| author | paulson | 
| Thu, 04 Sep 2003 11:15:53 +0200 | |
| changeset 14182 | 5f49f00fe084 | 
| parent 14174 | f3cafd2929d5 | 
| child 14981 | e73f8140af78 | 
| permissions | -rw-r--r-- | 
| 13673 | 1 | (* Title: HOL/MicroJava/Comp/CorrCompTp.thy | 
| 2 | ID: $Id$ | |
| 3 | Author: Martin Strecker | |
| 4 | Copyright GPL 2002 | |
| 5 | *) | |
| 6 | ||
| 14045 | 7 | theory CorrCompTp = LemmasComp + JVM + TypeInf + Altern: | 
| 13673 | 8 | |
| 9 | declare split_paired_All [simp del] | |
| 10 | declare split_paired_Ex [simp del] | |
| 11 | ||
| 12 | ||
| 13 | (**********************************************************************) | |
| 14 | ||
| 15 | constdefs | |
| 16 | inited_LT :: "[cname, ty list, (vname \<times> ty) list] \<Rightarrow> locvars_type" | |
| 17 | "inited_LT C pTs lvars == (OK (Class C))#((map OK pTs))@(map (Fun.comp OK snd) lvars)" | |
| 18 | is_inited_LT :: "[cname, ty list, (vname \<times> ty) list, locvars_type] \<Rightarrow> bool" | |
| 19 | "is_inited_LT C pTs lvars LT == (LT = (inited_LT C pTs lvars))" | |
| 20 | ||
| 21 | local_env :: "[java_mb prog, cname, sig, vname list,(vname \<times> ty) list] \<Rightarrow> java_mb env" | |
| 22 | "local_env G C S pns lvars == | |
| 23 | let (mn, pTs) = S in (G,map_of lvars(pns[\<mapsto>]pTs)(This\<mapsto>Class C))" | |
| 24 | ||
| 25 | lemma local_env_fst [simp]: "fst (local_env G C S pns lvars) = G" | |
| 26 | by (simp add: local_env_def split_beta) | |
| 27 | ||
| 28 | ||
| 14045 | 29 | lemma wt_class_expr_is_class: "\<lbrakk> ws_prog G; E \<turnstile> expr :: Class cname; | 
| 13673 | 30 | E = local_env G C (mn, pTs) pns lvars\<rbrakk> | 
| 31 | \<Longrightarrow> is_class G cname " | |
| 32 | apply (subgoal_tac "((fst E), (snd E)) \<turnstile> expr :: Class cname") | |
| 33 | apply (frule ty_expr_is_type) apply simp | |
| 34 | apply simp apply (simp (no_asm_use)) | |
| 35 | done | |
| 36 | ||
| 37 | ||
| 38 | ||
| 39 | (********************************************************************************) | |
| 13679 | 40 | section "index" | 
| 13673 | 41 | |
| 42 | lemma local_env_snd: " | |
| 43 | snd (local_env G C (mn, pTs) pns lvars) = map_of lvars(pns[\<mapsto>]pTs)(This\<mapsto>Class C)" | |
| 44 | by (simp add: local_env_def) | |
| 45 | ||
| 46 | ||
| 47 | ||
| 48 | lemma index_in_bounds: " length pns = length pTs \<Longrightarrow> | |
| 49 | snd (local_env G C (mn, pTs) pns lvars) vname = Some T | |
| 50 | \<Longrightarrow> index (pns, lvars, blk, res) vname < length (inited_LT C pTs lvars)" | |
| 51 | apply (simp add: local_env_snd index_def split_beta) | |
| 52 | apply (case_tac "vname = This") | |
| 53 | apply (simp add: inited_LT_def) | |
| 54 | apply simp | |
| 55 | apply (drule map_of_upds_SomeD) | |
| 56 | apply (drule length_takeWhile) | |
| 57 | apply (simp add: inited_LT_def) | |
| 58 | done | |
| 59 | ||
| 60 | ||
| 61 | lemma map_upds_append [rule_format (no_asm)]: | |
