| author | wenzelm | 
| Sat, 17 Aug 2019 11:23:20 +0200 | |
| changeset 70557 | 5d6e9c65ea67 | 
| parent 67312 | 0d25e02759b7 | 
| child 80914 | d97fdabd9e2b | 
| permissions | -rw-r--r-- | 
| 42151 | 1 | (* Title: HOL/HOLCF/Ssum.thy | 
| 40502 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: 
40327diff
changeset | 2 | Author: Franz Regensburger | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: 
40327diff
changeset | 3 | Author: Brian Huffman | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 4 | *) | 
| 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 5 | |
| 62175 | 6 | section \<open>The type of strict sums\<close> | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 7 | |
| 15577 | 8 | theory Ssum | 
| 67312 | 9 | imports Tr | 
| 15577 | 10 | begin | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 11 | |
| 36452 | 12 | default_sort pcpo | 
| 16083 
fca38c55c8fa
added defaultsort declaration, moved cpair_less to Cprod.thy
 huffman parents: 
16070diff
changeset | 13 | |
| 67312 | 14 | |
| 62175 | 15 | subsection \<open>Definition of strict sum type\<close> | 
| 15593 
24d770bbc44a
reordered and arranged for document generation, cleaned up some proofs
 huffman parents: 
15577diff
changeset | 16 | |
| 67312 | 17 | definition "ssum = | 
| 18 |   {p :: tr \<times> ('a \<times> 'b). p = \<bottom> \<or>
 | |
| 19 | (fst p = TT \<and> fst (snd p) \<noteq> \<bottom> \<and> snd (snd p) = \<bottom>) \<or> | |
| 20 | (fst p = FF \<and> fst (snd p) = \<bottom> \<and> snd (snd p) \<noteq> \<bottom>)}" | |
| 45695 | 21 | |
| 61998 | 22 | pcpodef ('a, 'b) ssum  ("(_ \<oplus>/ _)" [21, 20] 20) = "ssum :: (tr \<times> 'a \<times> 'b) set"
 | 
| 67312 | 23 | by (simp_all add: ssum_def) | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 24 | |
| 35525 | 25 | instance ssum :: ("{chfin,pcpo}", "{chfin,pcpo}") chfin
 | 
| 67312 | 26 | by (rule typedef_chfin [OF type_definition_ssum below_ssum_def]) | 
| 25827 
c2adeb1bae5c
new instance proofs for classes finite_po, chfin, flat
 huffman parents: 
25756diff
changeset | 27 | |
| 61998 | 28 | type_notation (ASCII) | 
| 29 | ssum (infixr "++" 10) | |
| 35547 | 30 | |
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 31 | |
| 62175 | 32 | subsection \<open>Definitions of constructors\<close> | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 33 | |
| 67312 | 34 | definition sinl :: "'a \<rightarrow> ('a ++ 'b)"
 | 
| 35 | where "sinl = (\<Lambda> a. Abs_ssum (seq\<cdot>a\<cdot>TT, a, \<bottom>))" | |
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 36 | |
| 67312 | 37 | definition sinr :: "'b \<rightarrow> ('a ++ 'b)"
 | 
| 38 | where "sinr = (\<Lambda> b. Abs_ssum (seq\<cdot>b\<cdot>FF, \<bottom>, b))" | |
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 39 | |
| 40767 
a3e505b236e7
rename function 'strict' to 'seq', which is its name in Haskell
 huffman parents: 
40502diff
changeset | 40 | lemma sinl_ssum: "(seq\<cdot>a\<cdot>TT, a, \<bottom>) \<in> ssum" | 
| 67312 | 41 | by (simp add: ssum_def seq_conv_if) | 
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 42 | |
| 40767 
a3e505b236e7
rename function 'strict' to 'seq', which is its name in Haskell
 huffman parents: 
40502diff
changeset | 43 | lemma sinr_ssum: "(seq\<cdot>b\<cdot>FF, \<bottom>, b) \<in> ssum" | 
| 67312 | 44 | by (simp add: ssum_def seq_conv_if) | 
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 45 | |
| 40767 
a3e505b236e7
