longrightarrow> (\<Sum>i = 1..k. u i *\<^sub>R (x i :: 'a)) \<in> s" | |
| 49609 | 177 |   { fix \<mu> :: real
 | 
| 178 | fix x y :: 'a | |
| 179 | assume xy: "x \<in> s" "y \<in> s" | |
| 180 | assume mu: "\<mu> \<ge> 0" "\<mu> \<le> 1" | |
| 181 | let ?u = "\<lambda>i. if (i :: nat) = 1 then \<mu> else 1 - \<mu>" | |
| 182 | let ?x = "\<lambda>i. if (i :: nat) = 1 then x else y" | |
| 36623 | 183 |     have "{1 :: nat .. 2} \<inter> - {x. x = 1} = {2}" by auto
 | 
| 49609 | 184 |     then have card: "card ({1 :: nat .. 2} \<inter> - {x. x = 1}) = 1" by simp
 | 
| 185 |     then have "setsum ?u {1 .. 2} = 1"
 | |
| 36623 | 186 |       using setsum_cases[of "{(1 :: nat) .. 2}" "\<lambda> x. x = 1" "\<lambda> x. \<mu>" "\<lambda> x. 1 - \<mu>"]
 | 
| 187 | by auto | |
| 49609 | 188 |     with asm[rule_format, of "2" ?u ?x] have s: "(\<Sum>j \<in> {1..2}. ?u j *\<^sub>R ?x j) \<in> s"
 | 
| 36623 | 189 | using mu xy by auto | 
| 190 |     have grarr: "(\<Sum>j \<in> {Suc (Suc 0)..2}. ?u j *\<^sub>R ?x j) = (1 - \<mu>) *\<^sub>R y"
 | |
| 191 | using setsum_head_Suc[of "Suc (Suc 0)" 2 "\<lambda> j. (1 - \<mu>) *\<^sub>R y"] by auto | |
| 192 | from setsum_head_Suc[of "Suc 0" 2 "\<lambda> j. ?u j *\<^sub>R ?x j", simplified this] | |
| 193 |     have "(\<Sum>j \<in> {1..2}. ?u j *\<^sub>R ?x j) = \<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y" by auto
 | |
| 49609 | 194 | then have "(1 - \<mu>) *\<^sub>R y + \<mu> *\<^sub>R x \<in> s" using s by (auto simp:add_commute) | 
| 195 | } | |
| 196 | then show "convex s" unfolding convex_alt by auto | |
| 36623 | 197 | qed | 
| 198 | ||
| 199 | ||
| 200 | lemma convex_explicit: | |
| 201 | fixes s :: "'a::real_vector set" | |
| 202 | shows "convex s \<longleftrightarrow> | |
| 49609 | 203 | (\<forall>t u. finite t \<and> t \<subseteq> s \<and> (\<forall>x\<in>t. 0 \<le> u x) \<and> setsum u t = 1 \<longrightarrow> setsum (\<lambda>x. u x *\<^sub>R x) t \<in> s)" | 
| 36623 | 204 | proof safe | 
| 49609 | 205 | fix t | 
| 206 | fix u :: "'a \<Rightarrow> real" | |
| 36623 | 207 | assume "convex s" "finite t" | 
| 208 | "t \<subseteq> s" "\<forall>x\<in>t. 0 \<le> u x" "setsum u t = 1" | |
| 49609 | 209 | then show "(\<Sum>x\<in>t. u x *\<^sub>R x) \<in> s" | 
| 36623 | 210 | using convex_setsum[of t s u "\<lambda> x. x"] by auto | 
| 211 | next | |
| 212 | assume asm0: "\<forall>t. \<forall> u. finite t \<and> t \<subseteq> s \<and> (\<forall>x\<in>t. 0 \<le> u x) | |
| 213 | \<and> setsum u t = 1 \<longrightarrow> (\<Sum>x\<in>t. u x *\<^sub>R x) \<in> s" | |
| 214 | show "convex s" | |
| 215 | unfolding convex_alt | |
| 216 | proof safe | |
| 49609 | 217 | fix x y | 
| 218 | fix \<mu> :: real | |
| 36623 | 219 | assume asm: "x \<in> s" "y \<in> s" "0 \<le> \<mu>" "\<mu> \<le> 1" | 
| 220 |     { assume "x \<noteq> y"
 | |
| 49609 | 221 | then have "(1 - \<mu>) *\<^sub>R x + \<mu> *\<^sub>R y \<in> s" | 
| 36623 | 222 |         using asm0[rule_format, of "{x, y}" "\<lambda> z. if z = x then 1 - \<mu> else \<mu>"]
 | 
| 223 | asm by auto } | |
| 224 | moreover | |
| 225 |     { assume "x = y"
 | |
| 49609 | 226 | then have "(1 - \<mu>) *\<^sub>R x + \<mu> *\<^sub>R y \<in> s" | 
| 36623 | 227 |         using asm0[rule_format, of "{x, y}" "\<lambda> z. 1"]
 | 
| 228 | asm by (auto simp:field_simps real_vector.scale_left_diff_distrib) } | |
| 229 | ultimately show "(1 - \<mu>) *\<^sub>R x + \<mu> *\<^sub>R y \<in> s" by blast | |
| 230 | qed | |
| 231 | qed | |
| 232 | ||
| 49609 | 233 | lemma convex_finite: | 
| 234 | assumes "finite s" | |
| 36623 | 235 | shows "convex s \<longleftrightarrow> (\<forall>u. (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 | 
| 236 | \<longrightarrow> setsum (\<lambda>x. u x *\<^sub>R x) s \<in> s)" | |
| 237 | unfolding convex_explicit | |
| 49609 | 238 | proof safe | 
| 239 | fix t u | |
| 240 | assume sum: "\<forall>u. (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<longrightarrow> (\<Sum>x\<in>s. u x *\<^sub>R x) \<in> s" | |
| 36623 | 241 | and as: "finite t" "t \<subseteq> s" "\<forall>x\<in>t. 0 \<le> u x" "setsum u t = (1::real)" | 
| 49609 | 242 | have *: "s \<inter> t = t" using as(2) by auto | 
