| author | boehmes | 
| Fri, 07 Jan 2011 17:58:51 +0100 | |
| changeset 41462 | 5f4939d46b63 | 
| parent 40834 | a1249aeff5b6 | 
| child 42151 | 4da4fc77664b | 
| permissions | -rw-r--r-- | 
| 15600 | 1 | (* Title: HOLCF/Ssum.thy | 
| 40502 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: 
40327diff
changeset | 2 | Author: Franz Regensburger | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: 
40327diff
changeset | 3 | Author: Brian Huffman | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 4 | *) | 
| 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 5 | |
| 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 6 | header {* The type of strict sums *}
 | 
| 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 7 | |
| 15577 | 8 | theory Ssum | 
| 31115 | 9 | imports Tr | 
| 15577 | 10 | begin | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 11 | |
| 36452 | 12 | default_sort pcpo | 
| 16083 
fca38c55c8fa
added defaultsort declaration, moved cpair_less to Cprod.thy
 huffman parents: 
16070diff
changeset | 13 | |
| 15593 
24d770bbc44a
reordered and arranged for document generation, cleaned up some proofs
 huffman parents: 
15577diff
changeset | 14 | subsection {* Definition of strict sum type *}
 | 
| 
24d770bbc44a
reordered and arranged for document generation, cleaned up some proofs
 huffman parents: 
15577diff
changeset | 15 | |
| 40098 
9dbb01456031
use default names sprod/Rep_sprod/Abs_sprod from pcpodef instead of Sprod/Rep_Sprod/Abs_Sprod; similarly for ssum
 huffman parents: 
40092diff
changeset | 16 | pcpodef ('a, 'b) ssum (infixr "++" 10) = 
 | 
| 40080 | 17 |   "{p :: tr \<times> ('a \<times> 'b). p = \<bottom> \<or>
 | 
| 18 | (fst p = TT \<and> fst (snd p) \<noteq> \<bottom> \<and> snd (snd p) = \<bottom>) \<or> | |
| 19 | (fst p = FF \<and> fst (snd p) = \<bottom> \<and> snd (snd p) \<noteq> \<bottom>) }" | |
| 29063 
7619f0561cd7
pcpodef package: state two goals, instead of encoded conjunction;
 wenzelm parents: 
27310diff
changeset | 20 | by simp_all | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 21 | |
| 35525 | 22 | instance ssum :: ("{chfin,pcpo}", "{chfin,pcpo}") chfin
 | 
| 40098 
9dbb01456031
use default names sprod/Rep_sprod/Abs_sprod from pcpodef instead of Sprod/Rep_Sprod/Abs_Sprod; similarly for ssum
 huffman parents: 
40092diff
changeset | 23 | by (rule typedef_chfin [OF type_definition_ssum below_ssum_def]) | 
| 25827 
c2adeb1bae5c
new instance proofs for classes finite_po, chfin, flat
 huffman parents: 
25756diff
changeset | 24 | |
| 35427 | 25 | type_notation (xsymbols) | 
| 35547 | 26 |   ssum  ("(_ \<oplus>/ _)" [21, 20] 20)
 | 
| 35427 | 27 | type_notation (HTML output) | 
| 35547 | 28 |   ssum  ("(_ \<oplus>/ _)" [21, 20] 20)
 | 
| 29 | ||
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 30 | |
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 31 | subsection {* Definitions of constructors *}
 | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 32 | |
| 25131 
2c8caac48ade
modernized specifications ('definition', 'abbreviation', 'notation');
 wenzelm parents: 
19440diff
changeset | 33 | definition | 
| 
2c8caac48ade
modernized specifications ('definition', 'abbreviation', 'notation');
 wenzelm parents: 
19440diff
changeset | 34 |   sinl :: "'a \<rightarrow> ('a ++ 'b)" where
 | 
| 40767 
a3e505b236e7
rename function 'strict' to 'seq', which is its name in Haskell
 huffman parents: 
40502diff
changeset | 35 | "sinl = (\<Lambda> a. Abs_ssum (seq\<cdot>a\<cdot>TT, a, \<bottom>))" | 
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 36 | |
| 25131 
2c8caac48ade
modernized specifications ('definition', 'abbreviation', 'notation');
 wenzelm parents: 
19440diff
changeset | 37 | definition | 
| 
2c8caac48ade
modernized specifications ('definition', 'abbreviation', 'notation');
 wenzelm parents: 
19440diff
changeset | 38 |   sinr :: "'b \<rightarrow> ('a ++ 'b)" where
 | 
| 40767 
