0
|
1 |
(* Title: CCL/trancl
|
|
2 |
ID: $Id$
|
|
3 |
|
|
4 |
For trancl.thy.
|
|
5 |
|
|
6 |
Modified version of
|
|
7 |
Title: HOL/trancl.ML
|
|
8 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
|
|
9 |
Copyright 1992 University of Cambridge
|
|
10 |
|
|
11 |
*)
|
|
12 |
|
|
13 |
open Trancl;
|
|
14 |
|
|
15 |
(** Natural deduction for trans(r) **)
|
|
16 |
|
|
17 |
val prems = goalw Trancl.thy [trans_def]
|
|
18 |
"(!! x y z. [| <x,y>:r; <y,z>:r |] ==> <x,z>:r) ==> trans(r)";
|
|
19 |
by (REPEAT (ares_tac (prems@[allI,impI]) 1));
|
|
20 |
val transI = result();
|
|
21 |
|
|
22 |
val major::prems = goalw Trancl.thy [trans_def]
|
|
23 |
"[| trans(r); <a,b>:r; <b,c>:r |] ==> <a,c>:r";
|
|
24 |
by (cut_facts_tac [major] 1);
|
|
25 |
by (fast_tac (FOL_cs addIs prems) 1);
|
|
26 |
val transD = result();
|
|
27 |
|
|
28 |
(** Identity relation **)
|
|
29 |
|
|
30 |
goalw Trancl.thy [id_def] "<a,a> : id";
|
|
31 |
by (rtac CollectI 1);
|
|
32 |
by (rtac exI 1);
|
|
33 |
by (rtac refl 1);
|
|
34 |
val idI = result();
|
|
35 |
|
|
36 |
val major::prems = goalw Trancl.thy [id_def]
|
|
37 |
"[| p: id; !!x.[| p = <x,x> |] ==> P \
|
|
38 |
\ |] ==> P";
|
|
39 |
by (rtac (major RS CollectE) 1);
|
|
40 |
by (etac exE 1);
|
|
41 |
by (eresolve_tac prems 1);
|
|
42 |
val idE = result();
|
|
43 |
|
|
44 |
(** Composition of two relations **)
|
|
45 |
|
|
46 |
val prems = goalw Trancl.thy [comp_def]
|
|
47 |
"[| <a,b>:s; <b,c>:r |] ==> <a,c> : r O s";
|
|
48 |
by (fast_tac (set_cs addIs prems) 1);
|
|
49 |
val compI = result();
|
|
50 |
|
|
51 |
(*proof requires higher-level assumptions or a delaying of hyp_subst_tac*)
|
|
52 |
val prems = goalw Trancl.thy [comp_def]
|
|
53 |
"[| xz : r O s; \
|
|
54 |
\ !!x y z. [| xz = <x,z>; <x,y>:s; <y,z>:r |] ==> P \
|
|
55 |
\ |] ==> P";
|
|
56 |
by (cut_facts_tac prems 1);
|
|
57 |
by (REPEAT (eresolve_tac [CollectE, exE, conjE] 1 ORELSE ares_tac prems 1));
|
|
58 |
val compE = result();
|
|
59 |
|
|
60 |
val prems = goal Trancl.thy
|
|
61 |
"[| <a,c> : r O s; \
|
|
62 |
\ !!y. [| <a,y>:s; <y,c>:r |] ==> P \
|
|
63 |
\ |] ==> P";
|
|
64 |
by (rtac compE 1);
|
|
65 |
by (REPEAT (ares_tac prems 1 ORELSE eresolve_tac [pair_inject,ssubst] 1));
|
|
66 |
val compEpair = result();
|
|
67 |
|
|
68 |
val comp_cs = set_cs addIs [compI,idI]
|
|
69 |
addEs [compE,idE]
|
|
70 |
addSEs [pair_inject];
|
|
71 |
|
|
72 |
val prems = goal Trancl.thy
|
|
73 |
"[| r'<=r; s'<=s |] ==> (r' O s') <= (r O s)";
|
|
74 |
by (cut_facts_tac prems 1);
|
|
75 |
by (fast_tac comp_cs 1);
|
|
76 |
val comp_mono = result();
|
|
77 |
|
|
78 |
(** The relation rtrancl **)
|
|
79 |
|
|
80 |
goal Trancl.thy "mono(%s. id Un (r O s))";
|
|
81 |
by (rtac monoI 1);
|
|
82 |
by (REPEAT (ares_tac [monoI, subset_refl, comp_mono, Un_mono] 1));
|
|
83 |