| 243 | have if_distrib_arg: "\<And>P f g x. (if P then f else g) x = (if P then f x else g x)" | |
| 244 | by simp | |
| 36623 | 245 | show "(\<Sum>x\<in>t. u x *\<^sub>R x) \<in> s" | 
| 246 | using sum[THEN spec[where x="\<lambda>x. if x\<in>t then u x else 0"]] as * | |
| 247 | by (auto simp: assms setsum_cases if_distrib if_distrib_arg) | |
| 248 | qed (erule_tac x=s in allE, erule_tac x=u in allE, auto) | |
| 249 | ||
| 49609 | 250 | definition convex_on :: "'a::real_vector set \<Rightarrow> ('a \<Rightarrow> real) \<Rightarrow> bool"
 | 
| 251 | where "convex_on s f \<longleftrightarrow> | |
| 252 | (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u\<ge>0. \<forall>v\<ge>0. u + v = 1 \<longrightarrow> f (u *\<^sub>R x + v *\<^sub>R y) \<le> u * f x + v * f y)" | |
| 36623 | 253 | |
| 254 | lemma convex_on_subset: "convex_on t f \<Longrightarrow> s \<subseteq> t \<Longrightarrow> convex_on s f" | |
| 255 | unfolding convex_on_def by auto | |
| 256 | ||
| 53620 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 257 | lemma convex_on_add [intro]: | 
| 36623 | 258 | assumes "convex_on s f" "convex_on s g" | 
| 259 | shows "convex_on s (\<lambda>x. f x + g x)" | |
| 49609 | 260 | proof - | 
| 261 |   { fix x y
 | |
| 262 | assume "x\<in>s" "y\<in>s" | |
| 263 | moreover | |
| 264 | fix u v :: real | |
| 265 | assume "0 \<le> u" "0 \<le> v" "u + v = 1" | |
| 266 | ultimately | |
| 267 | have "f (u *\<^sub>R x + v *\<^sub>R y) + g (u *\<^sub>R x + v *\<^sub>R y) \<le> (u * f x + v * f y) + (u * g x + v * g y)" | |
| 268 | using assms unfolding convex_on_def by (auto simp add: add_mono) | |
| 269 | then have "f (u *\<^sub>R x + v *\<^sub>R y) + g (u *\<^sub>R x + v *\<^sub>R y) \<le> u * (f x + g x) + v * (f y + g y)" | |
| 270 | by (simp add: field_simps) | |
| 271 | } | |
| 272 | then show ?thesis unfolding convex_on_def by auto | |
| 36623 | 273 | qed | 
| 274 | ||
| 53620 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 275 | lemma convex_on_cmul [intro]: | 
| 36623 | 276 | assumes "0 \<le> (c::real)" "convex_on s f" | 
| 277 | shows "convex_on s (\<lambda>x. c * f x)" | |
| 278 | proof- | |
| 49609 | 279 | have *: "\<And>u c fx v fy ::real. u * (c * fx) + v * (c * fy) = c * (u * fx + v * fy)" | 
| 280 | by (simp add: field_simps) | |
| 281 | show ?thesis using assms(2) and mult_left_mono [OF _ assms(1)] | |
| 282 | unfolding convex_on_def and * by auto | |
| 36623 | 283 | qed | 
| 284 | ||
| 285 | lemma convex_lower: | |
| 286 | assumes "convex_on s f" "x\<in>s" "y \<in> s" "0 \<le> u" "0 \<le> v" "u + v = 1" | |
| 287 | shows "f (u *\<^sub>R x + v *\<^sub>R y) \<le> max (f x) (f y)" | |
| 288 | proof- | |
| 289 | let ?m = "max (f x) (f y)" | |
| 290 | have "u * f x + v * f y \<le> u * max (f x) (f y) + v * max (f x) (f y)" | |
| 38642 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
36778diff
changeset | 291 | using assms(4,5) by (auto simp add: mult_left_mono add_mono) | 
| 49609 | 292 | also have "\<dots> = max (f x) (f y)" using assms(6) unfolding distrib[symmetric] by auto | 
| 36623 | 293 | finally show ?thesis | 
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
44282diff
changeset | 294 | using assms unfolding convex_on_def by fastforce | 
| 36623 | 295 | qed | 
| 296 | ||
| 53620 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 297 | lemma convex_on_dist [intro]: | 
| 36623 | 298 | fixes s :: "'a::real_normed_vector set" | 
| 299 | shows "convex_on s (\<lambda>x. dist a x)" | |
| 49609 | 300 | proof (auto simp add: convex_on_def dist_norm) | 
| 301 | fix x y | |
| 302 | assume "x\<in>s" "y\<in>s" | |
| 303 | fix u v :: real | |
| 304 | assume "0 \<le> u" "0 \<le> v" "u + v = 1" | |
| 305 | have "a = u *\<^sub>R a + v *\<^sub>R a" | |
| 306 | unfolding scaleR_left_distrib[symmetric] and `u+v=1` by simp | |
| 307 | then have *: "a - (u *\<^sub>R x + v *\<^sub>R y) = (u *\<^sub>R (a - x)) + (v *\<^sub>R (a - y))" | |
| 36623 | 308 | by (auto simp add: algebra_simps) | 
| 309 | show "norm (a - (u *\<^sub>R x + v *\<^sub>R y)) \<le> u * norm (a - x) + v * norm (a - y)" | |
| 310 | unfolding * using norm_triangle_ineq[of "u *\<^sub>R (a - x)" "v *\<^sub>R (a - y)"] | |
| 311 | using `0 \<le> u` `0 \<le> v` by auto | |