a3e505b236e7
rename function 'strict' to 'seq', which is its name in Haskell
 huffman parents: 
40502diff
changeset | 39 | "sinr = (\<Lambda> b. Abs_ssum (seq\<cdot>b\<cdot>FF, \<bottom>, b))" | 
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 40 | |
| 40767 
a3e505b236e7
rename function 'strict' to 'seq', which is its name in Haskell
 huffman parents: 
40502diff
changeset | 41 | lemma sinl_ssum: "(seq\<cdot>a\<cdot>TT, a, \<bottom>) \<in> ssum" | 
| 
a3e505b236e7
rename function 'strict' to 'seq', which is its name in Haskell
 huffman parents: 
40502diff
changeset | 42 | by (simp add: ssum_def seq_conv_if) | 
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 43 | |
| 40767 
a3e505b236e7
rename function 'strict' to 'seq', which is its name in Haskell
 huffman parents: 
40502diff
changeset | 44 | lemma sinr_ssum: "(seq\<cdot>b\<cdot>FF, \<bottom>, b) \<in> ssum" | 
| 
a3e505b236e7
rename function 'strict' to 'seq', which is its name in Haskell
 huffman parents: 
40502diff
changeset | 45 | by (simp add: ssum_def seq_conv_if) | 
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 46 | |
| 40767 
a3e505b236e7
rename function 'strict' to 'seq', which is its name in Haskell
 huffman parents: 
40502diff
changeset | 47 | lemma Rep_ssum_sinl: "Rep_ssum (sinl\<cdot>a) = (seq\<cdot>a\<cdot>TT, a, \<bottom>)" | 
| 40098 
9dbb01456031
use default names sprod/Rep_sprod/Abs_sprod from pcpodef instead of Sprod/Rep_Sprod/Abs_Sprod; similarly for ssum
 huffman parents: 
40092diff
changeset | 48 | by (simp add: sinl_def cont_Abs_ssum Abs_ssum_inverse sinl_ssum) | 
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 49 | |
| 40767 
a3e505b236e7
rename function 'strict' to 'seq', which is its name in Haskell
 huffman parents: 
40502diff
changeset | 50 | lemma Rep_ssum_sinr: "Rep_ssum (sinr\<cdot>b) = (seq\<cdot>b\<cdot>FF, \<bottom>, b)" | 
| 40098 
9dbb01456031
use default names sprod/Rep_sprod/Abs_sprod from pcpodef instead of Sprod/Rep_Sprod/Abs_Sprod; similarly for ssum
 huffman parents: 
40092diff
changeset | 51 | by (simp add: sinr_def cont_Abs_ssum Abs_ssum_inverse sinr_ssum) | 
| 40092 
baf5953615da
do proofs using Rep_Sprod_simps, Rep_Ssum_simps; remove unused lemmas
 huffman parents: 
40089diff
changeset | 52 | |
| 40098 
9dbb01456031
use default names sprod/Rep_sprod/Abs_sprod from pcpodef instead of Sprod/Rep_Sprod/Abs_Sprod; similarly for ssum
 huffman parents: 
40092diff
changeset | 53 | lemmas Rep_ssum_simps = | 
| 
9dbb01456031
use default names sprod/Rep_sprod/Abs_sprod from pcpodef instead of Sprod/Rep_Sprod/Abs_Sprod; similarly for ssum
 huffman parents: 
40092diff
changeset | 54 | Rep_ssum_inject [symmetric] below_ssum_def | 
| 40092 
baf5953615da
do proofs using Rep_Sprod_simps, Rep_Ssum_simps; remove unused lemmas
 huffman parents: 
40089diff
changeset | 55 | Pair_fst_snd_eq below_prod_def | 
| 40098 
9dbb01456031
use default names sprod/Rep_sprod/Abs_sprod from pcpodef instead of Sprod/Rep_Sprod/Abs_Sprod; similarly for ssum
 huffman parents: 
40092diff
changeset | 56 | Rep_ssum_strict Rep_ssum_sinl Rep_ssum_sinr | 
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 57 | |
| 35900 
aa5dfb03eb1e
remove LaTeX hyperref warnings by avoiding antiquotations within section headings
 huffman parents: 
35783diff
changeset | 58 | subsection {* Properties of \emph{sinl} and \emph{sinr} *}
 | 
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 59 | |
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 60 | text {* Ordering *}
 | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 61 | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
29530diff
changeset | 62 | lemma sinl_below [simp]: "(sinl\<cdot>x \<sqsubseteq> sinl\<cdot>y) = (x \<sqsubseteq> y)" | 
| 40767 
a3e505b236e7
rename function 'strict' to 'seq', which is its name in Haskell
 huffman parents: 
40502diff
changeset | 63 | by (simp add: Rep_ssum_simps seq_conv_if) | 
