src/HOL/Multivariate_Analysis/Extended_Real_Limits.thy
author hoelzl
Tue, 05 Mar 2013 15:43:08 +0100
changeset 51340 5e6296afe08d
parent 51329 4a3c453f99a1
child 51351 dd1dd470690b
permissions -rw-r--r--
move Liminf / Limsup lemmas on complete_lattices to its own file
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
41983
2dc6e382a58b standardized headers;
wenzelm
parents: 41981
diff changeset
     1
(*  Title:      HOL/Multivariate_Analysis/Extended_Real_Limits.thy
2dc6e382a58b standardized headers;
wenzelm
parents: 41981
diff changeset
     2
    Author:     Johannes Hölzl, TU München
2dc6e382a58b standardized headers;
wenzelm
parents: 41981
diff changeset
     3
    Author:     Robert Himmelmann, TU München
2dc6e382a58b standardized headers;
wenzelm
parents: 41981
diff changeset
     4
    Author:     Armin Heller, TU München
2dc6e382a58b standardized headers;
wenzelm
parents: 41981
diff changeset
     5
    Author:     Bogdan Grechuk, University of Edinburgh
2dc6e382a58b standardized headers;
wenzelm
parents: 41981
diff changeset
     6
*)
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
     7
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
     8
header {* Limits on the Extended real number line *}
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
     9
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
    10
theory Extended_Real_Limits
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
    11
  imports Topology_Euclidean_Space "~~/src/HOL/Library/Extended_Real"
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
    12
begin
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
    13
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
    14
lemma continuous_on_ereal[intro, simp]: "continuous_on A ereal"
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
    15
  unfolding continuous_on_topological open_ereal_def by auto
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
    16
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
    17
lemma continuous_at_ereal[intro, simp]: "continuous (at x) ereal"
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
    18
  using continuous_on_eq_continuous_at[of UNIV] by auto
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
    19
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
    20
lemma continuous_within_ereal[intro, simp]: "x \<in> A \<Longrightarrow> continuous (at x within A) ereal"
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
    21
  using continuous_on_eq_continuous_within[of A] by auto
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
    22
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
    23
lemma ereal_open_uminus:
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
    24
  fixes S :: "ereal set"
51340
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
    25
  assumes "open S" shows "open (uminus ` S)"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
    26
  using `open S`[unfolded open_generated_order]
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
    27
proof induct
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
    28
  have "range uminus = (UNIV :: ereal set)"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
    29
    by (auto simp: image_iff ereal_uminus_eq_reorder)
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
    30
  then show "open (range uminus :: ereal set)" by simp
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
    31
qed (auto simp add: image_Union image_Int)
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
    32
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
    33
lemma ereal_uminus_complement:
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
    34
  fixes S :: "ereal set"
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
    35
  shows "uminus ` (- S) = - uminus ` S"
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
    36
  by (auto intro!: bij_image_Compl_eq surjI[of _ uminus] simp: bij_betw_def)
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
    37
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
    38
lemma ereal_closed_uminus:
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
    39
  fixes S :: "ereal set"
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
    40
  assumes "closed S"
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
    41
  shows "closed (uminus ` S)"
51340
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
    42
  using assms unfolding closed_def ereal_uminus_complement[symmetric] by (rule ereal_open_uminus)
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
    43
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
    44
lemma ereal_closed_contains_Inf:
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
    45
  fixes S :: "ereal set"
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
    46
  assumes "closed S" "S ~= {}"
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
    47
  shows "Inf S : S"
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
    48
proof (rule ccontr)
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
    49
  assume "Inf S \<notin> S"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
    50
  then have a: "open (-S)" "Inf S:(- S)" using assms by auto
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
    51
  show False
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
    52
  proof (cases "Inf S")
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
    53
    case MInf
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
    54
    then have "(-\<infinity>) : - S" using a by auto
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
    55
    then obtain y where "{..<ereal y} <= (-S)" using a open_MInfty2[of "- S"] by auto
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
    56
    then have "ereal y <= Inf S" by (metis Compl_anti_mono Compl_lessThan atLeast_iff
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
    57
      complete_lattice_class.Inf_greatest double_complement set_rev_mp)
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
    58
    then show False using MInf by auto
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
    59
  next
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
    60
    case PInf
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
    61
    then have "S={\<infinity>}" by (metis Inf_eq_PInfty assms(2))
44918
6a80fbc4e72c tune simpset for Complete_Lattices
noschinl
parents: 44571
diff changeset
    62
    then show False using `Inf S ~: S` by (simp add: top_ereal_def)
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
    63
  next
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
    64
    case (real r)
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
    65
    then have fin: "\<bar>Inf S\<bar> \<noteq> \<infinity>" by simp
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
    66
    from ereal_open_cont_interval[OF a this] guess e . note e = this
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
    67
    { fix x
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
    68
      assume "x:S" then have "x>=Inf S" by (rule complete_lattice_class.Inf_lower)
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
    69
      then have *: "x>Inf S-e" using e by (metis fin ereal_between(1) order_less_le_trans)
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
    70
      { assume "x<Inf S+e"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
    71
        then have "x:{Inf S-e <..< Inf S+e}" using * by auto
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
    72
        then have False using e `x:S` by auto
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
    73
      } then have "x>=Inf S+e" by (metis linorder_le_less_linear)
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
    74
    }
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
    75
    then have "Inf S + e <= Inf S" by (metis le_Inf_iff)
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
    76
    then show False using real e by (cases e) auto
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
    77
  qed
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
    78
qed
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
    79
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
    80
lemma ereal_closed_contains_Sup:
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
    81
  fixes S :: "ereal set"
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
    82
  assumes "closed S" "S ~= {}"
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
    83
  shows "Sup S : S"
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
    84
proof -
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
    85
  have "closed (uminus ` S)"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
    86
    by (metis assms(1) ereal_closed_uminus)
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
    87
  then have "Inf (uminus ` S) : uminus ` S"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
    88
    using assms ereal_closed_contains_Inf[of "uminus ` S"] by auto
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
    89
  then have "- Sup S : uminus ` S"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
    90
    using ereal_Sup_uminus_image_eq[of "uminus ` S"] by (auto simp: image_image)
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
    91
  then show ?thesis
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
    92
    by (metis imageI ereal_uminus_uminus ereal_minus_minus_image)
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
    93
qed
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
    94
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
    95
lemma ereal_open_closed_aux:
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
    96
  fixes S :: "ereal set"
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
    97
  assumes "open S" "closed S"
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
    98
    and S: "(-\<infinity>) ~: S"
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
    99
  shows "S = {}"
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   100
proof (rule ccontr)
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   101
  assume "S ~= {}"
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   102
  then have *: "(Inf S):S" by (metis assms(2) ereal_closed_contains_Inf)
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   103
  { assume "Inf S=(-\<infinity>)"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   104
    then have False using * assms(3) by auto }
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   105
  moreover
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   106
  { assume "Inf S=\<infinity>"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   107
    then have "S={\<infinity>}" by (metis Inf_eq_PInfty `S ~= {}`)
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   108
    then have False by (metis assms(1) not_open_singleton) }
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   109
  moreover
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   110
  { assume fin: "\<bar>Inf S\<bar> \<noteq> \<infinity>"
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   111
    from ereal_open_cont_interval[OF assms(1) * fin] guess e . note e = this
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   112
    then obtain b where b_def: "Inf S-e<b & b<Inf S"
51329
4a3c453f99a1 split dense into inner_dense_order and no_top/no_bot
hoelzl
parents: 51000
diff changeset
   113
      using fin ereal_between[of "Inf S" e] dense[of "Inf S-e"] by auto
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   114
    then have "b: {Inf S-e <..< Inf S+e}" using e fin ereal_between[of "Inf S" e]
44918
6a80fbc4e72c tune simpset for Complete_Lattices
noschinl
parents: 44571
diff changeset
   115
      by auto
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   116
    then have "b:S" using e by auto
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   117
    then have False using b_def by (metis complete_lattice_class.Inf_lower leD)
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   118
  } ultimately show False by auto
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   119
qed
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   120
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   121
lemma ereal_open_closed:
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   122
  fixes S :: "ereal set"
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   123
  shows "(open S & closed S) <-> (S = {} | S = UNIV)"
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   124
proof -
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   125
  { assume lhs: "open S & closed S"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   126
    { assume "(-\<infinity>) ~: S"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   127
      then have "S={}" using lhs ereal_open_closed_aux by auto }
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   128
    moreover
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   129
    { assume "(-\<infinity>) : S"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   130
      then have "(- S)={}" using lhs ereal_open_closed_aux[of "-S"] by auto }
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   131
    ultimately have "S = {} | S = UNIV" by auto
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   132
  } then show ?thesis by auto
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   133
qed
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   134
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   135
lemma ereal_open_affinity_pos:
43923
ab93d0190a5d add ereal to typeclass infinity
hoelzl
parents: 43920
diff changeset
   136
  fixes S :: "ereal set"
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   137
  assumes "open S" and m: "m \<noteq> \<infinity>" "0 < m" and t: "\<bar>t\<bar> \<noteq> \<infinity>"
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   138
  shows "open ((\<lambda>x. m * x + t) ` S)"
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   139
proof -
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   140
  obtain r where r[simp]: "m = ereal r" using m by (cases m) auto
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   141
  obtain p where p[simp]: "t = ereal p" using t by auto
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   142
  have "r \<noteq> 0" "0 < r" and m': "m \<noteq> \<infinity>" "m \<noteq> -\<infinity>" "m \<noteq> 0" using m by auto
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   143
  from `open S`[THEN ereal_openE] guess l u . note T = this
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   144
  let ?f = "(\<lambda>x. m * x + t)"
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   145
  show ?thesis
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   146
    unfolding open_ereal_def
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   147
  proof (intro conjI impI exI subsetI)
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   148
    have "ereal -` ?f ` S = (\<lambda>x. r * x + p) ` (ereal -` S)"
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   149
    proof safe
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   150
      fix x y
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   151
      assume "ereal y = m * x + t" "x \<in> S"
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   152
      then show "y \<in> (\<lambda>x. r * x + p) ` ereal -` S"
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   153
        using `r \<noteq> 0` by (cases x) (auto intro!: image_eqI[of _ _ "real x"] split: split_if_asm)
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   154
    qed force
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   155
    then show "open (ereal -` ?f ` S)"
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   156
      using open_affinity[OF T(1) `r \<noteq> 0`] by (auto simp: ac_simps)
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   157
  next
