| author | paulson | 
| Fri, 02 Oct 1998 10:44:20 +0200 | |
| changeset 5607 | 5db9e2343ade | 
| parent 5441 | 45bd13b15d80 | 
| child 5608 | a82a038a3e7a | 
| permissions | -rw-r--r-- | 
| 1465 | 1  | 
(* Title: HOL/Fun  | 
| 923 | 2  | 
ID: $Id$  | 
| 1465 | 3  | 
Author: Tobias Nipkow, Cambridge University Computer Laboratory  | 
| 923 | 4  | 
Copyright 1993 University of Cambridge  | 
5  | 
||
6  | 
Lemmas about functions.  | 
|
7  | 
*)  | 
|
8  | 
||
| 4656 | 9  | 
|
| 5069 | 10  | 
Goal "(f = g) = (!x. f(x)=g(x))";  | 
| 923 | 11  | 
by (rtac iffI 1);  | 
| 1264 | 12  | 
by (Asm_simp_tac 1);  | 
13  | 
by (rtac ext 1 THEN Asm_simp_tac 1);  | 
|
| 923 | 14  | 
qed "expand_fun_eq";  | 
15  | 
||
| 5316 | 16  | 
val prems = Goal  | 
| 923 | 17  | 
"[| f(x)=u; !!x. P(x) ==> g(f(x)) = x; P(x) |] ==> x=g(u)";  | 
18  | 
by (rtac (arg_cong RS box_equals) 1);  | 
|
19  | 
by (REPEAT (resolve_tac (prems@[refl]) 1));  | 
|
20  | 
qed "apply_inverse";  | 
|
21  | 
||
22  | 
||
| 4656 | 23  | 
(** "Axiom" of Choice, proved using the description operator **)  | 
24  | 
||
| 5316 | 25  | 
Goal "!!Q. ALL x. EX y. Q x y ==> EX f. ALL x. Q x (f x)";  | 
| 4656 | 26  | 
by (fast_tac (claset() addEs [selectI]) 1);  | 
27  | 
qed "choice";  | 
|
28  | 
||
| 5316 | 29  | 
Goal "!!S. ALL x:S. EX y. Q x y ==> EX f. ALL x:S. Q x (f x)";  | 
| 4656 | 30  | 
by (fast_tac (claset() addEs [selectI]) 1);  | 
31  | 
qed "bchoice";  | 
|
32  | 
||
33  | 
||
| 5441 | 34  | 
section "Id";  | 
35  | 
||
36  | 
qed_goalw "Id_apply" thy [Id_def] "Id x = x" (K [rtac refl 1]);  | 
|
37  | 
Addsimps [Id_apply];  | 
|
38  | 
||
39  | 
||
| 5306 | 40  | 
section "o";  | 
41  | 
||
42  | 
qed_goalw "o_apply" thy [o_def] "(f o g) x = f (g x)"  | 
|
43  | 
(K [rtac refl 1]);  | 
|
44  | 
Addsimps [o_apply];  | 
|
45  | 
||
46  | 
qed_goalw "o_assoc" thy [o_def] "f o (g o h) = f o g o h"  | 
|
47  | 
(K [rtac ext 1, rtac refl 1]);  | 
|
48  | 
||
49  | 
qed_goalw "Id_o" thy [Id_def] "Id o g = g"  | 
|
50  | 
(K [rtac ext 1, Simp_tac 1]);  | 
|
51  | 
Addsimps [Id_o];  | 
|
52  | 
||
53  | 
qed_goalw "o_Id" thy [Id_def] "f o Id = f"  | 
|
54  | 
(K [rtac ext 1, Simp_tac 1]);  | 
|
55  | 
Addsimps [o_Id];  | 
|
56  | 
||
57  | 
Goalw [o_def] "(f o g)``r = f``(g``r)";  | 
|
58  | 
by (Blast_tac 1);  | 
|
59  | 
qed "image_compose";  | 
|
60  | 
||
61  | 
||
62  | 
section "inj";  | 
|
63  | 
||
| 923 | 64  | 
(*** inj(f): f is a one-to-one function ***)  | 
65  | 
||
| 5316 | 66  | 
val prems = Goalw [inj_def]  | 
| 923 | 67  | 
"[| !! x y. f(x) = f(y) ==> x=y |] ==> inj(f)";  | 
| 4089 | 68  | 
by (blast_tac (claset() addIs prems) 1);  | 
| 923 | 69  | 
qed "injI";  | 
70  | 
||
| 5316 | 71  | 
val [major] = Goal "(!!x. g(f(x)) = x) ==> inj(f)";  | 
| 923 | 72  | 
by (rtac injI 1);  | 
73  | 
by (etac (arg_cong RS box_equals) 1);  | 
|
74  | 
by (rtac major 1);  | 
|
75  | 
by (rtac major 1);  | 
|
76  | 
qed "inj_inverseI";  | 
|
77  | 
||
| 5316 | 78  | 
Goalw [inj_def] "[| inj(f); f(x) = f(y) |] ==> x=y";  | 
79  | 
by (Blast_tac 1);  | 
|
| 923 | 80  | 
qed "injD";  | 
81  | 
||
82  | 
(*Useful with the simplifier*)  | 
|
| 5316 | 83  | 
Goal "inj(f) ==> (f(x) = f(y)) = (x=y)";  | 
| 923 | 84  | 
by (rtac iffI 1);  | 
| 5316 | 85  | 
by (etac arg_cong 2);  | 
86  | 
by (etac injD 1);  | 
|
| 5318 | 87  | 
by (assume_tac 1);  | 
| 923 | 88  | 
qed "inj_eq";  | 
89  | 
||
| 5316 | 90  | 
Goal "inj(f) ==> (@x. f(x)=f(y)) = y";  | 
91  | 
by (etac injD 1);  | 
|
| 923 | 92  | 
by (rtac selectI 1);  | 
93  | 
by (rtac refl 1);  | 
|
94  | 
qed "inj_select";  | 
|
95  | 
||
96  | 
(*A one-to-one function has an inverse (given using select).*)  | 
|
| 5316 | 97  | 
Goalw [inv_def] "inj(f) ==> inv f (f x) = x";  | 
98  | 
by (etac inj_select 1);  | 
|
| 2912 | 99  | 
qed "inv_f_f";  | 
| 923 | 100  | 
|
101  | 
(* Useful??? *)  | 
|
| 5316 | 102  | 
val [oneone,minor] = Goal  | 
| 2912 | 103  | 
"[| inj(f); !!y. y: range(f) ==> P(inv f y) |] ==> P(x)";  | 
104  | 
by (res_inst_tac [("t", "x")] (oneone RS (inv_f_f RS subst)) 1);
 | 
|
| 923 | 105  | 
by (rtac (rangeI RS minor) 1);  | 
106  | 
qed "inj_transfer";  | 
|
107  | 
||
108  | 
||
| 4830 | 109  | 
(*** inj_on f A: f is one-to-one over A ***)  | 
| 923 | 110  | 
|
| 5316 | 111  | 
val prems = Goalw [inj_on_def]  | 
| 4830 | 112  | 
"(!! x y. [| f(x) = f(y); x:A; y:A |] ==> x=y) ==> inj_on f A";  | 
| 4089 | 113  | 
by (blast_tac (claset() addIs prems) 1);  | 
| 4830 | 114  | 
qed "inj_onI";  | 
| 923 | 115  | 
|
| 5316 | 116  | 
val [major] = Goal  | 
| 4830 | 117  | 
"(!!x. x:A ==> g(f(x)) = x) ==> inj_on f A";  | 
118  | 
by (rtac inj_onI 1);  | 
|
| 923 | 119  | 
by (etac (apply_inverse RS trans) 1);  | 
120  | 
by (REPEAT (eresolve_tac [asm_rl,major] 1));  | 
|
| 4830 | 121  | 
qed "inj_on_inverseI";  | 
| 923 | 122  | 
|
| 5316 | 123  | 
Goalw [inj_on_def] "[| inj_on f A; f(x)=f(y); x:A; y:A |] ==> x=y";  | 
124  | 
by (Blast_tac 1);  | 
|
| 4830 | 125  | 
qed "inj_onD";  | 
| 923 | 126  | 
|
| 
5143
 