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 64 | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
29530diff
changeset | 65 | lemma sinr_below [simp]: "(sinr\<cdot>x \<sqsubseteq> sinr\<cdot>y) = (x \<sqsubseteq> y)" | 
| 40767 
a3e505b236e7
rename function 'strict' to 'seq', which is its name in Haskell
 huffman parents: 
40502diff
changeset | 66 | by (simp add: Rep_ssum_simps seq_conv_if) | 
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 67 | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
29530diff
changeset | 68 | lemma sinl_below_sinr [simp]: "(sinl\<cdot>x \<sqsubseteq> sinr\<cdot>y) = (x = \<bottom>)" | 
| 40767 
a3e505b236e7
rename function 'strict' to 'seq', which is its name in Haskell
 huffman parents: 
40502diff
changeset | 69 | by (simp add: Rep_ssum_simps seq_conv_if) | 
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 70 | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
29530diff
changeset | 71 | lemma sinr_below_sinl [simp]: "(sinr\<cdot>x \<sqsubseteq> sinl\<cdot>y) = (x = \<bottom>)" | 
| 40767 
a3e505b236e7
rename function 'strict' to 'seq', which is its name in Haskell
 huffman parents: 
40502diff
changeset | 72 | by (simp add: Rep_ssum_simps seq_conv_if) | 
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 73 | |
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 74 | text {* Equality *}
 | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 75 | |
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 76 | lemma sinl_eq [simp]: "(sinl\<cdot>x = sinl\<cdot>y) = (x = y)" | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 77 | by (simp add: po_eq_conv) | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 78 | |
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 79 | lemma sinr_eq [simp]: "(sinr\<cdot>x = sinr\<cdot>y) = (x = y)" | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 80 | by (simp add: po_eq_conv) | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 81 | |
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 82 | lemma sinl_eq_sinr [simp]: "(sinl\<cdot>x = sinr\<cdot>y) = (x = \<bottom> \<and> y = \<bottom>)" | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 83 | by (subst po_eq_conv, simp) | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 84 | |
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 85 | lemma sinr_eq_sinl [simp]: "(sinr\<cdot>x = sinl\<cdot>y) = (x = \<bottom> \<and> y = \<bottom>)" | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 86 | by (subst po_eq_conv, simp) | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 87 | |
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 88 | lemma sinl_inject: "sinl\<cdot>x = sinl\<cdot>y \<Longrightarrow> x = y" | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 89 | by (rule sinl_eq [THEN iffD1]) | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 90 | |
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 91 | lemma sinr_inject: "sinr\<cdot>x = sinr\<cdot>y \<Longrightarrow> x = y" | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 92 | by (rule sinr_eq [THEN iffD1]) | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 93 | |
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 94 | text {* Strictness *}
 | 
| 17837 | 95 | |
| 16211 
faa9691da2bc
changed to use new contI; renamed strict, defined, and inject lemmas
 huffman parents: 
16083diff
changeset | 96 | lemma sinl_strict [simp]: "sinl\<cdot>\<bottom> = \<bottom>" | 
| 40098 
9dbb01456031
use default names sprod/Rep_sprod/Abs_sprod from pcpodef instead of Sprod/Rep_Sprod/Abs_Sprod; similarly for ssum
 huffman parents: 
40092diff
changeset | 97 | by (simp add: Rep_ssum_simps) | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 98 | |
| 16211 
faa9691da2bc
changed to use new contI; renamed strict, defined, and inject lemmas
 huffman parents: 
16083diff
changeset | 99 | lemma sinr_strict [simp]: "sinr\<cdot>\<bottom> = \<bottom>" | 