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   158
    assume "\<infinity> \<in> ?f`S"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   159
    with `0 < r` have "\<infinity> \<in> S" by auto
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   160
    fix x
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   161
    assume "x \<in> {ereal (r * l + p)<..}"
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   162
    then have [simp]: "ereal (r * l + p) < x" by auto
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   163
    show "x \<in> ?f`S"
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   164
    proof (rule image_eqI)
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   165
      show "x = m * ((x - t) / m) + t"
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   166
        using m t by (cases rule: ereal3_cases[of m x t]) auto
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   167
      have "ereal l < (x - t)/m"
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   168
        using m t by (simp add: ereal_less_divide_pos ereal_less_minus)
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   169
      then show "(x - t)/m \<in> S" using T(2)[OF `\<infinity> \<in> S`] by auto
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   170
    qed
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   171
  next
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   172
    assume "-\<infinity> \<in> ?f`S" with `0 < r` have "-\<infinity> \<in> S" by auto
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   173
    fix x assume "x \<in> {..<ereal (r * u + p)}"
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   174
    then have [simp]: "x < ereal (r * u + p)" by auto
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   175
    show "x \<in> ?f`S"
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   176
    proof (rule image_eqI)
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   177
      show "x = m * ((x - t) / m) + t"
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   178
        using m t by (cases rule: ereal3_cases[of m x t]) auto
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   179
      have "(x - t)/m < ereal u"
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   180
        using m t by (simp add: ereal_divide_less_pos ereal_minus_less)
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   181
      then show "(x - t)/m \<in> S" using T(3)[OF `-\<infinity> \<in> S`] by auto
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   182
    qed
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   183
  qed
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   184
qed
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   185
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   186
lemma ereal_open_affinity:
43923
ab93d0190a5d add ereal to typeclass infinity
hoelzl
parents: 43920
diff changeset
   187
  fixes S :: "ereal set"
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   188
  assumes "open S"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   189
    and m: "\<bar>m\<bar> \<noteq> \<infinity>" "m \<noteq> 0"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   190
    and t: "\<bar>t\<bar> \<noteq> \<infinity>"
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   191
  shows "open ((\<lambda>x. m * x + t) ` S)"
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   192
proof cases
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   193
  assume "0 < m"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   194
  then show ?thesis
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   195
    using ereal_open_affinity_pos[OF `open S` _ _ t, of m] m by auto
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   196
next
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   197
  assume "\<not> 0 < m" then
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   198
  have "0 < -m" using `m \<noteq> 0` by (cases m) auto
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   199
  then have m: "-m \<noteq> \<infinity>" "0 < -m" using `\<bar>m\<bar> \<noteq> \<infinity>`
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   200
    by (auto simp: ereal_uminus_eq_reorder)
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   201
  from ereal_open_affinity_pos[OF ereal_open_uminus[OF `open S`] m t]
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   202
  show ?thesis unfolding image_image by simp
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   203
qed
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   204
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   205
lemma ereal_lim_mult:
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   206
  fixes X :: "'a \<Rightarrow> ereal"
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   207
  assumes lim: "(X ---> L) net"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   208
    and a: "\<bar>a\<bar> \<noteq> \<infinity>"
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   209
  shows "((\<lambda>i. a * X i) ---> a * L) net"
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   210
proof cases
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   211
  assume "a \<noteq> 0"
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   212
  show ?thesis
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   213
  proof (rule topological_tendstoI)
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   214
    fix S
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   215
    assume "open S" "a * L \<in> S"
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   216
    have "a * L / a = L"
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   217
      using `a \<noteq> 0` a by (cases rule: ereal2_cases[of a L]) auto
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   218
    then have L: "L \<in> ((\<lambda>x. x / a) ` S)"
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   219
      using `a * L \<in> S` by (force simp: image_iff)
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   220
    moreover have "open ((\<lambda>x. x / a) ` S)"
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   221
      using ereal_open_affinity[OF `open S`, of "inverse a" 0] `a \<noteq> 0` a
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   222
      by (auto simp: ereal_divide_eq ereal_inverse_eq_0 divide_ereal_def ac_simps)
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   223
    note * = lim[THEN topological_tendstoD, OF this L]
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   224
    { fix x
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   225
      from a `a \<noteq> 0` have "a * (x / a) = x"
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   226
        by (cases rule: ereal2_cases[of a x]) auto }
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   227
    note this[simp]
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   228
    show "eventually (\<lambda>x. a * X x \<in> S) net"
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   229
      by (rule eventually_mono[OF _ *]) auto
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   230
  qed
44918
6a80fbc4e72c tune simpset for Complete_Lattices
noschinl
parents: 44571
diff changeset
   231
qed auto
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   232
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   233
lemma ereal_lim_uminus:
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   234
  fixes X :: "'a \<Rightarrow> ereal"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   235
  shows "((\<lambda>i. - X i) ---> -L) net \<longleftrightarrow> (X ---> L) net"
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   236
  using ereal_lim_mult[of X L net "ereal (-1)"]
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   237
    ereal_lim_mult[of "(\<lambda>i. - X i)" "-L" net "ereal (-1)"]
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   238
  by (auto simp add: algebra_simps)
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   239
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   240
lemma Lim_bounded2_ereal:
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   241
  assumes lim:"f ----> (l :: ereal)"
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   242
    and ge: "ALL n>=N. f n >= C"
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   243
  shows "l>=C"
51000
c9adb50f74ad use order topology for extended reals
hoelzl
parents: 50104
diff changeset
   244
  using ge
c9adb50f74ad use order topology for extended reals
hoelzl
parents: 50104
diff changeset
   245
  by (intro tendsto_le[OF trivial_limit_sequentially lim tendsto_const])
c9adb50f74ad use order topology for extended reals
hoelzl
parents: 50104
diff changeset
   246
     (auto simp: eventually_sequentially)
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   247
43923
ab93d0190a5d add ereal to typeclass infinity
hoelzl
parents: 43920
diff changeset
   248
lemma ereal_open_atLeast: fixes x :: ereal shows "open {x..} \<longleftrightarrow> x = -\<infinity>"
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   249
proof
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   250
  assume "x = -\<infinity>" then have "{x..} = UNIV" by auto
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   251
  then show "open {x..}" by auto
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   252
next
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   253
  assume "open {x..}"
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   254
  then have "open {x..} \<and> closed {x..}" by auto
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   255
  then have "{x..} = UNIV" unfolding ereal_open_closed by auto
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   256
  then show "x = -\<infinity>" by (simp add: bot_ereal_def atLeast_eq_UNIV_iff)
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   257
qed
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   258
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   259
lemma open_uminus_iff: "open (uminus ` S) \<longleftrightarrow> open (S::ereal set)"
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   260
  using ereal_open_uminus[of S] ereal_open_uminus[of "uminus`S"] by auto
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   261
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   262
lemma ereal_Liminf_uminus:
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   263
  fixes f :: "'a => ereal"
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   264
  shows "Liminf net (\<lambda>x. - (f x)) = -(Limsup net f)"
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   265
  using ereal_Limsup_uminus[of _ "(\<lambda>x. - (f x))"] by auto
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   266
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   267
lemma ereal_Lim_uminus:
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   268
  fixes f :: "'a \<Rightarrow> ereal"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   269
  shows "(f ---> f0) net \<longleftrightarrow> ((\<lambda>x. - f x) ---> - f0) net"
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   270
  using
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   271
    ereal_lim_mult[of f f0 net "- 1"]
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   272
    ereal_lim_mult[of "\<lambda>x. - (f x)" "-f0" net "- 1"]
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   273
  by (auto simp: ereal_uminus_reorder)
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   274
50104
de19856feb54 move theorems to be more generally useable
hoelzl
parents: 49664
diff changeset
   275
lemma convergent_ereal_limsup:
de19856feb54 move theorems to be more generally useable
hoelzl
parents: 49664
diff changeset
   276
  fixes X :: "nat \<Rightarrow> ereal"
de19856feb54 move theorems to be more generally useable
hoelzl
parents: 49664
diff changeset
   277
  shows "convergent X \<Longrightarrow> limsup X = lim X"
de19856feb54 move theorems to be more generally useable
hoelzl
parents: 49664
diff changeset
   278
  by (auto simp: convergent_def limI lim_imp_Limsup)
de19856feb54 move theorems to be more generally useable
hoelzl
parents: 49664
diff changeset
   279
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   280
lemma Liminf_PInfty:
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   281
  fixes f :: "'a \<Rightarrow> ereal"
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   282
  assumes "\<not> trivial_limit net"
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   283
  shows "(f ---> \<infinity>) net \<longleftrightarrow> Liminf net f = \<infinity>"
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   284
proof (intro lim_imp_Liminf iffI assms)
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   285
  assume rhs: "Liminf net f = \<infinity>"
51000
c9adb50f74ad use order topology for extended reals
hoelzl
parents: 50104
diff changeset
   286
  show "(f ---> \<infinity>) net"
c9adb50f74ad use order topology for extended reals
hoelzl
parents: 50104
diff changeset
   287
    unfolding tendsto_PInfty
c9adb50f74ad use order topology for extended reals
hoelzl
parents: 50104
diff changeset
   288
  proof
c9adb50f74ad use order topology for extended reals
hoelzl
parents: 50104
diff changeset
   289
    fix r :: real
c9adb50f74ad use order topology for extended reals
hoelzl
parents: 50104
diff changeset
   290
    have "ereal r < top" unfolding top_ereal_def by simp
c9adb50f74ad use order topology for extended reals
hoelzl
parents: 50104
diff changeset
   291
    with rhs obtain P where "eventually P net" "r < INFI (Collect P) f"
c9adb50f74ad use order topology for extended reals
hoelzl
parents: 50104
diff changeset
   292
      unfolding Liminf_def SUP_eq_top_iff top_ereal_def[symmetric] by auto
c9adb50f74ad use order topology for extended reals
hoelzl
parents: 50104
diff changeset
   293
    then show "eventually (\<lambda>x. ereal r < f x) net"
c9adb50f74ad use order topology for extended reals
hoelzl
parents: 50104
diff changeset
   294
      by (auto elim!: eventually_elim1 dest: less_INF_D)
c9adb50f74ad use order topology for extended reals
hoelzl
parents: 50104
diff changeset
   295
  qed
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   296
qed
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   297
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   298
lemma Limsup_MInfty:
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   299
  fixes f :: "'a \<Rightarrow> ereal"
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   300
  assumes "\<not> trivial_limit net"
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   301
  shows "(f ---> -\<infinity>) net \<longleftrightarrow> Limsup net f = -\<infinity>"
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   302
  using assms ereal_Lim_uminus[of f "-\<infinity>"] Liminf_PInfty[of _ "\<lambda>x. - (f x)"]
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   303
        ereal_Liminf_uminus[of _ f] by (auto simp: ereal_uminus_eq_reorder)
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   304
50104
de19856feb54 move theorems to be more generally useable
hoelzl
parents: 49664
diff changeset
   305
lemma convergent_ereal:
de19856feb54 move theorems to be more generally useable
hoelzl
parents: 49664
diff changeset
   306
  fixes X :: "nat \<Rightarrow> ereal"
de19856feb54 move theorems to be more generally useable
hoelzl
parents: 49664
diff changeset
   307
  shows "convergent X \<longleftrightarrow> limsup X = liminf X"
51340
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
   308
  using tendsto_iff_Liminf_eq_Limsup[of sequentially]
50104
de19856feb54 move theorems to be more generally useable
hoelzl
parents: 49664
diff changeset
   309
  by (auto simp: convergent_def)
de19856feb54 move theorems to be more generally useable
hoelzl
parents: 49664
diff changeset
   310
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   311
lemma limsup_INFI_SUPR:
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   312