| 62 | "\<forall> x1s m. (length k1s = length x1s | |
| 63 | \<longrightarrow> m(k1s[\<mapsto>]x1s)(k2s[\<mapsto>]x2s) = m ((k1s@k2s)[\<mapsto>](x1s@x2s)))" | |
| 64 | apply (induct k1s) | |
| 65 | apply simp | |
| 66 | apply (intro strip) | |
| 67 | apply (subgoal_tac "\<exists> x xr. x1s = x # xr") | |
| 68 | apply clarify | |
| 69 | apply simp | |
| 70 | (* subgoal *) | |
| 71 | apply (case_tac x1s) | |
| 72 | apply auto | |
| 73 | done | |
| 74 | ||
| 75 | ||
| 76 | lemma map_of_append [rule_format]: | |
| 77 | "\<forall> ys. (map_of ((rev xs) @ ys) = (map_of ys) ((map fst xs) [\<mapsto>] (map snd xs)))" | |
| 78 | apply (induct xs) | |
| 79 | apply simp | |
| 80 | apply (rule allI) | |
| 81 | apply (drule_tac x="a # ys" in spec) | |
| 82 | apply (simp only: rev.simps append_assoc append_Cons append_Nil | |
| 14025 | 83 | map.simps map_of.simps map_upds_Cons hd.simps tl.simps) | 
| 13673 | 84 | done | 
| 85 | ||
| 86 | lemma map_of_as_map_upds: "map_of (rev xs) = empty ((map fst xs) [\<mapsto>] (map snd xs))" | |
| 87 | by (rule map_of_append [of _ "[]", simplified]) | |
| 88 | ||
| 89 | lemma map_of_rev: "unique xs \<Longrightarrow> map_of (rev xs) = map_of xs" | |
| 90 | apply (induct xs) | |
| 91 | apply simp | |
| 14025 | 92 | apply (simp add: unique_def map_of_append map_of_as_map_upds [THEN sym] | 
| 93 | Map.map_of_append[symmetric] del:Map.map_of_append) | |
| 13673 | 94 | done | 
| 95 | ||
| 96 | lemma map_upds_rev [rule_format]: "\<forall> xs. (distinct ks \<longrightarrow> length ks = length xs | |
| 97 | \<longrightarrow> m (rev ks [\<mapsto>] rev xs) = m (ks [\<mapsto>] xs))" | |
| 98 | apply (induct ks) | |
| 99 | apply simp | |
| 100 | apply (intro strip) | |
| 101 | apply (subgoal_tac "\<exists> x xr. xs = x # xr") | |
| 102 | apply clarify | |
| 103 | apply (drule_tac x=xr in spec) | |
| 104 | apply (simp add: map_upds_append [THEN sym]) | |
| 105 | (* subgoal *) | |
| 106 | apply (case_tac xs) | |
| 107 | apply auto | |
| 108 | done | |
| 109 | ||
| 110 | lemma map_upds_takeWhile [rule_format]: | |
| 111 | "\<forall> ks. (empty(rev ks[\<mapsto>]rev xs)) k = Some x \<longrightarrow> length ks = length xs \<longrightarrow> | |
| 112 | xs ! length (takeWhile (\<lambda>z. z \<noteq> k) ks) = x" | |
| 113 | apply (induct xs) | |
| 114 | apply simp | |
| 115 | apply (intro strip) | |
| 116 | apply (subgoal_tac "\<exists> k' kr. ks = k' # kr") | |
| 117 | apply (clarify) | |
| 118 | apply (drule_tac x=kr in spec) | |
| 119 | apply (simp only: rev.simps) | |
| 120 | apply (subgoal_tac "(empty(rev kr @ [k'][\<mapsto>]rev list @ [a])) = empty (rev kr[\<mapsto>]rev list)([k'][\<mapsto>][a])") | |
| 121 | apply (simp only:) | |
| 122 | apply (case_tac "k' = k") | |
| 123 | apply simp | |
| 124 | apply simp | |
| 125 | apply (case_tac "k = k'") | |
| 126 | apply simp | |
| 127 | apply (simp add: empty_def) | |
| 128 | apply (simp add: map_upds_append [THEN sym]) | |