| 40098 
9dbb01456031
use default names sprod/Rep_sprod/Abs_sprod from pcpodef instead of Sprod/Rep_Sprod/Abs_Sprod; similarly for ssum
 huffman parents: 
40092diff
changeset | 100 | by (simp add: Rep_ssum_simps) | 
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 101 | |
| 40321 
d065b195ec89
rename lemmas *_defined_iff and *_strict_iff to *_bottom_iff
 huffman parents: 
40098diff
changeset | 102 | lemma sinl_bottom_iff [simp]: "(sinl\<cdot>x = \<bottom>) = (x = \<bottom>)" | 
| 40080 | 103 | using sinl_eq [of "x" "\<bottom>"] by simp | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 104 | |
| 40321 
d065b195ec89
rename lemmas *_defined_iff and *_strict_iff to *_bottom_iff
 huffman parents: 
40098diff
changeset | 105 | lemma sinr_bottom_iff [simp]: "(sinr\<cdot>x = \<bottom>) = (x = \<bottom>)" | 
| 40080 | 106 | using sinr_eq [of "x" "\<bottom>"] by simp | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 107 | |
| 40081 | 108 | lemma sinl_defined: "x \<noteq> \<bottom> \<Longrightarrow> sinl\<cdot>x \<noteq> \<bottom>" | 
| 16752 
270ec60cc9e8
added lemmas sinl_defined_iff sinr_defined_iff, sinl_eq_sinr, sinr_eq_sinl; added more simp rules; cleaned up
 huffman parents: 
16742diff
changeset | 109 | by simp | 
| 
270ec60cc9e8
added lemmas sinl_defined_iff sinr_defined_iff, sinl_eq_sinr, sinr_eq_sinl; added more simp rules; cleaned up
 huffman parents: 
16742diff
changeset | 110 | |
| 40081 | 111 | lemma sinr_defined: "x \<noteq> \<bottom> \<Longrightarrow> sinr\<cdot>x \<noteq> \<bottom>" | 
| 16752 
270ec60cc9e8
added lemmas sinl_defined_iff sinr_defined_iff, sinl_eq_sinr, sinr_eq_sinl; added more simp rules; cleaned up
 huffman parents: 
16742diff
changeset | 112 | by simp | 
| 
270ec60cc9e8
added lemmas sinl_defined_iff sinr_defined_iff, sinl_eq_sinr, sinr_eq_sinl; added more simp rules; cleaned up
 huffman parents: 
16742diff
changeset | 113 | |
| 25882 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 114 | text {* Compactness *}
 | 
| 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 115 | |
| 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 116 | lemma compact_sinl: "compact x \<Longrightarrow> compact (sinl\<cdot>x)" | 
| 40098 
9dbb01456031
use default names sprod/Rep_sprod/Abs_sprod from pcpodef instead of Sprod/Rep_Sprod/Abs_Sprod; similarly for ssum
 huffman parents: 
40092diff
changeset | 117 | by (rule compact_ssum, simp add: Rep_ssum_sinl) | 
| 25882 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 118 | |
| 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 119 | lemma compact_sinr: "compact x \<Longrightarrow> compact (sinr\<cdot>x)" | 
| 40098 
9dbb01456031
use default names sprod/Rep_sprod/Abs_sprod from pcpodef instead of Sprod/Rep_Sprod/Abs_Sprod; similarly for ssum
 huffman parents: 
40092diff
changeset | 120 | by (rule compact_ssum, simp add: Rep_ssum_sinr) | 
| 25882 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 121 | |
| 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 122 | lemma compact_sinlD: "compact (sinl\<cdot>x) \<Longrightarrow> compact x" | 
| 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 123 | unfolding compact_def | 
| 40327 | 124 | by (drule adm_subst [OF cont_Rep_cfun2 [where f=sinl]], simp) | 
| 25882 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 125 | |
| 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 126 | lemma compact_sinrD: "compact (sinr\<cdot>x) \<Longrightarrow> compact x" | 
| 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 127 | unfolding compact_def | 
| 40327 | 128 | by (drule adm_subst [OF cont_Rep_cfun2 [where f=sinr]], simp) | 
| 25882 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 129 | |
| 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 130 | lemma compact_sinl_iff [simp]: "compact (sinl\<cdot>x) = compact x" | 
| 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 131 | by (safe elim!: compact_sinl compact_sinlD) | 