  fixes f :: "nat \<Rightarrow> ereal"
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   313
  shows "limsup f = (INF n. SUP m:{n..}. f m)"
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   314
  using ereal_Limsup_uminus[of sequentially "\<lambda>x. - f x"]
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   315
  by (simp add: liminf_SUPR_INFI ereal_INFI_uminus ereal_SUPR_uminus)
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   316
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   317
lemma liminf_PInfty:
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   318
  fixes X :: "nat => ereal"
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   319
  shows "X ----> \<infinity> <-> liminf X = \<infinity>"
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   320
  by (metis Liminf_PInfty trivial_limit_sequentially)
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   321
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   322
lemma limsup_MInfty:
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   323
  fixes X :: "nat => ereal"
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   324
  shows "X ----> (-\<infinity>) <-> limsup X = (-\<infinity>)"
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   325
  by (metis Limsup_MInfty trivial_limit_sequentially)
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   326
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   327
lemma ereal_lim_mono:
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   328
  fixes X Y :: "nat => ereal"
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   329
  assumes "\<And>n. N \<le> n \<Longrightarrow> X n <= Y n"
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   330
    and "X ----> x" "Y ----> y"
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   331
  shows "x <= y"
51000
c9adb50f74ad use order topology for extended reals
hoelzl
parents: 50104
diff changeset
   332
  using assms(1) by (intro LIMSEQ_le[OF assms(2,3)]) auto
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   333
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   334
lemma incseq_le_ereal:
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   335
  fixes X :: "nat \<Rightarrow> ereal"
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   336
  assumes inc: "incseq X" and lim: "X ----> L"
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   337
  shows "X N \<le> L"
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   338
  using inc by (intro ereal_lim_mono[of N, OF _ tendsto_const lim]) (simp add: incseq_def)
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   339
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   340
lemma decseq_ge_ereal:
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   341
  assumes dec: "decseq X"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   342
    and lim: "X ----> (L::ereal)"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   343
  shows "X N >= L"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   344
  using dec by (intro ereal_lim_mono[of N, OF _ lim tendsto_const]) (simp add: decseq_def)
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   345
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   346
lemma bounded_abs:
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   347
  assumes "(a::real)<=x" "x<=b"
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   348
  shows "abs x <= max (abs a) (abs b)"
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   349
  by (metis abs_less_iff assms leI le_max_iff_disj
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   350
    less_eq_real_def less_le_not_le less_minus_iff minus_minus)
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   351
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   352
lemma lim_ereal_increasing:
51000
c9adb50f74ad use order topology for extended reals
hoelzl
parents: 50104
diff changeset
   353
  assumes "\<And>n m. n \<ge> m \<Longrightarrow> f n \<ge> f m"
c9adb50f74ad use order topology for extended reals
hoelzl
parents: 50104
diff changeset
   354
  obtains l where "f ----> (l::'a::{complete_linorder, linorder_topology})"
c9adb50f74ad use order topology for extended reals
hoelzl
parents: 50104
diff changeset
   355
proof
c9adb50f74ad use order topology for extended reals
hoelzl
parents: 50104
diff changeset
   356
  show "f ----> (SUP n. f n)"
c9adb50f74ad use order topology for extended reals
hoelzl
parents: 50104
diff changeset
   357
    using assms
c9adb50f74ad use order topology for extended reals
hoelzl
parents: 50104
diff changeset
   358
    by (intro increasing_tendsto)
c9adb50f74ad use order topology for extended reals
hoelzl
parents: 50104
diff changeset
   359
       (auto simp: SUP_upper eventually_sequentially less_SUP_iff intro: less_le_trans)
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   360
qed
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   361
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   362
lemma lim_ereal_decreasing:
51000
c9adb50f74ad use order topology for extended reals
hoelzl
parents: 50104
diff changeset
   363
  assumes "\<And>n m. n \<ge> m \<Longrightarrow> f n \<le> f m"
c9adb50f74ad use order topology for extended reals
hoelzl
parents: 50104
diff changeset
   364
  obtains l where "f ----> (l::'a::{complete_linorder, linorder_topology})"
c9adb50f74ad use order topology for extended reals
hoelzl
parents: 50104
diff changeset
   365
proof
c9adb50f74ad use order topology for extended reals
hoelzl
parents: 50104
diff changeset
   366
  show "f ----> (INF n. f n)"
c9adb50f74ad use order topology for extended reals
hoelzl
parents: 50104
diff changeset
   367
    using assms
c9adb50f74ad use order topology for extended reals
hoelzl
parents: 50104
diff changeset
   368
    by (intro decreasing_tendsto)
c9adb50f74ad use order topology for extended reals
hoelzl
parents: 50104
diff changeset
   369
       (auto simp: INF_lower eventually_sequentially INF_less_iff intro: le_less_trans)
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   370
qed
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   371
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   372
lemma compact_ereal:
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   373
  fixes X :: "nat \<Rightarrow> ereal"
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   374
  shows "\<exists>l r. subseq r \<and> (X \<circ> r) ----> l"
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   375
proof -
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   376
  obtain r where "subseq r" and mono: "monoseq (X \<circ> r)"
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   377
    using seq_monosub[of X] unfolding comp_def by auto
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   378
  then have "(\<forall>n m. m \<le> n \<longrightarrow> (X \<circ> r) m \<le> (X \<circ> r) n) \<or> (\<forall>n m. m \<le> n \<longrightarrow> (X \<circ> r) n \<le> (X \<circ> r) m)"
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   379
    by (auto simp add: monoseq_def)
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   380
  then obtain l where "(X\<circ>r) ----> l"
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   381
     using lim_ereal_increasing[of "X \<circ> r"] lim_ereal_decreasing[of "X \<circ> r"] by auto
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   382
  then show ?thesis using `subseq r` by auto
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   383
qed
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   384
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   385
lemma ereal_Sup_lim:
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   386
  assumes "\<And>n. b n \<in> s" "b ----> (a::ereal)"
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   387
  shows "a \<le> Sup s"
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   388
  by (metis Lim_bounded_ereal assms complete_lattice_class.Sup_upper)
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   389
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   390
lemma ereal_Inf_lim:
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   391
  assumes "\<And>n. b n \<in> s" "b ----> (a::ereal)"
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   392
  shows "Inf s \<le> a"
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   393
  by (metis Lim_bounded2_ereal assms complete_lattice_class.Inf_lower)
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   394
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   395
lemma SUP_Lim_ereal:
51000
c9adb50f74ad use order topology for extended reals
hoelzl
parents: 50104
diff changeset
   396
  fixes X :: "nat \<Rightarrow> 'a::{complete_linorder, linorder_topology}"
c9adb50f74ad use order topology for extended reals
hoelzl
parents: 50104
diff changeset
   397
  assumes inc: "incseq X" and l: "X ----> l"
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   398
  shows "(SUP n. X n) = l"
51000
c9adb50f74ad use order topology for extended reals
hoelzl
parents: 50104
diff changeset
   399
  using LIMSEQ_SUP[OF inc] tendsto_unique[OF trivial_limit_sequentially l] by simp
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   400
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   401
lemma INF_Lim_ereal: "decseq X \<Longrightarrow> X ----> l \<Longrightarrow> (INF n. X n) = (l::ereal)"
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   402
  using SUP_Lim_ereal[of "\<lambda>i. - X i" "- l"]
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   403
  by (simp add: ereal_SUPR_uminus ereal_lim_uminus)
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   404
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   405
lemma LIMSEQ_ereal_INFI: "decseq X \<Longrightarrow> X ----> (INF n. X n :: ereal)"
51000
c9adb50f74ad use order topology for extended reals
hoelzl
parents: 50104
diff changeset
   406
  using LIMSEQ_SUP[of "\<lambda>i. - X i"]
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   407
  by (simp add: ereal_SUPR_uminus ereal_lim_uminus)
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   408
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   409
lemma SUP_eq_LIMSEQ:
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   410
  assumes "mono f"
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   411
  shows "(SUP n. ereal (f n)) = ereal x \<longleftrightarrow> f ----> x"
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   412
proof
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   413
  have inc: "incseq (\<lambda>i. ereal (f i))"
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   414
    using `mono f` unfolding mono_def incseq_def by auto
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   415
  { assume "f ----> x"
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   416
    then have "(\<lambda>i. ereal (f i)) ----> ereal x" by auto
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   417
    from SUP_Lim_ereal[OF inc this]
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   418
    show "(SUP n. ereal (f n)) = ereal x" . }
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   419
  { assume "(SUP n. ereal (f n)) = ereal x"
51000
c9adb50f74ad use order topology for extended reals
hoelzl
parents: 50104
diff changeset
   420
    with LIMSEQ_SUP[OF inc]
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   421
    show "f ----> x" by auto }
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   422
qed
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   423
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   424
lemma islimpt_punctured: "x islimpt S = x islimpt (S-{x})"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   425
  unfolding islimpt_def by blast
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   426
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   427
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   428
lemma islimpt_in_closure: "(x islimpt S) = (x:closure(S-{x}))"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   429
  unfolding closure_def using islimpt_punctured by blast
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   430
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   431
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   432
lemma not_trivial_limit_within: "~trivial_limit (at x within S) = (x:closure(S-{x}))"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   433
  using islimpt_in_closure by (metis trivial_limit_within)
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   434
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   435
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   436
lemma not_trivial_limit_within_ball:
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   437
  "(~trivial_limit (at x within S)) = (ALL e>0. S Int ball x e - {x} ~= {})"
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   438
  (is "?lhs = ?rhs")
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   439
proof -
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   440
  { assume "?lhs"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   441
    { fix e :: real
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   442
      assume "e>0"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   443
      then obtain y where "y:(S-{x}) & dist y x < e"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   444
        using `?lhs` not_trivial_limit_within[of x S] closure_approachable[of x "S - {x}"]
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   445
        by auto
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   446
      then have "y : (S Int ball x e - {x})"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   447
        unfolding ball_def by (simp add: dist_commute)
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   448
      then have "S Int ball x e - {x} ~= {}" by blast
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   449
    } then have "?rhs" by auto
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   450
  }
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   451
  moreover
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   452
  { assume "?rhs"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   453
    { fix e :: real
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   454
      assume "e>0"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   455
      then obtain y where "y : (S Int ball x e - {x})" using `?rhs` by blast
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   456
      then have "y:(S-{x}) & dist y x < e"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   457
        unfolding ball_def by (simp add: dist_commute)
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   458
      then have "EX y:(S-{x}). dist y x < e" by auto
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   459
    }
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   460
    then have "?lhs"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   461
      using not_trivial_limit_within[of x S] closure_approachable[of x "S - {x}"] by auto
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   462
  }
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   463
  ultimately show ?thesis by auto
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   464
qed
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   465
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   466
lemma liminf_ereal_cminus:
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   467
  fixes f :: "nat \<Rightarrow> ereal"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   468
  assumes "c \<noteq> -\<infinity>"
42950
6e5c2a3c69da move lemmas to Extended_Reals and Extended_Real_Limits
hoelzl
parents: 41983
diff changeset
   469
  shows "liminf (\<lambda>x. c - f x) = c - limsup f"
6e5c2a3c69da move lemmas to Extended_Reals and Extended_Real_Limits
hoelzl
parents: 41983
diff changeset
   470
proof (cases c)
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   471
  case PInf
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   472