| 312 | qed | |
| 313 | ||
| 49609 | 314 | |
| 36623 | 315 | subsection {* Arithmetic operations on sets preserve convexity. *}
 | 
| 49609 | 316 | |
| 53620 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 317 | lemma convex_linear_image: | 
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 318 | assumes "linear f" and "convex s" shows "convex (f ` s)" | 
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 319 | proof - | 
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 320 | interpret f: linear f by fact | 
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 321 | from `convex s` show "convex (f ` s)" | 
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 322 | by (simp add: convex_def f.scaleR [symmetric] f.add [symmetric]) | 
| 36623 | 323 | qed | 
| 324 | ||
| 53620 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 325 | lemma convex_linear_vimage: | 
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 326 | assumes "linear f" and "convex s" shows "convex (f -` s)" | 
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 327 | proof - | 
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 328 | interpret f: linear f by fact | 
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 329 | from `convex s` show "convex (f -` s)" | 
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 330 | by (simp add: convex_def f.add f.scaleR) | 
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 331 | qed | 
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 332 | |
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 333 | lemma convex_scaling: | 
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 334 | assumes "convex s" shows "convex ((\<lambda>x. c *\<^sub>R x) ` s)" | 
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 335 | proof - | 
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 336 | have "linear (\<lambda>x. c *\<^sub>R x)" by (simp add: linearI scaleR_add_right) | 
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 337 | then show ?thesis using `convex s` by (rule convex_linear_image) | 
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 338 | qed | 
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 339 | |
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 340 | lemma convex_negations: | 
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 341 | assumes "convex s" shows "convex ((\<lambda>x. - x) ` s)" | 
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 342 | proof - | 
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 343 | have "linear (\<lambda>x. - x)" by (simp add: linearI) | 
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 344 | then show ?thesis using `convex s` by (rule convex_linear_image) | 
| 36623 | 345 | qed | 
| 346 | ||
| 347 | lemma convex_sums: | |
| 53620 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 348 | assumes "convex s" and "convex t" | 
| 36623 | 349 |   shows "convex {x + y| x y. x \<in> s \<and> y \<in> t}"
 | 
| 53620 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 350 | proof - | 
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 351 | have "linear (\<lambda>(x, y). x + y)" | 
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 352 | by (auto intro: linearI simp add: scaleR_add_right) | 
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 353 | with assms have "convex ((\<lambda>(x, y). x + y) ` (s \<times> t))" | 
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 354 | by (intro convex_linear_image convex_Times) | 
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 355 |   also have "((\<lambda>(x, y). x + y) ` (s \<times> t)) = {x + y| x y. x \<in> s \<and> y \<in> t}"
 | 
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 356 | by auto | 
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 357 | finally show ?thesis . | 
| 36623 | 358 | qed | 
| 359 | ||
| 360 | lemma convex_differences: | |
| 361 | assumes "convex s" "convex t" | |
| 362 |   shows "convex {x - y| x y. x \<in> s \<and> y \<in> t}"
 | |
| 363 | proof - | |
| 364 |   have "{x - y| x y. x \<in> s \<and> y \<in> t} = {x + y |x y. x \<in> s \<and> y \<in> uminus ` t}"
 | |