| 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 132 | |
| 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 133 | lemma compact_sinr_iff [simp]: "compact (sinr\<cdot>x) = compact x" | 
| 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 134 | by (safe elim!: compact_sinr compact_sinrD) | 
| 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 135 | |
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 136 | subsection {* Case analysis *}
 | 
| 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 137 | |
| 35783 | 138 | lemma ssumE [case_names bottom sinl sinr, cases type: ssum]: | 
| 40080 | 139 | obtains "p = \<bottom>" | 
| 140 | | x where "p = sinl\<cdot>x" and "x \<noteq> \<bottom>" | |
| 141 | | y where "p = sinr\<cdot>y" and "y \<noteq> \<bottom>" | |
| 40098 
9dbb01456031
use default names sprod/Rep_sprod/Abs_sprod from pcpodef instead of Sprod/Rep_Sprod/Abs_Sprod; similarly for ssum
 huffman parents: 
40092diff
changeset | 142 | using Rep_ssum [of p] by (auto simp add: ssum_def Rep_ssum_simps) | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 143 | |
| 35783 | 144 | lemma ssum_induct [case_names bottom sinl sinr, induct type: ssum]: | 
| 25756 | 145 | "\<lbrakk>P \<bottom>; | 
| 146 | \<And>x. x \<noteq> \<bottom> \<Longrightarrow> P (sinl\<cdot>x); | |
| 147 | \<And>y. y \<noteq> \<bottom> \<Longrightarrow> P (sinr\<cdot>y)\<rbrakk> \<Longrightarrow> P x" | |
| 148 | by (cases x, simp_all) | |
| 149 | ||
| 35783 | 150 | lemma ssumE2 [case_names sinl sinr]: | 
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 151 | "\<lbrakk>\<And>x. p = sinl\<cdot>x \<Longrightarrow> Q; \<And>y. p = sinr\<cdot>y \<Longrightarrow> Q\<rbrakk> \<Longrightarrow> Q" | 
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 152 | by (cases p, simp only: sinl_strict [symmetric], simp, simp) | 
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 153 | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
29530diff
changeset | 154 | lemma below_sinlD: "p \<sqsubseteq> sinl\<cdot>x \<Longrightarrow> \<exists>y. p = sinl\<cdot>y \<and> y \<sqsubseteq> x" | 
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 155 | by (cases p, rule_tac x="\<bottom>" in exI, simp_all) | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 156 | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
29530diff
changeset | 157 | lemma below_sinrD: "p \<sqsubseteq> sinr\<cdot>x \<Longrightarrow> \<exists>y. p = sinr\<cdot>y \<and> y \<sqsubseteq> x" | 
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 158 | by (cases p, rule_tac x="\<bottom>" in exI, simp_all) | 
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 159 | |
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 160 | subsection {* Case analysis combinator *}
 | 
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 161 | |
| 25131 
2c8caac48ade
modernized specifications ('definition', 'abbreviation', 'notation');
 wenzelm parents: 
19440diff
changeset | 162 | definition | 
| 
2c8caac48ade
modernized specifications ('definition', 'abbreviation', 'notation');
 wenzelm parents: 
19440diff
changeset | 163 |   sscase :: "('a \<rightarrow> 'c) \<rightarrow> ('b \<rightarrow> 'c) \<rightarrow> ('a ++ 'b) \<rightarrow> 'c" where
 | 
| 40322 
707eb30e8a53
make syntax of continuous if-then-else consistent with HOL if-then-else
 huffman parents: 
40321diff
changeset | 164 | "sscase = (\<Lambda> f g s. (\<lambda>(t, x, y). If t then f\<cdot>x else g\<cdot>y) (Rep_ssum s))" | 
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 165 | |
| 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 166 | translations | 
| 26046 | 167 | "case s of XCONST sinl\<cdot>x \<Rightarrow> t1 | XCONST sinr\<cdot>y \<Rightarrow> t2" == "CONST sscase\<cdot>(\<Lambda> x. t1)\<cdot>(\<Lambda> y. t2)\<cdot>s" | 
| 18078 
20e5a6440790
change syntax for LAM to use expressions as patterns; define LAM pattern syntax for cpair, spair, sinl, sinr, up