  then show ?thesis by (simp add: Liminf_const)
42950
6e5c2a3c69da move lemmas to Extended_Reals and Extended_Real_Limits
hoelzl
parents: 41983
diff changeset
   473
next
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   474
  case (real r)
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   475
  then show ?thesis
42950
6e5c2a3c69da move lemmas to Extended_Reals and Extended_Real_Limits
hoelzl
parents: 41983
diff changeset
   476
    unfolding liminf_SUPR_INFI limsup_INFI_SUPR
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   477
    apply (subst INFI_ereal_cminus)
42950
6e5c2a3c69da move lemmas to Extended_Reals and Extended_Real_Limits
hoelzl
parents: 41983
diff changeset
   478
    apply auto
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   479
    apply (subst SUPR_ereal_cminus)
42950
6e5c2a3c69da move lemmas to Extended_Reals and Extended_Real_Limits
hoelzl
parents: 41983
diff changeset
   480
    apply auto
6e5c2a3c69da move lemmas to Extended_Reals and Extended_Real_Limits
hoelzl
parents: 41983
diff changeset
   481
    done
6e5c2a3c69da move lemmas to Extended_Reals and Extended_Real_Limits
hoelzl
parents: 41983
diff changeset
   482
qed (insert `c \<noteq> -\<infinity>`, simp)
6e5c2a3c69da move lemmas to Extended_Reals and Extended_Real_Limits
hoelzl
parents: 41983
diff changeset
   483
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   484
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   485
subsubsection {* Continuity *}
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   486
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   487
lemma continuous_imp_tendsto:
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   488
  assumes "continuous (at x0) f"
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   489
    and "x ----> x0"
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   490
  shows "(f o x) ----> (f x0)"
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   491
proof -
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   492
  { fix S
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   493
    assume "open S & (f x0):S"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   494
    then obtain T where T_def: "open T & x0 : T & (ALL x:T. f x : S)"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   495
       using assms continuous_at_open by metis
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   496
    then have "(EX N. ALL n>=N. x n : T)"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   497
      using assms tendsto_explicit T_def by auto
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   498
    then have "(EX N. ALL n>=N. f(x n) : S)" using T_def by auto
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   499
  }
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   500
  then show ?thesis using tendsto_explicit[of "f o x" "f x0"] by auto
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   501
qed
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   502
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   503
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   504
lemma continuous_at_sequentially2:
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   505
  fixes f :: "'a::metric_space => 'b:: topological_space"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   506
  shows "continuous (at x0) f <-> (ALL x. (x ----> x0) --> (f o x) ----> (f x0))"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   507
proof -
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   508
  { assume "~(continuous (at x0) f)"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   509
    then obtain T where
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   510
      T_def: "open T & f x0 : T & (ALL S. (open S & x0 : S) --> (EX x':S. f x' ~: T))"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   511
      using continuous_at_open[of x0 f] by metis
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   512
    def X == "{x'. f x' ~: T}"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   513
    then have "x0 islimpt X"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   514
      unfolding islimpt_def using T_def by auto
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   515
    then obtain x where x_def: "(ALL n. x n : X) & x ----> x0"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   516
      using islimpt_sequential[of x0 X] by auto
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   517
    then have "~(f o x) ----> (f x0)"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   518
      unfolding tendsto_explicit using X_def T_def by auto
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   519
    then have "EX x. x ----> x0 & (~(f o x) ----> (f x0))" using x_def by auto
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   520
  }
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   521
  then show ?thesis using continuous_imp_tendsto by auto
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   522
qed
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   523
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   524
lemma continuous_at_of_ereal:
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   525
  fixes x0 :: ereal
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   526
  assumes "\<bar>x0\<bar> \<noteq> \<infinity>"
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   527
  shows "continuous (at x0) real"
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   528
proof -
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   529
  { fix T
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   530
    assume T_def: "open T & real x0 : T"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   531
    def S == "ereal ` T"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   532
    then have "ereal (real x0) : S" using T_def by auto
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   533
    then have "x0 : S" using assms ereal_real by auto
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   534
    moreover have "open S" using open_ereal S_def T_def by auto
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   535
    moreover have "ALL y:S. real y : T" using S_def T_def by auto
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   536
    ultimately have "EX S. x0 : S & open S & (ALL y:S. real y : T)" by auto
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   537
  }
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   538
  then show ?thesis unfolding continuous_at_open by blast
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   539
qed
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   540
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   541
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   542
lemma continuous_at_iff_ereal:
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   543
  fixes f :: "'a::t2_space => real"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   544
  shows "continuous (at x0) f <-> continuous (at x0) (ereal o f)"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   545
proof -
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   546
  { assume "continuous (at x0) f"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   547
    then have "continuous (at x0) (ereal o f)"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   548
      using continuous_at_ereal continuous_at_compose[of x0 f ereal] by auto
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   549
  }
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   550
  moreover
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   551
  { assume "continuous (at x0) (ereal o f)"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   552
    then have "continuous (at x0) (real o (ereal o f))"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   553
      using continuous_at_of_ereal by (intro continuous_at_compose[of x0 "ereal o f"]) auto
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   554
    moreover have "real o (ereal o f) = f" using real_ereal_id by (simp add: o_assoc)
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   555
    ultimately have "continuous (at x0) f" by auto
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   556
  } ultimately show ?thesis by auto
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   557
qed
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   558
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   559
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   560
lemma continuous_on_iff_ereal:
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   561
  fixes f :: "'a::t2_space => real"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   562
  fixes A assumes "open A"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   563
  shows "continuous_on A f <-> continuous_on A (ereal o f)"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   564
  using continuous_at_iff_ereal assms by (auto simp add: continuous_on_eq_continuous_at)
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   565
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   566
43923
ab93d0190a5d add ereal to typeclass infinity
hoelzl
parents: 43920
diff changeset
   567
lemma continuous_on_real: "continuous_on (UNIV-{\<infinity>,(-\<infinity>::ereal)}) real"
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   568
  using continuous_at_of_ereal continuous_on_eq_continuous_at open_image_ereal by auto
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   569
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   570
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   571
lemma continuous_on_iff_real:
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   572
  fixes f :: "'a::t2_space => ereal"
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   573
  assumes "\<And>x. x \<in> A \<Longrightarrow> \<bar>f x\<bar> \<noteq> \<infinity>"
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   574
  shows "continuous_on A f \<longleftrightarrow> continuous_on A (real \<circ> f)"
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   575
proof -
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   576
  have "f ` A <= UNIV-{\<infinity>,(-\<infinity>)}" using assms by force
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   577
  then have *: "continuous_on (f ` A) real"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   578
    using continuous_on_real by (simp add: continuous_on_subset)
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   579
  have **: "continuous_on ((real o f) ` A) ereal"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   580
    using continuous_on_ereal continuous_on_subset[of "UNIV" "ereal" "(real o f) ` A"] by blast
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   581
  { assume "continuous_on A f"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   582
    then have "continuous_on A (real o f)"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   583
      apply (subst continuous_on_compose)
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   584
      using * apply auto
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   585
      done
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   586
  }
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   587
  moreover
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   588
  { assume "continuous_on A (real o f)"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   589
    then have "continuous_on A (ereal o (real o f))"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   590
      apply (subst continuous_on_compose)
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   591
      using ** apply auto
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   592
      done
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   593
    then have "continuous_on A f"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   594
      apply (subst continuous_on_eq[of A "ereal o (real o f)" f])
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   595
      using assms ereal_real apply auto
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   596
      done
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   597
  }
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   598
  ultimately show ?thesis by auto
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   599
qed
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   600
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   601
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   602
lemma continuous_at_const:
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   603
  fixes f :: "'a::t2_space => ereal"
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   604
  assumes "ALL x. (f x = C)"
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   605
  shows "ALL x. continuous (at x) f"
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   606
  unfolding continuous_at_open using assms t1_space by auto
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   607
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   608
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   609
lemma closure_contains_Inf:
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   610
  fixes S :: "real set"
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   611
  assumes "S ~= {}" "EX B. ALL x:S. B<=x"
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   612
  shows "Inf S : closure S"
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   613
proof -
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   614
  have *: "ALL x:S. Inf S <= x"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   615
    using Inf_lower_EX[of _ S] assms by metis
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   616
  { fix e
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   617
    assume "e>(0 :: real)"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   618
    then obtain x where x_def: "x:S & x < Inf S + e" using Inf_close `S ~= {}` by auto
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   619
    moreover then have "x > Inf S - e" using * by auto
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   620
    ultimately have "abs (x - Inf S) < e" by (simp add: abs_diff_less_iff)
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   621
    then have "EX x:S. abs (x - Inf S) < e" using x_def by auto
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   622
  }
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   623
  then show ?thesis
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   624
    apply (subst closure_approachable)
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   625
    unfolding dist_norm apply auto
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   626
    done
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   627
qed
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   628
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   629
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   630
lemma closed_contains_Inf:
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   631
  fixes S :: "real set"
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   632
  assumes "S ~= {}" "EX B. ALL x:S. B<=x"
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   633
    and "closed S"
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   634
  shows "Inf S : S"
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   635
  by (metis closure_contains_Inf closure_closed assms)
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   636
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   637
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   638
lemma mono_closed_real:
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   639
  fixes S :: "real set"
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   640
  assumes mono: "ALL y z. y:S & y<=z --> z:S"
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   641
    and "closed S"