| 53620 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 365 | unfolding diff_def by auto | 
| 49609 | 366 | then show ?thesis | 
| 367 | using convex_sums[OF assms(1) convex_negations[OF assms(2)]] by auto | |
| 36623 | 368 | qed | 
| 369 | ||
| 49609 | 370 | lemma convex_translation: | 
| 371 | assumes "convex s" | |
| 372 | shows "convex ((\<lambda>x. a + x) ` s)" | |
| 373 | proof - | |
| 374 |   have "{a + y |y. y \<in> s} = (\<lambda>x. a + x) ` s" by auto
 | |
| 375 | then show ?thesis | |
| 376 | using convex_sums[OF convex_singleton[of a] assms] by auto | |
| 377 | qed | |
| 36623 | 378 | |
| 49609 | 379 | lemma convex_affinity: | 
| 380 | assumes "convex s" | |
| 381 | shows "convex ((\<lambda>x. a + c *\<^sub>R x) ` s)" | |
| 382 | proof - | |
| 383 | have "(\<lambda>x. a + c *\<^sub>R x) ` s = op + a ` op *\<^sub>R c ` s" by auto | |
| 384 | then show ?thesis | |
| 385 | using convex_translation[OF convex_scaling[OF assms], of a c] by auto | |
| 386 | qed | |
| 36623 | 387 | |
| 49609 | 388 | lemma pos_is_convex: "convex {0 :: real <..}"
 | 
| 389 | unfolding convex_alt | |
| 36623 | 390 | proof safe | 
| 391 | fix y x \<mu> :: real | |
| 392 | assume asms: "y > 0" "x > 0" "\<mu> \<ge> 0" "\<mu> \<le> 1" | |
| 393 |   { assume "\<mu> = 0"
 | |
| 49609 | 394 | then have "\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y = y" by simp | 
| 395 | then have "\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y > 0" using asms by simp } | |
| 36623 | 396 | moreover | 
| 397 |   { assume "\<mu> = 1"
 | |
| 49609 | 398 | then have "\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y > 0" using asms by simp } | 
| 36623 | 399 | moreover | 
| 400 |   { assume "\<mu> \<noteq> 1" "\<mu> \<noteq> 0"
 | |
| 49609 | 401 | then have "\<mu> > 0" "(1 - \<mu>) > 0" using asms by auto | 
| 402 | then have "\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y > 0" using asms | |
| 36778 
739a9379e29b
avoid using real-specific versions of generic lemmas
 huffman parents: 
36648diff
changeset | 403 | by (auto simp add: add_pos_pos mult_pos_pos) } | 
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
44282diff
changeset | 404 | ultimately show "(1 - \<mu>) *\<^sub>R y + \<mu> *\<^sub>R x > 0" using assms by fastforce | 
| 36623 | 405 | qed | 
| 406 | ||
| 407 | lemma convex_on_setsum: | |
| 408 | fixes a :: "'a \<Rightarrow> real" | |
| 49609 | 409 | and y :: "'a \<Rightarrow> 'b::real_vector" | 
| 410 | and f :: "'b \<Rightarrow> real" | |
| 36623 | 411 |   assumes "finite s" "s \<noteq> {}"
 | 
| 49609 | 412 | and "convex_on C f" | 
| 413 | and "convex C" | |
| 414 | and "(\<Sum> i \<in> s. a i) = 1" | |
| 415 | and "\<And>i. i \<in> s \<Longrightarrow> a i \<ge> 0" | |
| 416 | and "\<And>i. i \<in> s \<Longrightarrow> y i \<in> C" | |
| 36623 | 417 | shows "f (\<Sum> i \<in> s. a i *\<^sub>R y i) \<le> (\<Sum> i \<in> s. a i * f (y i))" | 
| 49609 | 418 | using assms | 
| 419 | proof (induct s arbitrary: a rule: finite_ne_induct) | |
| 36623 | 420 | case (singleton i) | 
| 49609 | 421 | then have ai: "a i = 1" by auto | 
| 422 | then show ?case by auto | |
| 36623 | 423 | next | 
| 424 | case (insert i s) note asms = this | |
| 49609 | 425 | then have "convex_on C f" by simp | 
| 36623 | 426 | from this[unfolded convex_on_def, rule_format] | 
| 49609 | 427 | have conv: "\<And>x y \<mu>. x \<in> C \<Longrightarrow> y \<in> C \<Longrightarrow> 0 \<le> \<mu> \<Longrightarrow> \<mu> \<le> 1 | 
| 428 | \<Longrightarrow> f (\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y) \<le> \<mu> * f x + (1 - \<mu>) * f y" | |
| 36623 | 429 | by simp | 
| 430 |   { assume "a i = 1"
 | |
| 49609 | 431 | then have "(\<Sum> j \<in> s. a j) = 0" | 
| 36623 | 432 | using asms by auto | 
| 49609 | 433 | then have "\<And>j. j \<in> s \<Longrightarrow> a j = 0" | 
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
44282diff
changeset | 434 | using setsum_nonneg_0[where 'b=real] asms by fastforce | 
| 49609 | 435 | then have ?case using asms by auto } | 
| 36623 | 436 | moreover | 
| 437 |   { assume asm: "a i \<noteq> 1"
 | |
| 438 | from asms have yai: "y i \<in> C" "a i \<ge> 0" by auto | |
| 439 | have fis: "finite (insert i s)" using asms by auto | |