 huffman parents: 
17837diff
changeset | 168 | |
| 
20e5a6440790
change syntax for LAM to use expressions as patterns; define LAM pattern syntax for cpair, spair, sinl, sinr, up
 huffman parents: 
17837diff
changeset | 169 | translations | 
| 26046 | 170 | "\<Lambda>(XCONST sinl\<cdot>x). t" == "CONST sscase\<cdot>(\<Lambda> x. t)\<cdot>\<bottom>" | 
| 171 | "\<Lambda>(XCONST sinr\<cdot>y). t" == "CONST sscase\<cdot>\<bottom>\<cdot>(\<Lambda> y. t)" | |
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 172 | |
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 173 | lemma beta_sscase: | 
| 40322 
707eb30e8a53
make syntax of continuous if-then-else consistent with HOL if-then-else
 huffman parents: 
40321diff
changeset | 174 | "sscase\<cdot>f\<cdot>g\<cdot>s = (\<lambda>(t, x, y). If t then f\<cdot>x else g\<cdot>y) (Rep_ssum s)" | 
| 40834 
a1249aeff5b6
change cpodef-generated cont_Rep rules to cont2cont format
 huffman parents: 
40774diff
changeset | 175 | unfolding sscase_def by (simp add: cont_Rep_ssum) | 
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 176 | |
| 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 177 | lemma sscase1 [simp]: "sscase\<cdot>f\<cdot>g\<cdot>\<bottom> = \<bottom>" | 
| 40098 
9dbb01456031
use default names sprod/Rep_sprod/Abs_sprod from pcpodef instead of Sprod/Rep_Sprod/Abs_Sprod; similarly for ssum
 huffman parents: 
40092diff
changeset | 178 | unfolding beta_sscase by (simp add: Rep_ssum_strict) | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 179 | |
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 180 | lemma sscase2 [simp]: "x \<noteq> \<bottom> \<Longrightarrow> sscase\<cdot>f\<cdot>g\<cdot>(sinl\<cdot>x) = f\<cdot>x" | 
| 40098 
9dbb01456031
use default names sprod/Rep_sprod/Abs_sprod from pcpodef instead of Sprod/Rep_Sprod/Abs_Sprod; similarly for ssum
 huffman parents: 
40092diff
changeset | 181 | unfolding beta_sscase by (simp add: Rep_ssum_sinl) | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 182 | |
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 183 | lemma sscase3 [simp]: "y \<noteq> \<bottom> \<Longrightarrow> sscase\<cdot>f\<cdot>g\<cdot>(sinr\<cdot>y) = g\<cdot>y" | 
| 40098 
9dbb01456031
use default names sprod/Rep_sprod/Abs_sprod from pcpodef instead of Sprod/Rep_Sprod/Abs_Sprod; similarly for ssum
 huffman parents: 
40092diff
changeset | 184 | unfolding beta_sscase by (simp add: Rep_ssum_sinr) | 
| 15593 
24d770bbc44a
reordered and arranged for document generation, cleaned up some proofs
 huffman parents: 
15577diff
changeset | 185 | |
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 186 | lemma sscase4 [simp]: "sscase\<cdot>sinl\<cdot>sinr\<cdot>z = z" | 
| 25756 | 187 | by (cases z, simp_all) | 
| 15593 
24d770bbc44a
reordered and arranged for document generation, cleaned up some proofs
 huffman parents: 
15577diff
changeset | 188 | |
| 25827 
c2adeb1bae5c
new instance proofs for classes finite_po, chfin, flat
 huffman parents: 
25756diff
changeset | 189 | subsection {* Strict sum preserves flatness *}
 | 
| 
c2adeb1bae5c
new instance proofs for classes finite_po, chfin, flat
 huffman parents: 
25756diff
changeset | 190 | |
| 35525 | 191 | instance ssum :: (flat, flat) flat | 
| 25827 
c2adeb1bae5c
new instance proofs for classes finite_po, chfin, flat
 huffman parents: 
25756diff
changeset | 192 | apply (intro_classes, clarify) | 
| 31115 | 193 | apply (case_tac x, simp) | 
| 194 | apply (case_tac y, simp_all add: flat_below_iff) | |
| 195 | apply (case_tac y, simp_all add: flat_below_iff) | |
| 25827 
c2adeb1bae5c
new instance proofs for classes finite_po, chfin, flat
 huffman parents: 
25756diff
changeset | 196 | done | 
| 
c2adeb1bae5c
new instance proofs for classes finite_po, chfin, flat
 huffman parents: 
25756diff
changeset | 197 | |
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 198 | end |