val rtrancl_fun_mono = result();
|
|
84 |
|
|
85 |
val rtrancl_unfold = rtrancl_fun_mono RS (rtrancl_def RS def_lfp_Tarski);
|
|
86 |
|
|
87 |
(*Reflexivity of rtrancl*)
|
|
88 |
goal Trancl.thy "<a,a> : r^*";
|
|
89 |
br (rtrancl_unfold RS ssubst) 1;
|
|
90 |
by (fast_tac comp_cs 1);
|
|
91 |
val rtrancl_refl = result();
|
|
92 |
|
|
93 |
(*Closure under composition with r*)
|
|
94 |
val prems = goal Trancl.thy
|
|
95 |
"[| <a,b> : r^*; <b,c> : r |] ==> <a,c> : r^*";
|
|
96 |
br (rtrancl_unfold RS ssubst) 1;
|
|
97 |
by (fast_tac (comp_cs addIs prems) 1);
|
|
98 |
val rtrancl_into_rtrancl = result();
|
|
99 |
|
|
100 |
(*rtrancl of r contains r*)
|
|
101 |
val [prem] = goal Trancl.thy "[| <a,b> : r |] ==> <a,b> : r^*";
|
|
102 |
by (rtac (rtrancl_refl RS rtrancl_into_rtrancl) 1);
|
|
103 |
by (rtac prem 1);
|
|
104 |
val r_into_rtrancl = result();
|
|
105 |
|
|
106 |
|
|
107 |
(** standard induction rule **)
|
|
108 |
|
|
109 |
val major::prems = goal Trancl.thy
|
|
110 |
"[| <a,b> : r^*; \
|
|
111 |
\ !!x. P(<x,x>); \
|
|
112 |
\ !!x y z.[| P(<x,y>); <x,y>: r^*; <y,z>: r |] ==> P(<x,z>) |] \
|
|
113 |
\ ==> P(<a,b>)";
|
|
114 |
by (rtac (major RS (rtrancl_def RS def_induct)) 1);
|
|
115 |
by (rtac rtrancl_fun_mono 1);
|
|
116 |
by (fast_tac (comp_cs addIs prems) 1);
|
|
117 |
val rtrancl_full_induct = result();
|
|
118 |
|
|
119 |
(*nice induction rule*)
|
|
120 |
val major::prems = goal Trancl.thy
|
|
121 |
"[| <a,b> : r^*; \
|
|
122 |
\ P(a); \
|
|
123 |
\ !!y z.[| <a,y> : r^*; <y,z> : r; P(y) |] ==> P(z) |] \
|
|
124 |
\ ==> P(b)";
|
|
125 |
(*by induction on this formula*)
|
|
126 |
by (subgoal_tac "ALL y. <a,b> = <a,y> --> P(y)" 1);
|
|
127 |
(*now solve first subgoal: this formula is sufficient*)
|
|
128 |
by (fast_tac FOL_cs 1);
|
|
129 |
(*now do the induction*)
|
|
130 |
by (resolve_tac [major RS rtrancl_full_induct] 1);
|
|
131 |
by (fast_tac (comp_cs addIs prems) 1);
|
|
132 |
by (fast_tac (comp_cs addIs prems) 1);
|
|
133 |
val rtrancl_induct = result();
|
|
134 |
|
|
135 |
(*transitivity of transitive closure!! -- by induction.*)
|
|
136 |
goal Trancl.thy "trans(r^*)";
|
|
137 |
by (rtac transI 1);
|
|
138 |
by (res_inst_tac [("b","z")] rtrancl_induct 1);
|
|
139 |
by (DEPTH_SOLVE (eresolve_tac [asm_rl, rtrancl_into_rtrancl] 1));
|
|
140 |
val trans_rtrancl = result();
|
|
141 |
|
|
142 |
(*elimination of rtrancl -- by induction on a special formula*)
|
|
143 |
val major::prems = goal Trancl.thy
|
|
144 |
"[| <a,b> : r^*; (a = b) ==> P; \
|
|
145 |
\ !!y.[| <a,y> : r^*; <y,b> : r |] ==> P |] \
|
|
146 |
\ ==> P";
|
|
147 |
by (subgoal_tac "a = b | (EX y. <a,y> : r^* & <y,b> : r)" 1);
|
|
148 |
by (rtac (major RS rtrancl_induct) 2);
|
|
149 |
by (fast_tac (set_cs addIs prems) 2);
|
|
150 |
by (fast_tac (set_cs addIs prems) 2);
|
|
151 |