rename function 'strict' to 'seq', which is its name in Haskell
 huffman parents: 
40502diff
changeset | 46 | lemma Rep_ssum_sinl: "Rep_ssum (sinl\<cdot>a) = (seq\<cdot>a\<cdot>TT, a, \<bottom>)" | 
| 67312 | 47 | by (simp add: sinl_def cont_Abs_ssum Abs_ssum_inverse sinl_ssum) | 
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 48 | |
| 40767 
a3e505b236e7
rename function 'strict' to 'seq', which is its name in Haskell
 huffman parents: 
40502diff
changeset | 49 | lemma Rep_ssum_sinr: "Rep_ssum (sinr\<cdot>b) = (seq\<cdot>b\<cdot>FF, \<bottom>, b)" | 
| 67312 | 50 | by (simp add: sinr_def cont_Abs_ssum Abs_ssum_inverse sinr_ssum) | 
| 40092 
baf5953615da
do proofs using Rep_Sprod_simps, Rep_Ssum_simps; remove unused lemmas
 huffman parents: 
40089diff
changeset | 51 | |
| 40098 
9dbb01456031
use default names sprod/Rep_sprod/Abs_sprod from pcpodef instead of Sprod/Rep_Sprod/Abs_Sprod; similarly for ssum
 huffman parents: 
40092diff
changeset | 52 | lemmas Rep_ssum_simps = | 
| 
9dbb01456031
use default names sprod/Rep_sprod/Abs_sprod from pcpodef instead of Sprod/Rep_Sprod/Abs_Sprod; similarly for ssum
 huffman parents: 
40092diff
changeset | 53 | Rep_ssum_inject [symmetric] below_ssum_def | 
| 44066 
d74182c93f04
rename Pair_fst_snd_eq to prod_eq_iff (keeping old name too)
 huffman parents: 
42151diff
changeset | 54 | prod_eq_iff below_prod_def | 
| 40098 
9dbb01456031
use default names sprod/Rep_sprod/Abs_sprod from pcpodef instead of Sprod/Rep_Sprod/Abs_Sprod; similarly for ssum
 huffman parents: 
40092diff
changeset | 55 | Rep_ssum_strict Rep_ssum_sinl Rep_ssum_sinr | 
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 56 | |
| 67312 | 57 | |
| 62175 | 58 | subsection \<open>Properties of \emph{sinl} and \emph{sinr}\<close>
 | 
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 59 | |
| 62175 | 60 | text \<open>Ordering\<close> | 
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 61 | |
| 67312 | 62 | lemma sinl_below [simp]: "sinl\<cdot>x \<sqsubseteq> sinl\<cdot>y \<longleftrightarrow> x \<sqsubseteq> y" | 
| 63 | by (simp add: Rep_ssum_simps seq_conv_if) | |
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 64 | |
| 67312 | 65 | lemma sinr_below [simp]: "sinr\<cdot>x \<sqsubseteq> sinr\<cdot>y \<longleftrightarrow> x \<sqsubseteq> y" | 
| 66 | by (simp add: Rep_ssum_simps seq_conv_if) | |
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 67 | |
| 67312 | 68 | lemma sinl_below_sinr [simp]: "sinl\<cdot>x \<sqsubseteq> sinr\<cdot>y \<longleftrightarrow> x = \<bottom>" | 
| 69 | by (simp add: Rep_ssum_simps seq_conv_if) | |
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 70 | |
| 67312 | 71 | lemma sinr_below_sinl [simp]: "sinr\<cdot>x \<sqsubseteq> sinl\<cdot>y \<longleftrightarrow> x = \<bottom>" | 
| 72 | by (simp add: Rep_ssum_simps seq_conv_if) | |
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 73 | |
| 62175 | 74 | text \<open>Equality\<close> | 
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 75 | |
| 67312 | 76 | lemma sinl_eq [simp]: "sinl\<cdot>x = sinl\<cdot>y \<longleftrightarrow> x = y" | 
| 77 | by (simp add: po_eq_conv) | |
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 78 | |
| 67312 | 79 | lemma sinr_eq [simp]: "sinr\<cdot>x = sinr\<cdot>y \<longleftrightarrow> x = y" | 
| 80 | by (simp add: po_eq_conv) | |
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 81 | |