| 49609 | 440 | then have ai1: "a i \<le> 1" using setsum_nonneg_leq_bound[of "insert i s" a] asms by simp | 
| 441 | then have "a i < 1" using asm by auto | |
| 442 | then have i0: "1 - a i > 0" by auto | |
| 443 | let ?a = "\<lambda>j. a j / (1 - a i)" | |
| 36623 | 444 |     { fix j assume "j \<in> s"
 | 
| 49609 | 445 | then have "?a j \<ge> 0" | 
| 36623 | 446 | using i0 asms divide_nonneg_pos | 
| 49609 | 447 | by fastforce } | 
| 448 | note a_nonneg = this | |
| 36623 | 449 | have "(\<Sum> j \<in> insert i s. a j) = 1" using asms by auto | 
| 49609 | 450 | then have "(\<Sum> j \<in> s. a j) = 1 - a i" using setsum.insert asms by fastforce | 
| 451 | then have "(\<Sum> j \<in> s. a j) / (1 - a i) = 1" using i0 by auto | |
| 452 | then have a1: "(\<Sum> j \<in> s. ?a j) = 1" unfolding setsum_divide_distrib by simp | |
| 36623 | 453 | have "convex C" using asms by auto | 
| 49609 | 454 | then have asum: "(\<Sum> j \<in> s. ?a j *\<^sub>R y j) \<in> C" | 
| 36623 | 455 | using asms convex_setsum[OF `finite s` | 
| 456 | `convex C` a1 a_nonneg] by auto | |
| 457 | have asum_le: "f (\<Sum> j \<in> s. ?a j *\<^sub>R y j) \<le> (\<Sum> j \<in> s. ?a j * f (y j))" | |
| 458 | using a_nonneg a1 asms by blast | |
| 459 | have "f (\<Sum> j \<in> insert i s. a j *\<^sub>R y j) = f ((\<Sum> j \<in> s. a j *\<^sub>R y j) + a i *\<^sub>R y i)" | |
| 460 | using setsum.insert[of s i "\<lambda> j. a j *\<^sub>R y j", OF `finite s` `i \<notin> s`] asms | |
| 461 | by (auto simp only:add_commute) | |
| 462 | also have "\<dots> = f (((1 - a i) * inverse (1 - a i)) *\<^sub>R (\<Sum> j \<in> s. a j *\<^sub>R y j) + a i *\<^sub>R y i)" | |
| 463 | using i0 by auto | |
| 464 | also have "\<dots> = f ((1 - a i) *\<^sub>R (\<Sum> j \<in> s. (a j * inverse (1 - a i)) *\<^sub>R y j) + a i *\<^sub>R y i)" | |
| 49609 | 465 | using scaleR_right.setsum[of "inverse (1 - a i)" "\<lambda> j. a j *\<^sub>R y j" s, symmetric] | 
| 466 | by (auto simp:algebra_simps) | |
| 36623 | 467 | also have "\<dots> = f ((1 - a i) *\<^sub>R (\<Sum> j \<in> s. ?a j *\<^sub>R y j) + a i *\<^sub>R y i)" | 
| 36778 
739a9379e29b
avoid using real-specific versions of generic lemmas
 huffman parents: 
36648diff
changeset | 468 | by (auto simp: divide_inverse) | 
| 36623 | 469 | also have "\<dots> \<le> (1 - a i) *\<^sub>R f ((\<Sum> j \<in> s. ?a j *\<^sub>R y j)) + a i * f (y i)" | 
| 470 | using conv[of "y i" "(\<Sum> j \<in> s. ?a j *\<^sub>R y j)" "a i", OF yai(1) asum yai(2) ai1] | |
| 471 | by (auto simp add:add_commute) | |
| 472 | also have "\<dots> \<le> (1 - a i) * (\<Sum> j \<in> s. ?a j * f (y j)) + a i * f (y i)" | |
| 473 | using add_right_mono[OF mult_left_mono[of _ _ "1 - a i", | |
| 474 | OF asum_le less_imp_le[OF i0]], of "a i * f (y i)"] by simp | |
| 475 | also have "\<dots> = (\<Sum> j \<in> s. (1 - a i) * ?a j * f (y j)) + a i * f (y i)" | |
| 44282 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44142diff
changeset | 476 | unfolding setsum_right_distrib[of "1 - a i" "\<lambda> j. ?a j * f (y j)"] using i0 by auto | 
| 36623 | 477 | also have "\<dots> = (\<Sum> j \<in> s. a j * f (y j)) + a i * f (y i)" using i0 by auto | 
| 478 | also have "\<dots> = (\<Sum> j \<in> insert i s. a j * f (y j))" using asms by auto | |
| 479 | finally have "f (\<Sum> j \<in> insert i s. a j *\<^sub>R y j) \<le> (\<Sum> j \<in> insert i s. a j * f (y j))" | |
| 480 | by simp } | |
| 481 | ultimately show ?case by auto | |
| 482 | qed | |
| 483 | ||
| 484 | lemma convex_on_alt: | |
| 485 | fixes C :: "'a::real_vector set" | |
| 486 | assumes "convex C" | |
| 487 | shows "convex_on C f = | |
| 488 | (\<forall> x \<in> C. \<forall> y \<in> C. \<forall> \<mu> :: real. \<mu> \<ge> 0 \<and> \<mu> \<le> 1 | |
| 489 | \<longrightarrow> f (\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y) \<le> \<mu> * f x + (1 - \<mu>) * f y)" | |
| 490 | proof safe | |
| 49609 | 491 | fix x y | 
| 492 | fix \<mu> :: real | |
| 36623 | 493 | assume asms: "convex_on C f" "x \<in> C" "y \<in> C" "0 \<le> \<mu>" "\<mu> \<le> 1" | 
| 494 | from this[unfolded convex_on_def, rule_format] | |
| 49609 | 495 | have "\<And>u v. \<lbrakk>0 \<le> u; 0 \<le> v; u + v = 1\<rbrakk> \<Longrightarrow> f (u *\<^sub>R x + v *\<^sub>R y) \<le> u * f x + v * f y" by auto | 