by (REPEAT (eresolve_tac ([asm_rl,exE,disjE,conjE]@prems) 1));
|
|
152 |
val rtranclE = result();
|
|
153 |
|
|
154 |
|
|
155 |
(**** The relation trancl ****)
|
|
156 |
|
|
157 |
(** Conversions between trancl and rtrancl **)
|
|
158 |
|
|
159 |
val [major] = goalw Trancl.thy [trancl_def]
|
|
160 |
"[| <a,b> : r^+ |] ==> <a,b> : r^*";
|
|
161 |
by (resolve_tac [major RS compEpair] 1);
|
|
162 |
by (REPEAT (ares_tac [rtrancl_into_rtrancl] 1));
|
|
163 |
val trancl_into_rtrancl = result();
|
|
164 |
|
|
165 |
(*r^+ contains r*)
|
|
166 |
val [prem] = goalw Trancl.thy [trancl_def]
|
|
167 |
"[| <a,b> : r |] ==> <a,b> : r^+";
|
|
168 |
by (REPEAT (ares_tac [prem,compI,rtrancl_refl] 1));
|
|
169 |
val r_into_trancl = result();
|
|
170 |
|
|
171 |
(*intro rule by definition: from rtrancl and r*)
|
|
172 |
val prems = goalw Trancl.thy [trancl_def]
|
|
173 |
"[| <a,b> : r^*; <b,c> : r |] ==> <a,c> : r^+";
|
|
174 |
by (REPEAT (resolve_tac ([compI]@prems) 1));
|
|
175 |
val rtrancl_into_trancl1 = result();
|
|
176 |
|
|
177 |
(*intro rule from r and rtrancl*)
|
|
178 |
val prems = goal Trancl.thy
|
|
179 |
"[| <a,b> : r; <b,c> : r^* |] ==> <a,c> : r^+";
|
|
180 |
by (resolve_tac (prems RL [rtranclE]) 1);
|
|
181 |
by (etac subst 1);
|
|
182 |
by (resolve_tac (prems RL [r_into_trancl]) 1);
|
|
183 |
by (rtac (trans_rtrancl RS transD RS rtrancl_into_trancl1) 1);
|
|
184 |
by (REPEAT (ares_tac (prems@[r_into_rtrancl]) 1));
|
|
185 |
val rtrancl_into_trancl2 = result();
|
|
186 |
|
|
187 |
(*elimination of r^+ -- NOT an induction rule*)
|
|
188 |
val major::prems = goal Trancl.thy
|
|
189 |
"[| <a,b> : r^+; \
|
|
190 |
\ <a,b> : r ==> P; \
|
|
191 |
\ !!y.[| <a,y> : r^+; <y,b> : r |] ==> P \
|
|
192 |
\ |] ==> P";
|
|
193 |
by (subgoal_tac "<a,b> : r | (EX y. <a,y> : r^+ & <y,b> : r)" 1);
|
|
194 |
by (REPEAT (eresolve_tac ([asm_rl,disjE,exE,conjE]@prems) 1));
|
|
195 |
by (rtac (rewrite_rule [trancl_def] major RS compEpair) 1);
|
|
196 |
by (etac rtranclE 1);
|
|
197 |
by (fast_tac comp_cs 1);
|
|
198 |
by (fast_tac (comp_cs addSIs [rtrancl_into_trancl1]) 1);
|
|
199 |
val tranclE = result();
|
|
200 |
|
|
201 |
(*Transitivity of r^+.
|
|
202 |
Proved by unfolding since it uses transitivity of rtrancl. *)
|
|
203 |
goalw Trancl.thy [trancl_def] "trans(r^+)";
|
|
204 |
by (rtac transI 1);
|
|
205 |
by (REPEAT (etac compEpair 1));
|
|
206 |
by (rtac (rtrancl_into_rtrancl RS (trans_rtrancl RS transD RS compI)) 1);
|
|
207 |
by (REPEAT (assume_tac 1));
|
|
208 |
val trans_trancl = result();
|
|
209 |
|
|
210 |
val prems = goal Trancl.thy
|
|
211 |
"[| <a,b> : r; <b,c> : r^+ |] ==> <a,c> : r^+";
|
|
212 |
by (rtac (r_into_trancl RS (trans_trancl RS transD)) 1);
|
|
213 |
by (resolve_tac prems 1);
|
|
214 |
by (resolve_tac prems 1);
|
|
215 |
val trancl_into_trancl2 = result();
|