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   642
  shows "S = {} | S = UNIV | (EX a. S = {a ..})"
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   643
proof -
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   644
  { assume "S ~= {}"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   645
    { assume ex: "EX B. ALL x:S. B<=x"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   646
      then have *: "ALL x:S. Inf S <= x" using Inf_lower_EX[of _ S] ex by metis
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   647
      then have "Inf S : S" apply (subst closed_contains_Inf) using ex `S ~= {}` `closed S` by auto
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   648
      then have "ALL x. (Inf S <= x <-> x:S)" using mono[rule_format, of "Inf S"] * by auto
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   649
      then have "S = {Inf S ..}" by auto
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   650
      then have "EX a. S = {a ..}" by auto
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   651
    }
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   652
    moreover
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   653
    { assume "~(EX B. ALL x:S. B<=x)"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   654
      then have nex: "ALL B. EX x:S. x<B" by (simp add: not_le)
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   655
      { fix y
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   656
        obtain x where "x:S & x < y" using nex by auto
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   657
        then have "y:S" using mono[rule_format, of x y] by auto
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   658
      } then have "S = UNIV" by auto
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   659
    }
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   660
    ultimately have "S = UNIV | (EX a. S = {a ..})" by blast
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   661
  } then show ?thesis by blast
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   662
qed
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   663
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   664
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   665
lemma mono_closed_ereal:
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   666
  fixes S :: "real set"
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   667
  assumes mono: "ALL y z. y:S & y<=z --> z:S"
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   668
    and "closed S"
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   669
  shows "EX a. S = {x. a <= ereal x}"
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   670
proof -
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   671
  { assume "S = {}"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   672
    then have ?thesis apply(rule_tac x=PInfty in exI) by auto }
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   673
  moreover
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   674
  { assume "S = UNIV"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   675
    then have ?thesis apply(rule_tac x="-\<infinity>" in exI) by auto }
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   676
  moreover
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   677
  { assume "EX a. S = {a ..}"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   678
    then obtain a where "S={a ..}" by auto
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   679
    then have ?thesis apply(rule_tac x="ereal a" in exI) by auto
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   680
  }
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   681
  ultimately show ?thesis using mono_closed_real[of S] assms by auto
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   682
qed
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   683
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   684
subsection {* Sums *}
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   685
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   686
lemma setsum_ereal[simp]: "(\<Sum>x\<in>A. ereal (f x)) = ereal (\<Sum>x\<in>A. f x)"
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   687
proof cases
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   688
  assume "finite A"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   689
  then show ?thesis by induct auto
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   690
qed simp
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   691
43923
ab93d0190a5d add ereal to typeclass infinity
hoelzl
parents: 43920
diff changeset
   692
lemma setsum_Pinfty:
ab93d0190a5d add ereal to typeclass infinity
hoelzl
parents: 43920
diff changeset
   693
  fixes f :: "'a \<Rightarrow> ereal"
ab93d0190a5d add ereal to typeclass infinity
hoelzl
parents: 43920
diff changeset
   694
  shows "(\<Sum>x\<in>P. f x) = \<infinity> \<longleftrightarrow> (finite P \<and> (\<exists>i\<in>P. f i = \<infinity>))"
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   695
proof safe
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   696
  assume *: "setsum f P = \<infinity>"
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   697
  show "finite P"
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   698
  proof (rule ccontr) assume "infinite P" with * show False by auto qed
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   699
  show "\<exists>i\<in>P. f i = \<infinity>"
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   700
  proof (rule ccontr)
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   701
    assume "\<not> ?thesis" then have "\<And>i. i \<in> P \<Longrightarrow> f i \<noteq> \<infinity>" by auto
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   702
    from `finite P` this have "setsum f P \<noteq> \<infinity>"
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   703
      by induct auto
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   704
    with * show False by auto
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   705
  qed
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   706
next
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   707
  fix i assume "finite P" "i \<in> P" "f i = \<infinity>"
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   708
  then show "setsum f P = \<infinity>"
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   709
  proof induct
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   710
    case (insert x A)
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   711
    show ?case using insert by (cases "x = i") auto
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   712
  qed simp
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   713
qed
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   714
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   715
lemma setsum_Inf:
43923
ab93d0190a5d add ereal to typeclass infinity
hoelzl
parents: 43920
diff changeset
   716
  fixes f :: "'a \<Rightarrow> ereal"
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   717
  shows "\<bar>setsum f A\<bar> = \<infinity> \<longleftrightarrow> (finite A \<and> (\<exists>i\<in>A. \<bar>f i\<bar> = \<infinity>))"
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   718
proof
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   719
  assume *: "\<bar>setsum f A\<bar> = \<infinity>"
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   720
  have "finite A" by (rule ccontr) (insert *, auto)
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   721
  moreover have "\<exists>i\<in>A. \<bar>f i\<bar> = \<infinity>"
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   722
  proof (rule ccontr)
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   723
    assume "\<not> ?thesis" then have "\<forall>i\<in>A. \<exists>r. f i = ereal r" by auto
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   724
    from bchoice[OF this] guess r ..
44142
8e27e0177518 avoid warnings about duplicate rules
huffman
parents: 44125
diff changeset
   725
    with * show False by auto
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   726
  qed
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   727
  ultimately show "finite A \<and> (\<exists>i\<in>A. \<bar>f i\<bar> = \<infinity>)" by auto
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   728
next
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   729
  assume "finite A \<and> (\<exists>i\<in>A. \<bar>f i\<bar> = \<infinity>)"
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   730
  then obtain i where "finite A" "i \<in> A" "\<bar>f i\<bar> = \<infinity>" by auto
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   731
  then show "\<bar>setsum f A\<bar> = \<infinity>"
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   732
  proof induct
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   733
    case (insert j A) then show ?case
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   734
      by (cases rule: ereal3_cases[of "f i" "f j" "setsum f A"]) auto
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   735
  qed simp
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   736
qed
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   737
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   738
lemma setsum_real_of_ereal:
43923
ab93d0190a5d add ereal to typeclass infinity
hoelzl
parents: 43920
diff changeset
   739
  fixes f :: "'i \<Rightarrow> ereal"
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   740
  assumes "\<And>x. x \<in> S \<Longrightarrow> \<bar>f x\<bar> \<noteq> \<infinity>"
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   741
  shows "(\<Sum>x\<in>S. real (f x)) = real (setsum f S)"
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   742
proof -
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   743
  have "\<forall>x\<in>S. \<exists>r. f x = ereal r"
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   744
  proof
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   745
    fix x assume "x \<in> S"
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   746
    from assms[OF this] show "\<exists>r. f x = ereal r" by (cases "f x") auto
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   747
  qed
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   748
  from bchoice[OF this] guess r ..
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   749
  then show ?thesis by simp
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   750
qed
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   751
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   752
lemma setsum_ereal_0:
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   753
  fixes f :: "'a \<Rightarrow> ereal" assumes "finite A" "\<And>i. i \<in> A \<Longrightarrow> 0 \<le> f i"
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   754
  shows "(\<Sum>x\<in>A. f x) = 0 \<longleftrightarrow> (\<forall>i\<in>A. f i = 0)"
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   755
proof
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   756
  assume *: "(\<Sum>x\<in>A. f x) = 0"
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   757
  then have "(\<Sum>x\<in>A. f x) \<noteq> \<infinity>" by auto
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   758
  then have "\<forall>i\<in>A. \<bar>f i\<bar> \<noteq> \<infinity>" using assms by (force simp: setsum_Pinfty)
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   759
  then have "\<forall>i\<in>A. \<exists>r. f i = ereal r" by auto
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   760
  from bchoice[OF this] * assms show "\<forall>i\<in>A. f i = 0"
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   761
    using setsum_nonneg_eq_0_iff[of A "\<lambda>i. real (f i)"] by auto
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   762
qed (rule setsum_0')
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   763
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   764
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   765
lemma setsum_ereal_right_distrib:
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   766
  fixes f :: "'a \<Rightarrow> ereal"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   767
  assumes "\<And>i. i \<in> A \<Longrightarrow> 0 \<le> f i"
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   768
  shows "r * setsum f A = (\<Sum>n\<in>A. r * f n)"
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   769
proof cases
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   770
  assume "finite A"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   771
  then show ?thesis using assms
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   772
    by induct (auto simp: ereal_right_distrib setsum_nonneg)
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   773
qed simp
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   774
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   775
lemma sums_ereal_positive:
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   776
  fixes f :: "nat \<Rightarrow> ereal"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   777
  assumes "\<And>i. 0 \<le> f i"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   778
  shows "f sums (SUP n. \<Sum>i<n. f i)"
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   779
proof -
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   780
  have "incseq (\<lambda>i. \<Sum>j=0..<i. f j)"
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   781
    using ereal_add_mono[OF _ assms] by (auto intro!: incseq_SucI)
51000
c9adb50f74ad use order topology for extended reals
hoelzl
parents: 50104
diff changeset
   782
  from LIMSEQ_SUP[OF this]
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   783
  show ?thesis unfolding sums_def by (simp add: atLeast0LessThan)
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   784
qed
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   785
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   786
lemma summable_ereal_pos:
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   787
  fixes f :: "nat \<Rightarrow> ereal"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   788
  assumes "\<And>i. 0 \<le> f i"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   789
  shows "summable f"
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   790
  using sums_ereal_positive[of f, OF assms] unfolding summable_def by auto
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   791
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   792
lemma suminf_ereal_eq_SUPR:
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   793
  fixes f :: "nat \<Rightarrow> ereal"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   794
  assumes "\<And>i. 0 \<le> f i"
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   795
  shows "(\<Sum>x. f x) = (SUP n. \<Sum>i<n. f i)"
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   796
  using sums_ereal_positive[of f, OF assms, THEN sums_unique] by simp
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   797
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   798
lemma sums_ereal: "(\<lambda>x. ereal (f x)) sums ereal x \<longleftrightarrow> f sums x"
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   799
  unfolding sums_def by simp
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   800
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   801
lemma suminf_bound:
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   802
  fixes f :: "nat \<Rightarrow> ereal"
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   803
  assumes "\<forall>N. (\<Sum>n<N. f n) \<le> x" and pos: "\<And>n. 0 \<le> f n"
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   804
  shows "suminf f \<le> x"
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   805
proof (rule Lim_bounded_ereal)
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   806
  have "summable f" using pos[THEN summable_ereal_pos] .