| 67312 | 82 | lemma sinl_eq_sinr [simp]: "sinl\<cdot>x = sinr\<cdot>y \<longleftrightarrow> x = \<bottom> \<and> y = \<bottom>" | 
| 83 | by (subst po_eq_conv) simp | |
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 84 | |
| 67312 | 85 | lemma sinr_eq_sinl [simp]: "sinr\<cdot>x = sinl\<cdot>y \<longleftrightarrow> x = \<bottom> \<and> y = \<bottom>" | 
| 86 | by (subst po_eq_conv) simp | |
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 87 | |
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 88 | lemma sinl_inject: "sinl\<cdot>x = sinl\<cdot>y \<Longrightarrow> x = y" | 
| 67312 | 89 | by (rule sinl_eq [THEN iffD1]) | 
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 90 | |
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 91 | lemma sinr_inject: "sinr\<cdot>x = sinr\<cdot>y \<Longrightarrow> x = y" | 
| 67312 | 92 | by (rule sinr_eq [THEN iffD1]) | 
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 93 | |
| 62175 | 94 | text \<open>Strictness\<close> | 
| 17837 | 95 | |
| 16211 
faa9691da2bc
changed to use new contI; renamed strict, defined, and inject lemmas
 huffman parents: 
16083diff
changeset | 96 | lemma sinl_strict [simp]: "sinl\<cdot>\<bottom> = \<bottom>" | 
| 67312 | 97 | by (simp add: Rep_ssum_simps) | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 98 | |
| 16211 
faa9691da2bc
changed to use new contI; renamed strict, defined, and inject lemmas
 huffman parents: 
16083diff
changeset | 99 | lemma sinr_strict [simp]: "sinr\<cdot>\<bottom> = \<bottom>" | 
| 67312 | 100 | by (simp add: Rep_ssum_simps) | 
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 101 | |
| 67312 | 102 | lemma sinl_bottom_iff [simp]: "sinl\<cdot>x = \<bottom> \<longleftrightarrow> x = \<bottom>" | 
| 103 | using sinl_eq [of "x" "\<bottom>"] by simp | |
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 104 | |
| 67312 | 105 | lemma sinr_bottom_iff [simp]: "sinr\<cdot>x = \<bottom> \<longleftrightarrow> x = \<bottom>" | 
| 106 | using sinr_eq [of "x" "\<bottom>"] by simp | |
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 107 | |
| 40081 | 108 | lemma sinl_defined: "x \<noteq> \<bottom> \<Longrightarrow> sinl\<cdot>x \<noteq> \<bottom>" | 
| 67312 | 109 | by simp | 
| 16752 
270ec60cc9e8
added lemmas sinl_defined_iff sinr_defined_iff, sinl_eq_sinr, sinr_eq_sinl; added more simp rules; cleaned up
 huffman parents: 
16742diff
changeset | 110 | |
| 40081 | 111 | lemma sinr_defined: "x \<noteq> \<bottom> \<Longrightarrow> sinr\<cdot>x \<noteq> \<bottom>" | 
| 67312 | 112 | by simp | 
| 16752 
270ec60cc9e8
added lemmas sinl_defined_iff sinr_defined_iff, sinl_eq_sinr, sinr_eq_sinl; added more simp rules; cleaned up
 huffman parents: 
16742diff
changeset | 113 | |
| 62175 | 114 | text \<open>Compactness\<close> | 
| 25882 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 115 | |
| 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 116 | lemma compact_sinl: "compact x \<Longrightarrow> compact (sinl\<cdot>x)" | 
| 67312 | 117 | by (rule compact_ssum) (simp add: Rep_ssum_sinl) | 
| 25882 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 118 | |
| 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 119 | lemma compact_sinr: "compact x \<Longrightarrow> compact (sinr\<cdot>x)" | 
| 67312 | 120 | by (rule compact_ssum) (simp add: Rep_ssum_sinr) | 
| 25882 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 121 | |
| 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 122 | lemma compact_sinlD: "compact (sinl\<cdot>x) \<Longrightarrow> compact x" | 