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
 
paulson 
parents: 
5069 
diff
changeset
 | 
127  | 
Goal "[| inj_on f A; x:A; y:A |] ==> (f(x)=f(y)) = (x=y)";  | 
| 4830 | 128  | 
by (blast_tac (claset() addSDs [inj_onD]) 1);  | 
129  | 
qed "inj_on_iff";  | 
|
| 923 | 130  | 
|
| 5316 | 131  | 
Goalw [inj_on_def] "[| inj_on f A; ~x=y; x:A; y:A |] ==> ~ f(x)=f(y)";  | 
132  | 
by (Blast_tac 1);  | 
|
| 4830 | 133  | 
qed "inj_on_contraD";  | 
| 923 | 134  | 
|
| 5316 | 135  | 
Goalw [inj_on_def] "[| A<=B; inj_on f B |] ==> inj_on f A";  | 
| 3341 | 136  | 
by (Blast_tac 1);  | 
| 4830 | 137  | 
qed "subset_inj_on";  | 
| 3341 | 138  | 
|
| 923 | 139  | 
|
140  | 
(*** Lemmas about inj ***)  | 
|
141  | 
||
| 5316 | 142  | 
Goalw [o_def] "[| inj(f); inj_on g (range f) |] ==> inj(g o f)";  | 
| 4830 | 143  | 
by (fast_tac (claset() addIs [injI] addEs [injD, inj_onD]) 1);  | 
| 923 | 144  | 
qed "comp_inj";  | 
145  | 
||
| 5316 | 146  | 
Goal "inj(f) ==> inj_on f A";  | 
147  | 
by (blast_tac (claset() addIs [injD, inj_onI]) 1);  | 
|
| 923 | 148  | 
qed "inj_imp";  | 
149  | 
||
| 5316 | 150  | 
Goalw [inv_def] "y : range(f) ==> f(inv f y) = y";  | 
151  | 
by (fast_tac (claset() addIs [selectI]) 1);  | 
|
| 2912 | 152  | 
qed "f_inv_f";  | 
| 923 | 153  | 
|
| 5316 | 154  | 
Goal "[| inv f x=inv f y; x: range(f); y: range(f) |] ==> x=y";  | 
| 2912 | 155  | 
by (rtac (arg_cong RS box_equals) 1);  | 
| 5316 | 156  | 
by (REPEAT (ares_tac [f_inv_f] 1));  | 
| 2912 | 157  | 
qed "inv_injective";  | 
158  | 
||
| 
5143
 