| 129 | apply (case_tac ks) | |
| 130 | apply auto | |
| 131 | done | |
| 132 | ||
| 133 | ||
| 134 | lemma local_env_inited_LT: "\<lbrakk> snd (local_env G C (mn, pTs) pns lvars) vname = Some T; | |
| 135 | length pns = length pTs; distinct pns; unique lvars \<rbrakk> | |
| 136 | \<Longrightarrow> (inited_LT C pTs lvars ! index (pns, lvars, blk, res) vname) = OK T" | |
| 137 | apply (simp add: local_env_snd index_def) | |
| 138 | apply (case_tac "vname = This") | |
| 139 | apply (simp add: inited_LT_def) | |
| 140 | apply (simp add: inited_LT_def) | |
| 141 | apply (simp (no_asm_simp) only: map_compose map_append [THEN sym] map.simps [THEN sym]) | |
| 142 | apply (subgoal_tac "length (takeWhile (\<lambda>z. z \<noteq> vname) (pns @ map fst lvars)) < length (pTs @ map snd lvars)") | |
| 143 | apply (simp (no_asm_simp) only: List.nth_map ok_val.simps) | |
| 144 | apply (subgoal_tac "map_of lvars = map_of (map (\<lambda> p. (fst p, snd p)) lvars)") | |
| 145 | apply (simp only:) | |
| 146 | apply (subgoal_tac "distinct (map fst lvars)") | |
| 147 | apply (frule_tac g=snd in AuxLemmas.map_of_map_as_map_upd) | |
| 148 | apply (simp only:) | |
| 149 | apply (simp add: map_upds_append) | |
| 150 | apply (frule map_upds_SomeD) | |
| 151 | apply (rule map_upds_takeWhile) | |
| 152 | apply (simp (no_asm_simp)) | |
| 153 | apply (simp add: map_upds_append [THEN sym]) | |
| 154 | apply (simp add: map_upds_rev) | |
| 155 | ||
| 156 | (* show length (pns @ map fst lvars) = length (pTs @ map snd lvars) *) | |
| 157 | apply simp | |
| 158 | ||
| 159 | (* show distinct (map fst lvars) *) | |
| 160 | apply (simp only: unique_def Fun.comp_def) | |
| 161 | ||
| 162 | (* show map_of lvars = map_of (map (\<lambda>p. (fst p, snd p)) lvars) *) | |
| 163 | apply simp | |
| 164 | ||
| 165 | (* show length (takeWhile (\<lambda>z. z \<noteq> vname) (pns @ map fst lvars)) < length (pTs @ map snd lvars) *) | |
| 166 | apply (drule map_of_upds_SomeD) | |
| 167 | apply (drule length_takeWhile) | |
| 168 | apply simp | |
| 169 | done | |
| 170 | ||
| 171 | ||
| 172 | lemma inited_LT_at_index_no_err: " i < length (inited_LT C pTs lvars) | |
| 173 | \<Longrightarrow> inited_LT C pTs lvars ! i \<noteq> Err" | |
| 174 | apply (simp only: inited_LT_def) | |
| 175 | apply (simp only: map_compose map_append [THEN sym] map.simps [THEN sym] length_map) | |
| 176 | apply (simp only: nth_map) | |
| 177 | apply simp | |
| 178 | done | |
| 179 | ||
| 180 | ||
| 181 | lemma sup_loc_update_index: " | |
| 182 | \<lbrakk> G \<turnstile> T \<preceq> T'; is_type G T'; length pns = length pTs; distinct pns; unique lvars; | |
| 183 | snd (local_env G C (mn, pTs) pns lvars) vname = Some T' \<rbrakk> | |
| 184 | \<Longrightarrow> | |
| 185 | comp G \<turnstile> | |
| 186 | inited_LT C pTs lvars [index (pns, lvars, blk, res) vname := OK T] <=l | |
| 187 | inited_LT C pTs lvars" | |