| 67312 | 123 | unfolding compact_def | 
| 124 | by (drule adm_subst [OF cont_Rep_cfun2 [where f=sinl]], simp) | |
| 25882 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 125 | |
| 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 126 | lemma compact_sinrD: "compact (sinr\<cdot>x) \<Longrightarrow> compact x" | 
| 67312 | 127 | unfolding compact_def | 
| 128 | by (drule adm_subst [OF cont_Rep_cfun2 [where f=sinr]], simp) | |
| 25882 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 129 | |
| 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 130 | lemma compact_sinl_iff [simp]: "compact (sinl\<cdot>x) = compact x" | 
| 67312 | 131 | by (safe elim!: compact_sinl compact_sinlD) | 
| 25882 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 132 | |
| 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 133 | lemma compact_sinr_iff [simp]: "compact (sinr\<cdot>x) = compact x" | 
| 67312 | 134 | by (safe elim!: compact_sinr compact_sinrD) | 
| 135 | ||
| 25882 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 136 | |
| 62175 | 137 | subsection \<open>Case analysis\<close> | 
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 138 | |
| 35783 | 139 | lemma ssumE [case_names bottom sinl sinr, cases type: ssum]: | 
| 40080 | 140 | obtains "p = \<bottom>" | 
| 141 | | x where "p = sinl\<cdot>x" and "x \<noteq> \<bottom>" | |
| 142 | | y where "p = sinr\<cdot>y" and "y \<noteq> \<bottom>" | |
| 67312 | 143 | using Rep_ssum [of p] by (auto simp add: ssum_def Rep_ssum_simps) | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 144 | |
| 35783 | 145 | lemma ssum_induct [case_names bottom sinl sinr, induct type: ssum]: | 
| 25756 | 146 | "\<lbrakk>P \<bottom>; | 
| 147 | \<And>x. x \<noteq> \<bottom> \<Longrightarrow> P (sinl\<cdot>x); | |
| 148 | \<And>y. y \<noteq> \<bottom> \<Longrightarrow> P (sinr\<cdot>y)\<rbrakk> \<Longrightarrow> P x" | |
| 67312 | 149 | by (cases x) simp_all | 
| 25756 | 150 | |
| 35783 | 151 | lemma ssumE2 [case_names sinl sinr]: | 
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 152 | "\<lbrakk>\<And>x. p = sinl\<cdot>x \<Longrightarrow> Q; \<And>y. p = sinr\<cdot>y \<Longrightarrow> Q\<rbrakk> \<Longrightarrow> Q" | 
| 67312 | 153 | by (cases p, simp only: sinl_strict [symmetric], simp, simp) | 
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 154 | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
29530diff
changeset | 155 | lemma below_sinlD: "p \<sqsubseteq> sinl\<cdot>x \<Longrightarrow> \<exists>y. p = sinl\<cdot>y \<and> y \<sqsubseteq> x" | 
| 67312 | 156 | by (cases p, rule_tac x="\<bottom>" in exI, simp_all) | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 157 | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
29530diff
changeset | 158 | lemma below_sinrD: "p \<sqsubseteq> sinr\<cdot>x \<Longrightarrow> \<exists>y. p = sinr\<cdot>y \<and> y \<sqsubseteq> x" | 
| 67312 | 159 | by (cases p, rule_tac x="\<bottom>" in exI, simp_all) | 
| 160 | ||
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 161 | |
| 62175 | 162 | subsection \<open>Case analysis combinator\<close> | 
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 163 | |
| 67312 | 164 | definition sscase :: "('a \<rightarrow> 'c) \<rightarrow> ('b \<rightarrow> 'c) \<rightarrow> ('a ++ 'b) \<rightarrow> 'c"
 | 
| 165 | where "sscase = (\<Lambda> f g s. (\<lambda>(t, x, y). If t then f\<cdot>x else g\<cdot>y) (Rep_ssum s))" | |