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
 
paulson 
parents: 
5069 
diff
changeset
 | 
159  | 
Goal "[| inj(f); A<=range(f) |] ==> inj_on (inv f) A";  | 
| 4830 | 160  | 
by (fast_tac (claset() addIs [inj_onI]  | 
| 2912 | 161  | 
addEs [inv_injective,injD]) 1);  | 
| 4830 | 162  | 
qed "inj_on_inv";  | 
| 923 | 163  | 
|
| 5069 | 164  | 
Goalw [inj_on_def]  | 
| 
5148
 
74919e8f221c
More tidying and removal of "\!\!... from Goal commands
 
paulson 
parents: 
5143 
diff
changeset
 | 
165  | 
"[| inj_on f C; A<=C; B<=C |] ==> f``(A Int B) = f``A Int f``B";  | 
| 4059 | 166  | 
by (Blast_tac 1);  | 
| 4830 | 167  | 
qed "inj_on_image_Int";  | 
| 4059 | 168  | 
|
| 5069 | 169  | 
Goalw [inj_on_def]  | 
| 
5148
 
74919e8f221c
More tidying and removal of "\!\!... from Goal commands
 
paulson 
parents: 
5143 
diff
changeset
 | 
170  | 
"[| inj_on f C; A<=C; B<=C |] ==> f``(A-B) = f``A - f``B";  | 
| 4059 | 171  | 
by (Blast_tac 1);  | 
| 4830 | 172  | 
qed "inj_on_image_set_diff";  | 
| 4059 | 173  | 
|
| 
5143
 
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
 
paulson 
parents: 
5069 
diff
changeset
 | 
174  | 
Goalw [inj_def] "inj f ==> f``(A Int B) = f``A Int f``B";  | 
| 4059 | 175  | 
by (Blast_tac 1);  | 
176  | 
qed "image_Int";  | 
|
177  | 
||
| 
5143
 
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
 
paulson 
parents: 
5069 
diff
changeset
 | 
178  | 
Goalw [inj_def] "inj f ==> f``(A-B) = f``A - f``B";  | 
| 4059 | 179  | 
by (Blast_tac 1);  | 
180  | 
qed "image_set_diff";  | 
|
181  | 
||
| 923 | 182  | 
|
| 4089 | 183  | 
val set_cs = claset() delrules [equalityI];  | 
| 5305 | 184  | 
|
185  | 
||
186  | 
section "fun_upd";  | 
|
187  | 
||
188  | 
Goalw [fun_upd_def] "(f(x:=y) = f) = (f x = y)";  | 
|
189  | 
by Safe_tac;  | 
|
190  | 
by (etac subst 1);  | 
|
191  | 
by (rtac ext 2);  | 
|
192  | 
by Auto_tac;  | 
|
193  | 
qed "fun_upd_idem_iff";  | 
|
194  | 
||
195  | 
(* f x = y ==> f(x:=y) = f *)  | 
|
196  | 
bind_thm("fun_upd_idem", fun_upd_idem_iff RS iffD2);
 | 
|
197  | 
||
198  | 
(* f(x := f x) = f *)  | 
|
199  | 
AddIffs [refl RS fun_upd_idem];  | 
|
200  | 
||
201  | 
Goal "(f(x:=y))z = (if z=x then y else f z)";  | 
|
202  | 
by (simp_tac (simpset() addsimps [fun_upd_def]) 1);  | 
|
203  | 
qed "fun_upd_apply";  | 
|
204  | 
Addsimps [fun_upd_apply];  | 
|
205  | 
||
206  | 
qed_goal "fun_upd_same" thy "(f(x:=y)) x = y"  | 
|
207  | 
(K [Simp_tac 1]);  | 
|
| 5306 | 208  | 
qed_goal "fun_upd_other" thy "!!X. z~=x ==> (f(x:=y)) z = f z"  | 
| 5305 | 209  | 
(K [Asm_simp_tac 1]);  | 
210  | 
(*Addsimps [fun_upd_same, fun_upd_other];*)  | 
|
211  | 
||
212  | 
Goal "a ~= c ==> m(a:=b)(c:=d) = m(c:=d)(a:=b)";  | 
|
213  | 
by (rtac ext 1);  | 
|
214  | 
by (Auto_tac);  | 
|
215  | 
qed "fun_upd_twist";  |