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   807
  then show "(\<lambda>N. \<Sum>n<N. f n) ----> suminf f"
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   808
    by (auto dest!: summable_sums simp: sums_def atLeast0LessThan)
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   809
  show "\<forall>n\<ge>0. setsum f {..<n} \<le> x"
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   810
    using assms by auto
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   811
qed
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   812
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   813
lemma suminf_bound_add:
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   814
  fixes f :: "nat \<Rightarrow> ereal"
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   815
  assumes "\<forall>N. (\<Sum>n<N. f n) + y \<le> x"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   816
    and pos: "\<And>n. 0 \<le> f n"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   817
    and "y \<noteq> -\<infinity>"
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   818
  shows "suminf f + y \<le> x"
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   819
proof (cases y)
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   820
  case (real r)
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   821
  then have "\<forall>N. (\<Sum>n<N. f n) \<le> x - y"
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   822
    using assms by (simp add: ereal_le_minus)
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   823
  then have "(\<Sum> n. f n) \<le> x - y" using pos by (rule suminf_bound)
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   824
  then show "(\<Sum> n. f n) + y \<le> x"
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   825
    using assms real by (simp add: ereal_le_minus)
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   826
qed (insert assms, auto)
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   827
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   828
lemma suminf_upper:
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   829
  fixes f :: "nat \<Rightarrow> ereal"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   830
  assumes "\<And>n. 0 \<le> f n"
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   831
  shows "(\<Sum>n<N. f n) \<le> (\<Sum>n. f n)"
44928
7ef6505bde7f renamed Complete_Lattices lemmas, removed legacy names
hoelzl
parents: 44918
diff changeset
   832
  unfolding suminf_ereal_eq_SUPR[OF assms] SUP_def
45031
9583f2b56f85 add lemmas within_empty and tendsto_bot;
huffman
parents: 44928
diff changeset
   833
  by (auto intro: complete_lattice_class.Sup_upper)
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   834
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   835
lemma suminf_0_le:
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   836
  fixes f :: "nat \<Rightarrow> ereal"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   837
  assumes "\<And>n. 0 \<le> f n"
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   838
  shows "0 \<le> (\<Sum>n. f n)"
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   839
  using suminf_upper[of f 0, OF assms] by simp
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   840
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   841
lemma suminf_le_pos:
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   842
  fixes f g :: "nat \<Rightarrow> ereal"
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   843
  assumes "\<And>N. f N \<le> g N" "\<And>N. 0 \<le> f N"
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   844
  shows "suminf f \<le> suminf g"
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   845
proof (safe intro!: suminf_bound)
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   846
  fix n
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   847
  { fix N have "0 \<le> g N" using assms(2,1)[of N] by auto }
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   848
  have "setsum f {..<n} \<le> setsum g {..<n}"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   849
    using assms by (auto intro: setsum_mono)
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   850
  also have "... \<le> suminf g" using `\<And>N. 0 \<le> g N` by (rule suminf_upper)
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   851
  finally show "setsum f {..<n} \<le> suminf g" .
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   852
qed (rule assms(2))
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   853
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   854
lemma suminf_half_series_ereal: "(\<Sum>n. (1/2 :: ereal)^Suc n) = 1"
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   855
  using sums_ereal[THEN iffD2, OF power_half_series, THEN sums_unique, symmetric]
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   856
  by (simp add: one_ereal_def)
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   857
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   858
lemma suminf_add_ereal:
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   859
  fixes f g :: "nat \<Rightarrow> ereal"
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   860
  assumes "\<And>i. 0 \<le> f i" "\<And>i. 0 \<le> g i"
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   861
  shows "(\<Sum>i. f i + g i) = suminf f + suminf g"
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   862
  apply (subst (1 2 3) suminf_ereal_eq_SUPR)
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   863
  unfolding setsum_addf
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   864
  apply (intro assms ereal_add_nonneg_nonneg SUPR_ereal_add_pos incseq_setsumI setsum_nonneg ballI)+
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   865
  done
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   866
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   867
lemma suminf_cmult_ereal:
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   868
  fixes f g :: "nat \<Rightarrow> ereal"
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   869
  assumes "\<And>i. 0 \<le> f i" "0 \<le> a"
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   870
  shows "(\<Sum>i. a * f i) = a * suminf f"
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   871
  by (auto simp: setsum_ereal_right_distrib[symmetric] assms
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   872
                 ereal_zero_le_0_iff setsum_nonneg suminf_ereal_eq_SUPR
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   873
           intro!: SUPR_ereal_cmult )
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   874
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   875
lemma suminf_PInfty:
43923
ab93d0190a5d add ereal to typeclass infinity
hoelzl
parents: 43920
diff changeset
   876
  fixes f :: "nat \<Rightarrow> ereal"
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   877
  assumes "\<And>i. 0 \<le> f i" "suminf f \<noteq> \<infinity>"
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   878
  shows "f i \<noteq> \<infinity>"
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   879
proof -
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   880
  from suminf_upper[of f "Suc i", OF assms(1)] assms(2)
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   881
  have "(\<Sum>i<Suc i. f i) \<noteq> \<infinity>" by auto
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   882
  then show ?thesis unfolding setsum_Pinfty by simp
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   883
qed
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   884
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   885
lemma suminf_PInfty_fun:
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   886
  assumes "\<And>i. 0 \<le> f i" "suminf f \<noteq> \<infinity>"
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   887
  shows "\<exists>f'. f = (\<lambda>x. ereal (f' x))"
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   888
proof -
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   889
  have "\<forall>i. \<exists>r. f i = ereal r"
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   890
  proof
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   891
    fix i show "\<exists>r. f i = ereal r"
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   892
      using suminf_PInfty[OF assms] assms(1)[of i] by (cases "f i") auto
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   893
  qed
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   894
  from choice[OF this] show ?thesis by auto
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   895
qed
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   896
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   897
lemma summable_ereal:
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   898
  assumes "\<And>i. 0 \<le> f i" "(\<Sum>i. ereal (f i)) \<noteq> \<infinity>"
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   899
  shows "summable f"
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   900
proof -
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   901
  have "0 \<le> (\<Sum>i. ereal (f i))"
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   902
    using assms by (intro suminf_0_le) auto
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   903
  with assms obtain r where r: "(\<Sum>i. ereal (f i)) = ereal r"
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   904
    by (cases "\<Sum>i. ereal (f i)") auto
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   905
  from summable_ereal_pos[of "\<lambda>x. ereal (f x)"]
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   906
  have "summable (\<lambda>x. ereal (f x))" using assms by auto
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   907
  from summable_sums[OF this]
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   908
  have "(\<lambda>x. ereal (f x)) sums (\<Sum>x. ereal (f x))" by auto
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   909
  then show "summable f"
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   910
    unfolding r sums_ereal summable_def ..
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   911
qed
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   912
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   913
lemma suminf_ereal:
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   914
  assumes "\<And>i. 0 \<le> f i" "(\<Sum>i. ereal (f i)) \<noteq> \<infinity>"
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   915
  shows "(\<Sum>i. ereal (f i)) = ereal (suminf f)"
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   916
proof (rule sums_unique[symmetric])
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   917
  from summable_ereal[OF assms]
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   918
  show "(\<lambda>x. ereal (f x)) sums (ereal (suminf f))"
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   919
    unfolding sums_ereal using assms by (intro summable_sums summable_ereal)
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   920
qed
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   921
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   922
lemma suminf_ereal_minus:
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   923
  fixes f g :: "nat \<Rightarrow> ereal"
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   924
  assumes ord: "\<And>i. g i \<le> f i" "\<And>i. 0 \<le> g i" and fin: "suminf f \<noteq> \<infinity>" "suminf g \<noteq> \<infinity>"
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   925
  shows "(\<Sum>i. f i - g i) = suminf f - suminf g"
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   926
proof -
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   927
  { fix i have "0 \<le> f i" using ord[of i] by auto }
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   928
  moreover
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   929
  from suminf_PInfty_fun[OF `\<And>i. 0 \<le> f i` fin(1)] guess f' .. note this[simp]
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   930
  from suminf_PInfty_fun[OF `\<And>i. 0 \<le> g i` fin(2)] guess g' .. note this[simp]
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   931
  { fix i have "0 \<le> f i - g i" using ord[of i] by (auto simp: ereal_le_minus_iff) }
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   932
  moreover
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   933
  have "suminf (\<lambda>i. f i - g i) \<le> suminf f"
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   934
    using assms by (auto intro!: suminf_le_pos simp: field_simps)
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   935
  then have "suminf (\<lambda>i. f i - g i) \<noteq> \<infinity>" using fin by auto
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   936
  ultimately show ?thesis using assms `\<And>i. 0 \<le> f i`
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   937
    apply simp
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   938
    apply (subst (1 2 3) suminf_ereal)
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   939
    apply (auto intro!: suminf_diff[symmetric] summable_ereal)
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   940
    done
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   941
qed
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   942
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   943
lemma suminf_ereal_PInf [simp]: "(\<Sum>x. \<infinity>::ereal) = \<infinity>"
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   944
proof -
43923
ab93d0190a5d add ereal to typeclass infinity
hoelzl
parents: 43920
diff changeset
   945
  have "(\<Sum>i<Suc 0. \<infinity>) \<le> (\<Sum>x. \<infinity>::ereal)" by (rule suminf_upper) auto
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   946
  then show ?thesis by simp
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   947
qed
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   948