| 188 | apply (subgoal_tac " index (pns, lvars, blk, res) vname < length (inited_LT C pTs lvars)") | |
| 189 | apply (frule_tac blk=blk and res=res in local_env_inited_LT, assumption+) | |
| 190 | apply (rule sup_loc_trans) | |
| 191 | apply (rule_tac b="OK T'" in sup_loc_update) | |
| 192 | apply (simp add: comp_widen) | |
| 193 | apply assumption | |
| 194 | apply (rule sup_loc_refl) | |
| 195 | apply (simp add: list_update_same_conv [THEN iffD2]) | |
| 196 | (* subgoal *) | |
| 197 | apply (rule index_in_bounds) | |
| 198 | apply simp+ | |
| 199 | done | |
| 200 | ||
| 201 | ||
| 202 | (********************************************************************************) | |
| 203 | ||
| 13679 | 204 | section "Preservation of ST and LT by compTpExpr / compTpStmt" | 
| 13673 | 205 | |
| 206 | lemma sttp_of_comb_nil [simp]: "sttp_of (comb_nil sttp) = sttp" | |
| 207 | by (simp add: comb_nil_def) | |
| 208 | ||
| 209 | lemma mt_of_comb_nil [simp]: "mt_of (comb_nil sttp) = []" | |
| 210 | by (simp add: comb_nil_def) | |
| 211 | ||
| 212 | ||
| 213 | lemma sttp_of_comb [simp]: "sttp_of ((f1 \<box> f2) sttp) = sttp_of (f2 (sttp_of (f1 sttp)))" | |
| 214 | apply (case_tac "f1 sttp") | |
| 215 | apply (case_tac "(f2 (sttp_of (f1 sttp)))") | |
| 216 | apply (simp add: comb_def) | |
| 217 | done | |
| 218 | ||
| 219 | lemma mt_of_comb: "(mt_of ((f1 \<box> f2) sttp)) = | |
| 220 | (mt_of (f1 sttp)) @ (mt_of (f2 (sttp_of (f1 sttp))))" | |
| 221 | by (simp add: comb_def split_beta) | |
| 222 | ||
| 223 | ||
| 224 | lemma mt_of_comb_length [simp]: "\<lbrakk> n1 = length (mt_of (f1 sttp)); n1 \<le> n \<rbrakk> | |
| 225 | \<Longrightarrow> (mt_of ((f1 \<box> f2) sttp) ! n) = (mt_of (f2 (sttp_of (f1 sttp))) ! (n - n1))" | |
| 226 | by (simp add: comb_def nth_append split_beta) | |
| 227 | ||
| 228 | ||
| 229 | lemma compTpExpr_Exprs_LT_ST: " | |
| 230 | \<lbrakk>jmb = (pns, lvars, blk, res); | |
| 231 | wf_prog wf_java_mdecl G; | |
| 232 | wf_java_mdecl G C ((mn, pTs), rT, jmb); | |
| 233 | E = local_env G C (mn, pTs) pns lvars \<rbrakk> | |
| 234 | \<Longrightarrow> | |
| 235 | (\<forall> ST LT T. | |
| 236 | E \<turnstile> ex :: T \<longrightarrow> | |
| 237 | is_inited_LT C pTs lvars LT \<longrightarrow> | |
| 238 | sttp_of (compTpExpr jmb G ex (ST, LT)) = (T # ST, LT)) | |
| 239 | \<and> | |
| 240 | (\<forall> ST LT Ts. | |
| 241 | E \<turnstile> exs [::] Ts \<longrightarrow> | |
| 242 | is_inited_LT C pTs lvars LT \<longrightarrow> | |
| 243 | sttp_of (compTpExprs jmb G exs (ST, LT)) = ((rev Ts) @ ST, LT))" | |
| 244 | ||
| 245 | apply (rule expr.induct) | |
| 246 | ||
| 247 | (* expresssions *) | |
| 248 | ||
| 249 | (* NewC *) | |
| 250 | apply (intro strip) | |
| 251 | apply (drule NewC_invers) | |
| 252 | apply (simp add: pushST_def) | |
| 253 | ||
| 254 | (* Cast *) | |
| 255 | apply (intro strip) | |
| 256 | apply (drule Cast_invers, clarify) | |
| 257 | apply ((drule_tac x=ST in spec), (drule spec)+, (drule mp, assumption)+) | |