| 36623 | 496 | from this[of "\<mu>" "1 - \<mu>", simplified] asms | 
| 49609 | 497 | show "f (\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y) \<le> \<mu> * f x + (1 - \<mu>) * f y" by auto | 
| 36623 | 498 | next | 
| 499 | assume asm: "\<forall>x\<in>C. \<forall>y\<in>C. \<forall>\<mu>. 0 \<le> \<mu> \<and> \<mu> \<le> 1 \<longrightarrow> f (\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y) \<le> \<mu> * f x + (1 - \<mu>) * f y" | |
| 49609 | 500 |   { fix x y
 | 
| 501 | fix u v :: real | |
| 36623 | 502 | assume lasm: "x \<in> C" "y \<in> C" "u \<ge> 0" "v \<ge> 0" "u + v = 1" | 
| 49609 | 503 | then have[simp]: "1 - u = v" by auto | 
| 36623 | 504 | from asm[rule_format, of x y u] | 
| 49609 | 505 | have "f (u *\<^sub>R x + v *\<^sub>R y) \<le> u * f x + v * f y" using lasm by auto | 
| 506 | } | |
| 507 | then show "convex_on C f" unfolding convex_on_def by auto | |
| 36623 | 508 | qed | 
| 509 | ||
| 43337 | 510 | lemma convex_on_diff: | 
| 511 | fixes f :: "real \<Rightarrow> real" | |
| 512 | assumes f: "convex_on I f" and I: "x\<in>I" "y\<in>I" and t: "x < t" "t < y" | |
| 49609 | 513 | shows "(f x - f t) / (x - t) \<le> (f x - f y) / (x - y)" | 
| 514 | "(f x - f y) / (x - y) \<le> (f t - f y) / (t - y)" | |
| 43337 | 515 | proof - | 
| 516 | def a \<equiv> "(t - y) / (x - y)" | |
| 517 | with t have "0 \<le> a" "0 \<le> 1 - a" by (auto simp: field_simps) | |
| 518 | with f `x \<in> I` `y \<in> I` have cvx: "f (a * x + (1 - a) * y) \<le> a * f x + (1 - a) * f y" | |
| 519 | by (auto simp: convex_on_def) | |
| 520 | have "a * x + (1 - a) * y = a * (x - y) + y" by (simp add: field_simps) | |
| 521 | also have "\<dots> = t" unfolding a_def using `x < t` `t < y` by simp | |
| 522 | finally have "f t \<le> a * f x + (1 - a) * f y" using cvx by simp | |
| 523 | also have "\<dots> = a * (f x - f y) + f y" by (simp add: field_simps) | |
| 524 | finally have "f t - f y \<le> a * (f x - f y)" by simp | |
| 525 | with t show "(f x - f t) / (x - t) \<le> (f x - f y) / (x - y)" | |
| 44142 | 526 | by (simp add: le_divide_eq divide_le_eq field_simps a_def) | 
| 43337 | 527 | with t show "(f x - f y) / (x - y) \<le> (f t - f y) / (t - y)" | 
| 44142 | 528 | by (simp add: le_divide_eq divide_le_eq field_simps) | 
| 43337 | 529 | qed | 
| 36623 | 530 | |
| 531 | lemma pos_convex_function: | |
| 532 | fixes f :: "real \<Rightarrow> real" | |
| 533 | assumes "convex C" | |
| 49609 | 534 | and leq: "\<And>x y. \<lbrakk>x \<in> C ; y \<in> C\<rbrakk> \<Longrightarrow> f' x * (y - x) \<le> f y - f x" | 
| 36623 | 535 | shows "convex_on C f" | 
| 49609 | 536 | unfolding convex_on_alt[OF assms(1)] | 
| 537 | using assms | |
| 36623 | 538 | proof safe | 
| 539 | fix x y \<mu> :: real | |
| 540 | let ?x = "\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y" | |
| 541 | assume asm: "convex C" "x \<in> C" "y \<in> C" "\<mu> \<ge> 0" "\<mu> \<le> 1" | |
| 49609 | 542 | then have "1 - \<mu> \<ge> 0" by auto | 
| 543 | then have xpos: "?x \<in> C" using asm unfolding convex_alt by fastforce | |
| 36623 | 544 | have geq: "\<mu> * (f x - f ?x) + (1 - \<mu>) * (f y - f ?x) | 
| 545 | \<ge> \<mu> * f' ?x * (x - ?x) + (1 - \<mu>) * f' ?x * (y - ?x)" | |
| 38642 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
36778diff
changeset | 546 | using add_mono[OF mult_left_mono[OF leq[OF xpos asm(2)] `\<mu> \<ge> 0`] | 
| 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
36778diff
changeset | 547 | mult_left_mono[OF leq[OF xpos asm(3)] `1 - \<mu> \<ge> 0`]] by auto | 
| 49609 | 548 | then have "\<mu> * f x + (1 - \<mu>) * f y - f ?x \<ge> 0" | 
| 549 | by (auto simp add: field_simps) | |
| 550 | then show "f (\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y) \<le> \<mu> * f x + (1 - \<mu>) * f y" | |
| 36623 | 551 | using convex_on_alt by auto | 
| 552 | qed | |
| 553 | ||
| 554 | lemma atMostAtLeast_subset_convex: | |
| 555 | fixes C :: "real set" | |
| 556 | assumes "convex C" | |
| 49609 | 557 | and "x \<in> C" "y \<in> C" "x < y" | 
| 36623 | 558 |   shows "{x .. y} \<subseteq> C"
 | 
| 559 | proof safe | |
| 560 |   fix z assume zasm: "z \<in> {x .. y}"