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 166 | |
| 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 167 | translations | 
| 67312 | 168 | "case s of XCONST sinl\<cdot>x \<Rightarrow> t1 | XCONST sinr\<cdot>y \<Rightarrow> t2" \<rightleftharpoons> "CONST sscase\<cdot>(\<Lambda> x. t1)\<cdot>(\<Lambda> y. t2)\<cdot>s" | 
| 169 | "case s of (XCONST sinl :: 'a)\<cdot>x \<Rightarrow> t1 | XCONST sinr\<cdot>y \<Rightarrow> t2" \<rightharpoonup> "CONST sscase\<cdot>(\<Lambda> x. t1)\<cdot>(\<Lambda> y. t2)\<cdot>s" | |
| 18078 
20e5a6440790
change syntax for LAM to use expressions as patterns; define LAM pattern syntax for cpair, spair, sinl, sinr, up
 huffman parents: 
17837diff
changeset | 170 | |
| 
20e5a6440790
change syntax for LAM to use expressions as patterns; define LAM pattern syntax for cpair, spair, sinl, sinr, up
 huffman parents: 
17837diff
changeset | 171 | translations | 
| 67312 | 172 | "\<Lambda>(XCONST sinl\<cdot>x). t" \<rightleftharpoons> "CONST sscase\<cdot>(\<Lambda> x. t)\<cdot>\<bottom>" | 
| 173 | "\<Lambda>(XCONST sinr\<cdot>y). t" \<rightleftharpoons> "CONST sscase\<cdot>\<bottom>\<cdot>(\<Lambda> y. t)" | |
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 174 | |
| 67312 | 175 | lemma beta_sscase: "sscase\<cdot>f\<cdot>g\<cdot>s = (\<lambda>(t, x, y). If t then f\<cdot>x else g\<cdot>y) (Rep_ssum s)" | 
| 176 | by (simp add: sscase_def cont_Rep_ssum) | |
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 177 | |
| 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 178 | lemma sscase1 [simp]: "sscase\<cdot>f\<cdot>g\<cdot>\<bottom> = \<bottom>" | 
| 67312 | 179 | by (simp add: beta_sscase Rep_ssum_strict) | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 180 | |
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 181 | lemma sscase2 [simp]: "x \<noteq> \<bottom> \<Longrightarrow> sscase\<cdot>f\<cdot>g\<cdot>(sinl\<cdot>x) = f\<cdot>x" | 
| 67312 | 182 | by (simp add: beta_sscase Rep_ssum_sinl) | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 183 | |
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 184 | lemma sscase3 [simp]: "y \<noteq> \<bottom> \<Longrightarrow> sscase\<cdot>f\<cdot>g\<cdot>(sinr\<cdot>y) = g\<cdot>y" | 
| 67312 | 185 | by (simp add: beta_sscase Rep_ssum_sinr) | 
| 15593 
24d770bbc44a
reordered and arranged for document generation, cleaned up some proofs
 huffman parents: 
15577diff
changeset | 186 | |
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 187 | lemma sscase4 [simp]: "sscase\<cdot>sinl\<cdot>sinr\<cdot>z = z" | 
| 67312 | 188 | by (cases z) simp_all | 
| 189 | ||
| 15593 
24d770bbc44a
reordered and arranged for document generation, cleaned up some proofs
 huffman parents: 
15577diff
changeset | 190 | |
| 62175 | 191 | subsection \<open>Strict sum preserves flatness\<close> | 
| 25827 
c2adeb1bae5c
new instance proofs for classes finite_po, chfin, flat
 huffman parents: 
25756diff
changeset | 192 | |
| 35525 | 193 | instance ssum :: (flat, flat) flat | 
| 67312 | 194 | apply (intro_classes, clarify) | 
| 195 | apply (case_tac x, simp) | |
| 196 | apply (case_tac y, simp_all add: flat_below_iff) | |
| 197 | apply (case_tac y, simp_all add: flat_below_iff) | |
| 198 | done | |
| 25827 
c2adeb1bae5c
new instance proofs for classes finite_po, chfin, flat
 huffman parents: 
25756diff
changeset | 199 | |
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 200 | end |