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   949
lemma summable_real_of_ereal:
43923
ab93d0190a5d add ereal to typeclass infinity
hoelzl
parents: 43920
diff changeset
   950
  fixes f :: "nat \<Rightarrow> ereal"
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   951
  assumes f: "\<And>i. 0 \<le> f i"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   952
    and fin: "(\<Sum>i. f i) \<noteq> \<infinity>"
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   953
  shows "summable (\<lambda>i. real (f i))"
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   954
proof (rule summable_def[THEN iffD2])
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   955
  have "0 \<le> (\<Sum>i. f i)" using assms by (auto intro: suminf_0_le)
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   956
  with fin obtain r where r: "ereal r = (\<Sum>i. f i)" by (cases "(\<Sum>i. f i)") auto
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   957
  { fix i have "f i \<noteq> \<infinity>" using f by (intro suminf_PInfty[OF _ fin]) auto
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   958
    then have "\<bar>f i\<bar> \<noteq> \<infinity>" using f[of i] by auto }
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   959
  note fin = this
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   960
  have "(\<lambda>i. ereal (real (f i))) sums (\<Sum>i. ereal (real (f i)))"
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   961
    using f by (auto intro!: summable_ereal_pos summable_sums simp: ereal_le_real_iff zero_ereal_def)
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   962
  also have "\<dots> = ereal r" using fin r by (auto simp: ereal_real)
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   963
  finally show "\<exists>r. (\<lambda>i. real (f i)) sums r" by (auto simp: sums_ereal)
41980
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   964
qed
28b51effc5ed split Extended_Reals into parts for Library and Multivariate_Analysis
hoelzl
parents:
diff changeset
   965
42950
6e5c2a3c69da move lemmas to Extended_Reals and Extended_Real_Limits
hoelzl
parents: 41983
diff changeset
   966
lemma suminf_SUP_eq:
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   967
  fixes f :: "nat \<Rightarrow> nat \<Rightarrow> ereal"
42950
6e5c2a3c69da move lemmas to Extended_Reals and Extended_Real_Limits
hoelzl
parents: 41983
diff changeset
   968
  assumes "\<And>i. incseq (\<lambda>n. f n i)" "\<And>n i. 0 \<le> f n i"
6e5c2a3c69da move lemmas to Extended_Reals and Extended_Real_Limits
hoelzl
parents: 41983
diff changeset
   969
  shows "(\<Sum>i. SUP n. f n i) = (SUP n. \<Sum>i. f n i)"
6e5c2a3c69da move lemmas to Extended_Reals and Extended_Real_Limits
hoelzl
parents: 41983
diff changeset
   970
proof -
6e5c2a3c69da move lemmas to Extended_Reals and Extended_Real_Limits
hoelzl
parents: 41983
diff changeset
   971
  { fix n :: nat
6e5c2a3c69da move lemmas to Extended_Reals and Extended_Real_Limits
hoelzl
parents: 41983
diff changeset
   972
    have "(\<Sum>i<n. SUP k. f k i) = (SUP k. \<Sum>i<n. f k i)"
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   973
      using assms by (auto intro!: SUPR_ereal_setsum[symmetric]) }
42950
6e5c2a3c69da move lemmas to Extended_Reals and Extended_Real_Limits
hoelzl
parents: 41983
diff changeset
   974
  note * = this
6e5c2a3c69da move lemmas to Extended_Reals and Extended_Real_Limits
hoelzl
parents: 41983
diff changeset
   975
  show ?thesis using assms
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42950
diff changeset
   976
    apply (subst (1 2) suminf_ereal_eq_SUPR)
42950
6e5c2a3c69da move lemmas to Extended_Reals and Extended_Real_Limits
hoelzl
parents: 41983
diff changeset
   977
    unfolding *
44928
7ef6505bde7f renamed Complete_Lattices lemmas, removed legacy names
hoelzl
parents: 44918
diff changeset
   978
    apply (auto intro!: SUP_upper2)
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   979
    apply (subst SUP_commute)
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   980
    apply rule
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   981
    done
42950
6e5c2a3c69da move lemmas to Extended_Reals and Extended_Real_Limits
hoelzl
parents: 41983
diff changeset
   982
qed
6e5c2a3c69da move lemmas to Extended_Reals and Extended_Real_Limits
hoelzl
parents: 41983
diff changeset
   983
47761
dfe747e72fa8 moved lemmas to appropriate places
hoelzl
parents: 45051
diff changeset
   984
lemma suminf_setsum_ereal:
dfe747e72fa8 moved lemmas to appropriate places
hoelzl
parents: 45051
diff changeset
   985
  fixes f :: "_ \<Rightarrow> _ \<Rightarrow> ereal"
dfe747e72fa8 moved lemmas to appropriate places
hoelzl
parents: 45051
diff changeset
   986
  assumes nonneg: "\<And>i a. a \<in> A \<Longrightarrow> 0 \<le> f i a"
dfe747e72fa8 moved lemmas to appropriate places
hoelzl
parents: 45051
diff changeset
   987
  shows "(\<Sum>i. \<Sum>a\<in>A. f i a) = (\<Sum>a\<in>A. \<Sum>i. f i a)"
dfe747e72fa8 moved lemmas to appropriate places
hoelzl
parents: 45051
diff changeset
   988
proof cases
49664
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   989
  assume "finite A"
f099b8006a3c tuned proofs;
wenzelm
parents: 47761
diff changeset
   990
  then show ?thesis using nonneg
47761
dfe747e72fa8 moved lemmas to appropriate places
hoelzl
parents: 45051
diff changeset
   991
    by induct (simp_all add: suminf_add_ereal setsum_nonneg)
dfe747e72fa8 moved lemmas to appropriate places
hoelzl
parents: 45051
diff changeset
   992
qed simp
dfe747e72fa8 moved lemmas to appropriate places
hoelzl
parents: 45051
diff changeset
   993
50104
de19856feb54 move theorems to be more generally useable
hoelzl
parents: 49664
diff changeset
   994
lemma suminf_ereal_eq_0:
de19856feb54 move theorems to be more generally useable
hoelzl
parents: 49664
diff changeset
   995
  fixes f :: "nat \<Rightarrow> ereal"
de19856feb54 move theorems to be more generally useable
hoelzl
parents: 49664
diff changeset
   996
  assumes nneg: "\<And>i. 0 \<le> f i"
de19856feb54 move theorems to be more generally useable
hoelzl
parents: 49664
diff changeset
   997
  shows "(\<Sum>i. f i) = 0 \<longleftrightarrow> (\<forall>i. f i = 0)"
de19856feb54 move theorems to be more generally useable
hoelzl
parents: 49664
diff changeset
   998
proof
de19856feb54 move theorems to be more generally useable
hoelzl
parents: 49664
diff changeset
   999
  assume "(\<Sum>i. f i) = 0"
de19856feb54 move theorems to be more generally useable
hoelzl
parents: 49664
diff changeset
  1000
  { fix i assume "f i \<noteq> 0"
de19856feb54 move theorems to be more generally useable
hoelzl
parents: 49664
diff changeset
  1001
    with nneg have "0 < f i" by (auto simp: less_le)
de19856feb54 move theorems to be more generally useable
hoelzl
parents: 49664
diff changeset
  1002
    also have "f i = (\<Sum>j. if j = i then f i else 0)"
de19856feb54 move theorems to be more generally useable
hoelzl
parents: 49664
diff changeset
  1003
      by (subst suminf_finite[where N="{i}"]) auto
de19856feb54 move theorems to be more generally useable
hoelzl
parents: 49664
diff changeset
  1004
    also have "\<dots> \<le> (\<Sum>i. f i)"
de19856feb54 move theorems to be more generally useable
hoelzl
parents: 49664
diff changeset
  1005
      using nneg by (auto intro!: suminf_le_pos)
de19856feb54 move theorems to be more generally useable
hoelzl
parents: 49664
diff changeset
  1006
    finally have False using `(\<Sum>i. f i) = 0` by auto }
de19856feb54 move theorems to be more generally useable
hoelzl
parents: 49664
diff changeset
  1007
  then show "\<forall>i. f i = 0" by auto
de19856feb54 move theorems to be more generally useable
hoelzl
parents: 49664
diff changeset
  1008
qed simp
de19856feb54 move theorems to be more generally useable
hoelzl
parents: 49664
diff changeset
  1009
51340
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1010
lemma Liminf_within:
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1011
  fixes f :: "'a::metric_space \<Rightarrow> 'b::complete_lattice"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1012
  shows "Liminf (at x within S) f = (SUP e:{0<..}. INF y:(S \<inter> ball x e - {x}). f y)"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1013
  unfolding Liminf_def eventually_within
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1014
proof (rule SUPR_eq, simp_all add: Ball_def Bex_def, safe)
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1015
  fix P d assume "0 < d" "\<forall>y. y \<in> S \<longrightarrow> 0 < dist y x \<and> dist y x < d \<longrightarrow> P y"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1016
  then have "S \<inter> ball x d - {x} \<subseteq> {x. P x}"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1017
    by (auto simp: zero_less_dist_iff dist_commute)
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1018
  then show "\<exists>r>0. INFI (Collect P) f \<le> INFI (S \<inter> ball x r - {x}) f"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1019
    by (intro exI[of _ d] INF_mono conjI `0 < d`) auto
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1020
next
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1021
  fix d :: real assume "0 < d"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1022
  then show "\<exists>P. (\<exists>d>0. \<forall>xa. xa \<in> S \<longrightarrow> 0 < dist xa x \<and> dist xa x < d \<longrightarrow> P xa) \<and>
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1023
    INFI (S \<inter> ball x d - {x}) f \<le> INFI (Collect P) f"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1024
    by (intro exI[of _ "\<lambda>y. y \<in> S \<inter> ball x d - {x}"])
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1025
       (auto intro!: INF_mono exI[of _ d] simp: dist_commute)
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1026
qed
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1027
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1028
lemma Limsup_within:
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1029
  fixes f :: "'a::metric_space => 'b::complete_lattice"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1030
  shows "Limsup (at x within S) f = (INF e:{0<..}. SUP y:(S \<inter> ball x e - {x}). f y)"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1031
  unfolding Limsup_def eventually_within
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1032
proof (rule INFI_eq, simp_all add: Ball_def Bex_def, safe)
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1033
  fix P d assume "0 < d" "\<forall>y. y \<in> S \<longrightarrow> 0 < dist y x \<and> dist y x < d \<longrightarrow> P y"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1034
  then have "S \<inter> ball x d - {x} \<subseteq> {x. P x}"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1035
    by (auto simp: zero_less_dist_iff dist_commute)
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1036
  then show "\<exists>r>0. SUPR (S \<inter> ball x r - {x}) f \<le> SUPR (Collect P) f"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1037
    by (intro exI[of _ d] SUP_mono conjI `0 < d`) auto
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1038
next
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1039
  fix d :: real assume "0 < d"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1040
  then show "\<exists>P. (\<exists>d>0. \<forall>xa. xa \<in> S \<longrightarrow> 0 < dist xa x \<and> dist xa x < d \<longrightarrow> P xa) \<and>
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1041
    SUPR (Collect P) f \<le> SUPR (S \<inter> ball x d - {x}) f"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1042
    by (intro exI[of _ "\<lambda>y. y \<in> S \<inter> ball x d - {x}"])
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1043
       (auto intro!: SUP_mono exI[of _ d] simp: dist_commute)
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1044
qed
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1045
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1046
lemma Liminf_at:
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1047
  fixes f :: "'a::metric_space => _"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1048
  shows "Liminf (at x) f = (SUP e:{0<..}. INF y:(ball x e - {x}). f y)"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1049
  using Liminf_within[of x UNIV f] by simp
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1050
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1051
lemma Limsup_at:
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1052
  fixes f :: "'a::metric_space => _"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1053
  shows "Limsup (at x) f = (INF e:{0<..}. SUP y:(ball x e - {x}). f y)"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1054
  using Limsup_within[of x UNIV f] by simp
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1055
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1056
lemma min_Liminf_at:
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1057
  fixes f :: "'a::metric_space => 'b::complete_linorder"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1058
  shows "min (f x) (Liminf (at x) f) = (SUP e:{0<..}. INF y:ball x e. f y)"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1059
  unfolding inf_min[symmetric] Liminf_at
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1060
  apply (subst inf_commute)
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1061
  apply (subst SUP_inf)
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1062
  apply (intro SUP_cong[OF refl])
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1063
  apply (cut_tac A="ball x b - {x}" and B="{x}" and M=f in INF_union)
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1064
  apply (simp add: INF_def del: inf_ereal_def)
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1065
  done
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1066
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1067
subsection {* monoset *}
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1068
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1069