 | |
| 561 |   { assume asm: "x < z" "z < y"
 | |
| 49609 | 562 | let ?\<mu> = "(y - z) / (y - x)" | 
| 563 | have "0 \<le> ?\<mu>" "?\<mu> \<le> 1" using assms asm by (auto simp add: field_simps) | |
| 564 | then have comb: "?\<mu> * x + (1 - ?\<mu>) * y \<in> C" | |
| 565 | using assms iffD1[OF convex_alt, rule_format, of C y x ?\<mu>] | |
| 566 | by (simp add: algebra_simps) | |
| 36623 | 567 | have "?\<mu> * x + (1 - ?\<mu>) * y = (y - z) * x / (y - x) + (1 - (y - z) / (y - x)) * y" | 
| 49609 | 568 | by (auto simp add: field_simps) | 
| 36623 | 569 | also have "\<dots> = ((y - z) * x + (y - x - (y - z)) * y) / (y - x)" | 
| 49609 | 570 | using assms unfolding add_divide_distrib by (auto simp: field_simps) | 
| 36623 | 571 | also have "\<dots> = z" | 
| 49609 | 572 | using assms by (auto simp: field_simps) | 
| 36623 | 573 | finally have "z \<in> C" | 
| 49609 | 574 | using comb by auto } | 
| 575 | note less = this | |
| 36623 | 576 | show "z \<in> C" using zasm less assms | 
| 577 | unfolding atLeastAtMost_iff le_less by auto | |
| 578 | qed | |
| 579 | ||
| 580 | lemma f''_imp_f': | |
| 581 | fixes f :: "real \<Rightarrow> real" | |
| 582 | assumes "convex C" | |
| 49609 | 583 | and f': "\<And>x. x \<in> C \<Longrightarrow> DERIV f x :> (f' x)" | 
| 584 | and f'': "\<And>x. x \<in> C \<Longrightarrow> DERIV f' x :> (f'' x)" | |
| 585 | and pos: "\<And>x. x \<in> C \<Longrightarrow> f'' x \<ge> 0" | |
| 586 | and "x \<in> C" "y \<in> C" | |
| 36623 | 587 | shows "f' x * (y - x) \<le> f y - f x" | 
| 49609 | 588 | using assms | 
| 36623 | 589 | proof - | 
| 49609 | 590 |   { fix x y :: real
 | 
| 591 | assume asm: "x \<in> C" "y \<in> C" "y > x" | |
| 592 | then have ge: "y - x > 0" "y - x \<ge> 0" by auto | |
| 36623 | 593 | from asm have le: "x - y < 0" "x - y \<le> 0" by auto | 
| 594 | then obtain z1 where z1: "z1 > x" "z1 < y" "f y - f x = (y - x) * f' z1" | |
| 595 | using subsetD[OF atMostAtLeast_subset_convex[OF `convex C` `x \<in> C` `y \<in> C` `x < y`], | |
| 596 | THEN f', THEN MVT2[OF `x < y`, rule_format, unfolded atLeastAtMost_iff[symmetric]]] | |
| 597 | by auto | |
| 49609 | 598 | then have "z1 \<in> C" using atMostAtLeast_subset_convex | 
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
44282diff
changeset | 599 | `convex C` `x \<in> C` `y \<in> C` `x < y` by fastforce | 
| 36623 | 600 | from z1 have z1': "f x - f y = (x - y) * f' z1" | 
| 601 | by (simp add:field_simps) | |
| 602 | obtain z2 where z2: "z2 > x" "z2 < z1" "f' z1 - f' x = (z1 - x) * f'' z2" | |
| 603 | using subsetD[OF atMostAtLeast_subset_convex[OF `convex C` `x \<in> C` `z1 \<in> C` `x < z1`], | |
| 604 | THEN f'', THEN MVT2[OF `x < z1`, rule_format, unfolded atLeastAtMost_iff[symmetric]]] z1 | |
| 605 | by auto | |
| 606 | obtain z3 where z3: "z3 > z1" "z3 < y" "f' y - f' z1 = (y - z1) * f'' z3" | |
| 607 | using subsetD[OF atMostAtLeast_subset_convex[OF `convex C` `z1 \<in> C` `y \<in> C` `z1 < y`], | |
| 608 | THEN f'', THEN MVT2[OF `z1 < y`, rule_format, unfolded atLeastAtMost_iff[symmetric]]] z1 | |
| 609 | by auto | |
| 610 | have "f' y - (f x - f y) / (x - y) = f' y - f' z1" | |
| 611 | using asm z1' by auto | |
| 612 | also have "\<dots> = (y - z1) * f'' z3" using z3 by auto | |
| 613 | finally have cool': "f' y - (f x - f y) / (x - y) = (y - z1) * f'' z3" by simp | |
| 614 | have A': "y - z1 \<ge> 0" using z1 by auto | |
| 615 | have "z3 \<in> C" using z3 asm atMostAtLeast_subset_convex | |
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
44282diff
changeset | 616 | `convex C` `x \<in> C` `z1 \<in> C` `x < z1` by fastforce | 
| 49609 | 617 | then have B': "f'' z3 \<ge> 0" using assms by auto | 
| 36623 | 618 | from A' B' have "(y - z1) * f'' z3 \<ge> 0" using mult_nonneg_nonneg by auto | 
| 619 | from cool' this have "f' y - (f x - f y) / (x - y) \<ge> 0" by auto | |
| 620 | from mult_right_mono_neg[OF this le(2)] | |
| 621 | have "f' y * (x - y) - (f x - f y) / (x - y) * (x - y) \<le> 0 * (x - y)" | |
| 36778 
739a9379e29b
avoid using real-specific versions of generic lemmas
 huffman parents: 
36648diff
changeset | 622 | by (simp add: algebra_simps) | 
| 49609 | 623 | then have "f' y * (x - y) - (f x - f y) \<le> 0" using le by auto | 