definition (in order) mono_set:
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1070
  "mono_set S \<longleftrightarrow> (\<forall>x y. x \<le> y \<longrightarrow> x \<in> S \<longrightarrow> y \<in> S)"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1071
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1072
lemma (in order) mono_greaterThan [intro, simp]: "mono_set {B<..}" unfolding mono_set by auto
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1073
lemma (in order) mono_atLeast [intro, simp]: "mono_set {B..}" unfolding mono_set by auto
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1074
lemma (in order) mono_UNIV [intro, simp]: "mono_set UNIV" unfolding mono_set by auto
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1075
lemma (in order) mono_empty [intro, simp]: "mono_set {}" unfolding mono_set by auto
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1076
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1077
lemma (in complete_linorder) mono_set_iff:
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1078
  fixes S :: "'a set"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1079
  defines "a \<equiv> Inf S"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1080
  shows "mono_set S \<longleftrightarrow> (S = {a <..} \<or> S = {a..})" (is "_ = ?c")
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1081
proof
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1082
  assume "mono_set S"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1083
  then have mono: "\<And>x y. x \<le> y \<Longrightarrow> x \<in> S \<Longrightarrow> y \<in> S" by (auto simp: mono_set)
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1084
  show ?c
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1085
  proof cases
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1086
    assume "a \<in> S"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1087
    show ?c
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1088
      using mono[OF _ `a \<in> S`]
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1089
      by (auto intro: Inf_lower simp: a_def)
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1090
  next
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1091
    assume "a \<notin> S"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1092
    have "S = {a <..}"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1093
    proof safe
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1094
      fix x assume "x \<in> S"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1095
      then have "a \<le> x" unfolding a_def by (rule Inf_lower)
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1096
      then show "a < x" using `x \<in> S` `a \<notin> S` by (cases "a = x") auto
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1097
    next
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1098
      fix x assume "a < x"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1099
      then obtain y where "y < x" "y \<in> S" unfolding a_def Inf_less_iff ..
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1100
      with mono[of y x] show "x \<in> S" by auto
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1101
    qed
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1102
    then show ?c ..
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1103
  qed
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1104
qed auto
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1105
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1106
lemma ereal_open_mono_set:
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1107
  fixes S :: "ereal set"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1108
  shows "(open S \<and> mono_set S) \<longleftrightarrow> (S = UNIV \<or> S = {Inf S <..})"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1109
  by (metis Inf_UNIV atLeast_eq_UNIV_iff ereal_open_atLeast
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1110
    ereal_open_closed mono_set_iff open_ereal_greaterThan)
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1111
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1112
lemma ereal_closed_mono_set:
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1113
  fixes S :: "ereal set"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1114
  shows "(closed S \<and> mono_set S) \<longleftrightarrow> (S = {} \<or> S = {Inf S ..})"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1115
  by (metis Inf_UNIV atLeast_eq_UNIV_iff closed_ereal_atLeast
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1116
    ereal_open_closed mono_empty mono_set_iff open_ereal_greaterThan)
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1117
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1118
lemma ereal_Liminf_Sup_monoset:
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1119
  fixes f :: "'a => ereal"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1120
  shows "Liminf net f =
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1121
    Sup {l. \<forall>S. open S \<longrightarrow> mono_set S \<longrightarrow> l \<in> S \<longrightarrow> eventually (\<lambda>x. f x \<in> S) net}"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1122
    (is "_ = Sup ?A")
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1123
proof (safe intro!: Liminf_eqI complete_lattice_class.Sup_upper complete_lattice_class.Sup_least)
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1124
  fix P assume P: "eventually P net"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1125
  fix S assume S: "mono_set S" "INFI (Collect P) f \<in> S"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1126
  { fix x assume "P x"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1127
    then have "INFI (Collect P) f \<le> f x"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1128
      by (intro complete_lattice_class.INF_lower) simp
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1129
    with S have "f x \<in> S"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1130
      by (simp add: mono_set) }
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1131
  with P show "eventually (\<lambda>x. f x \<in> S) net"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1132
    by (auto elim: eventually_elim1)
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1133
next
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1134
  fix y l
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1135
  assume S: "\<forall>S. open S \<longrightarrow> mono_set S \<longrightarrow> l \<in> S \<longrightarrow> eventually  (\<lambda>x. f x \<in> S) net"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1136
  assume P: "\<forall>P. eventually P net \<longrightarrow> INFI (Collect P) f \<le> y"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1137
  show "l \<le> y"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1138
  proof (rule dense_le)
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1139
    fix B assume "B < l"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1140
    then have "eventually (\<lambda>x. f x \<in> {B <..}) net"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1141
      by (intro S[rule_format]) auto
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1142
    then have "INFI {x. B < f x} f \<le> y"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1143
      using P by auto
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1144
    moreover have "B \<le> INFI {x. B < f x} f"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1145
      by (intro INF_greatest) auto
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1146
    ultimately show "B \<le> y"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1147
      by simp
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1148
  qed
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1149
qed
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1150
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1151
lemma ereal_Limsup_Inf_monoset:
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1152
  fixes f :: "'a => ereal"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1153
  shows "Limsup net f =
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1154
    Inf {l. \<forall>S. open S \<longrightarrow> mono_set (uminus ` S) \<longrightarrow> l \<in> S \<longrightarrow> eventually (\<lambda>x. f x \<in> S) net}"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1155
    (is "_ = Inf ?A")
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1156
proof (safe intro!: Limsup_eqI complete_lattice_class.Inf_lower complete_lattice_class.Inf_greatest)
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1157
  fix P assume P: "eventually P net"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1158
  fix S assume S: "mono_set (uminus`S)" "SUPR (Collect P) f \<in> S"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1159
  { fix x assume "P x"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1160
    then have "f x \<le> SUPR (Collect P) f"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1161
      by (intro complete_lattice_class.SUP_upper) simp
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1162
    with S(1)[unfolded mono_set, rule_format, of "- SUPR (Collect P) f" "- f x"] S(2)
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1163
    have "f x \<in> S"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1164
      by (simp add: inj_image_mem_iff) }
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1165
  with P show "eventually (\<lambda>x. f x \<in> S) net"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1166
    by (auto elim: eventually_elim1)
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1167
next
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1168
  fix y l
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1169
  assume S: "\<forall>S. open S \<longrightarrow> mono_set (uminus ` S) \<longrightarrow> l \<in> S \<longrightarrow> eventually  (\<lambda>x. f x \<in> S) net"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1170
  assume P: "\<forall>P. eventually P net \<longrightarrow> y \<le> SUPR (Collect P) f"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1171
  show "y \<le> l"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1172
  proof (rule dense_ge)
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1173
    fix B assume "l < B"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1174
    then have "eventually (\<lambda>x. f x \<in> {..< B}) net"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1175
      by (intro S[rule_format]) auto
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1176
    then have "y \<le> SUPR {x. f x < B} f"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1177
      using P by auto
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1178
    moreover have "SUPR {x. f x < B} f \<le> B"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1179
      by (intro SUP_least) auto
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1180
    ultimately show "y \<le> B"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1181
      by simp
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1182
  qed
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1183
qed
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1184
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1185
lemma liminf_bounded_open:
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1186
  fixes x :: "nat \<Rightarrow> ereal"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1187
  shows "x0 \<le> liminf x \<longleftrightarrow> (\<forall>S. open S \<longrightarrow> mono_set S \<longrightarrow> x0 \<in> S \<longrightarrow> (\<exists>N. \<forall>n\<ge>N. x n \<in> S))"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1188
  (is "_ \<longleftrightarrow> ?P x0")
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1189
proof
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1190
  assume "?P x0"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1191
  then show "x0 \<le> liminf x"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1192
    unfolding ereal_Liminf_Sup_monoset eventually_sequentially
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1193
    by (intro complete_lattice_class.Sup_upper) auto
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1194
next
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1195
  assume "x0 \<le> liminf x"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1196
  { fix S :: "ereal set"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1197
    assume om: "open S & mono_set S & x0:S"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1198
    { assume "S = UNIV" then have "EX N. (ALL n>=N. x n : S)" by auto }
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1199
    moreover
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1200
    { assume "~(S=UNIV)"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1201
      then obtain B where B_def: "S = {B<..}" using om ereal_open_mono_set by auto
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1202
      then have "B<x0" using om by auto
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1203
      then have "EX N. ALL n>=N. x n : S"
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1204
        unfolding B_def using `x0 \<le> liminf x` liminf_bounded_iff by auto
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1205
    }
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1206
    ultimately have "EX N. (ALL n>=N. x n : S)" by auto
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1207
  }
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1208
  then show "?P x0" by auto
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1209
qed
5e6296afe08d move Liminf / Limsup lemmas on complete_lattices to its own file
hoelzl
parents: 51329
diff changeset
  1210
44125
230a8665c919 mark some redundant theorems as legacy
huffman
parents: 43923
diff changeset
  1211
end