| 624 | then have res: "f' y * (x - y) \<le> f x - f y" by auto | |
| 36623 | 625 | have "(f y - f x) / (y - x) - f' x = f' z1 - f' x" | 
| 626 | using asm z1 by auto | |
| 627 | also have "\<dots> = (z1 - x) * f'' z2" using z2 by auto | |
| 628 | finally have cool: "(f y - f x) / (y - x) - f' x = (z1 - x) * f'' z2" by simp | |
| 629 | have A: "z1 - x \<ge> 0" using z1 by auto | |
| 630 | have "z2 \<in> C" using z2 z1 asm atMostAtLeast_subset_convex | |
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
44282diff
changeset | 631 | `convex C` `z1 \<in> C` `y \<in> C` `z1 < y` by fastforce | 
| 49609 | 632 | then have B: "f'' z2 \<ge> 0" using assms by auto | 
| 36623 | 633 | from A B have "(z1 - x) * f'' z2 \<ge> 0" using mult_nonneg_nonneg by auto | 
| 634 | from cool this have "(f y - f x) / (y - x) - f' x \<ge> 0" by auto | |
| 635 | from mult_right_mono[OF this ge(2)] | |
| 636 | have "(f y - f x) / (y - x) * (y - x) - f' x * (y - x) \<ge> 0 * (y - x)" | |
| 36778 
739a9379e29b
avoid using real-specific versions of generic lemmas
 huffman parents: 
36648diff
changeset | 637 | by (simp add: algebra_simps) | 
| 49609 | 638 | then have "f y - f x - f' x * (y - x) \<ge> 0" using ge by auto | 
| 639 | then have "f y - f x \<ge> f' x * (y - x)" "f' y * (x - y) \<le> f x - f y" | |
| 36623 | 640 | using res by auto } note less_imp = this | 
| 49609 | 641 |   { fix x y :: real
 | 
| 642 | assume "x \<in> C" "y \<in> C" "x \<noteq> y" | |
| 643 | then have"f y - f x \<ge> f' x * (y - x)" | |
| 36623 | 644 | unfolding neq_iff using less_imp by auto } note neq_imp = this | 
| 645 | moreover | |
| 49609 | 646 |   { fix x y :: real
 | 
| 647 | assume asm: "x \<in> C" "y \<in> C" "x = y" | |
| 648 | then have "f y - f x \<ge> f' x * (y - x)" by auto } | |
| 36623 | 649 | ultimately show ?thesis using assms by blast | 
| 650 | qed | |
| 651 | ||
| 652 | lemma f''_ge0_imp_convex: | |
| 653 | fixes f :: "real \<Rightarrow> real" | |
| 654 | assumes conv: "convex C" | |
| 49609 | 655 | and f': "\<And>x. x \<in> C \<Longrightarrow> DERIV f x :> (f' x)" | 
| 656 | and f'': "\<And>x. x \<in> C \<Longrightarrow> DERIV f' x :> (f'' x)" | |
| 657 | and pos: "\<And>x. x \<in> C \<Longrightarrow> f'' x \<ge> 0" | |
| 36623 | 658 | shows "convex_on C f" | 
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
44282diff
changeset | 659 | using f''_imp_f'[OF conv f' f'' pos] assms pos_convex_function by fastforce | 
| 36623 | 660 | |
| 661 | lemma minus_log_convex: | |
| 662 | fixes b :: real | |
| 663 | assumes "b > 1" | |
| 664 |   shows "convex_on {0 <..} (\<lambda> x. - log b x)"
 | |
| 665 | proof - | |
| 49609 | 666 | have "\<And>z. z > 0 \<Longrightarrow> DERIV (log b) z :> 1 / (ln b * z)" using DERIV_log by auto | 
| 667 | then have f': "\<And>z. z > 0 \<Longrightarrow> DERIV (\<lambda> z. - log b z) z :> - 1 / (ln b * z)" | |
| 51642 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 hoelzl parents: 
49609diff
changeset | 668 | by (auto simp: DERIV_minus) | 
| 49609 | 669 | have "\<And>z :: real. z > 0 \<Longrightarrow> DERIV inverse z :> - (inverse z ^ Suc (Suc 0))" | 
| 36623 | 670 | using less_imp_neq[THEN not_sym, THEN DERIV_inverse] by auto | 
| 671 | from this[THEN DERIV_cmult, of _ "- 1 / ln b"] | |
| 49609 | 672 | have "\<And>z :: real. z > 0 \<Longrightarrow> | 
| 673 | DERIV (\<lambda> z. (- 1 / ln b) * inverse z) z :> (- 1 / ln b) * (- (inverse z ^ Suc (Suc 0)))" | |
| 36623 | 674 | by auto | 
| 49609 | 675 | then have f''0: "\<And>z :: real. z > 0 \<Longrightarrow> DERIV (\<lambda> z. - 1 / (ln b * z)) z :> 1 / (ln b * z * z)" | 
| 36778 
739a9379e29b
avoid using real-specific versions of generic lemmas
 huffman parents: 
36648diff
changeset | 676 | unfolding inverse_eq_divide by (auto simp add: mult_assoc) | 
| 49609 | 677 | have f''_ge0: "\<And>z :: real. z > 0 \<Longrightarrow> 1 / (ln b * z * z) \<ge> 0" | 
| 678 | using `b > 1` by (auto intro!:less_imp_le simp add: divide_pos_pos[of 1] mult_pos_pos) | |
| 36623 | 679 | from f''_ge0_imp_convex[OF pos_is_convex, | 
| 680 | unfolded greaterThan_iff, OF f' f''0 f''_ge0] | |
| 681 | show ?thesis by auto | |
| 682 | qed | |
| 683 | ||
| 684 | end |