| 258 | apply (simp add: replST_def split_beta) | |
| 259 | ||
| 260 | (* Lit *) | |
| 261 | apply (intro strip) | |
| 262 | apply (drule Lit_invers) | |
| 263 | apply (simp add: pushST_def) | |
| 264 | ||
| 265 | (* BinOp *) | |
| 266 | apply (intro strip) | |
| 267 | apply (drule BinOp_invers, clarify) | |
| 268 | apply (drule_tac x=ST in spec) | |
| 269 | apply (drule_tac x="Ta # ST" in spec) | |
| 270 | apply ((drule spec)+, (drule mp, assumption)+) | |
| 271 | apply (case_tac binop) | |
| 272 | apply (simp (no_asm_simp)) | |
| 273 | apply (simp (no_asm_simp) add: popST_def pushST_def) | |
| 274 | apply (simp) | |
| 275 | apply (simp (no_asm_simp) add: replST_def) | |
| 276 | ||
| 277 | ||
| 278 | (* LAcc *) | |
| 279 | apply (intro strip) | |
| 280 | apply (drule LAcc_invers) | |
| 281 | apply (simp add: pushST_def is_inited_LT_def) | |
| 282 | apply (simp add: wf_prog_def) | |
| 283 | apply (frule wf_java_mdecl_disjoint_varnames) | |
| 284 | apply (simp add: disjoint_varnames_def) | |
| 285 | apply (frule wf_java_mdecl_length_pTs_pns) | |
| 286 | apply (erule conjE)+ | |
| 287 | apply (simp (no_asm_simp) add: local_env_inited_LT) | |
| 288 | ||
| 289 | (* LAss *) | |
| 290 | apply (intro strip) | |
| 291 | apply (drule LAss_invers, clarify) | |
| 292 | apply (drule LAcc_invers) | |
| 293 | apply ((drule_tac x=ST in spec), (drule spec)+, (drule mp, assumption)+) | |
| 294 | apply (simp add: popST_def dupST_def) | |
| 295 | ||
| 296 | (* FAcc *) | |
| 297 | apply (intro strip) | |
| 298 | apply (drule FAcc_invers, clarify) | |
| 299 | apply ((drule_tac x=ST in spec), (drule spec)+, (drule mp, assumption)+) | |
| 300 | apply (simp add: replST_def) | |
| 301 | ||
| 302 | (* show snd (the (field (G, cname) vname)) = T *) | |
| 303 | apply (subgoal_tac "is_class G Ca") | |
| 304 | apply (subgoal_tac "is_class G cname \<and> field (G, cname) vname = Some (cname, T)") | |
| 305 | apply simp | |
| 306 | ||
| 307 | (* show is_class G cname \<and> field (G, cname) vname = Some (cname, T) *) | |
| 308 | apply (rule field_in_fd) apply assumption+ | |
| 309 | (* show is_class G Ca *) | |
| 14045 | 310 | apply (fast intro: wt_class_expr_is_class) | 
| 13673 | 311 | |
| 312 | (* FAss *) | |
| 313 | apply (intro strip) | |
| 314 | apply (drule FAss_invers, clarify) | |
| 315 | apply (drule FAcc_invers, clarify) | |
| 316 | apply (drule_tac x=ST in spec) | |
| 317 | apply (drule_tac x="Class Ca # ST" in spec) | |
| 318 | apply ((drule spec)+, (drule mp, assumption)+) | |
| 319 | apply (simp add: popST_def dup_x1ST_def) | |
| 320 | ||
| 321 | ||
| 322 | (* Call *) | |
| 323 | apply (intro strip) | |
| 324 | apply (drule Call_invers, clarify) | |
| 325 | apply (drule_tac x=ST in spec) | |
| 326 | apply (drule_tac x="Class cname # ST" in spec) | |
| 327 | apply ((drule spec)+, (drule mp, assumption)+) | |
| 328 | apply (simp add: replST_def) | |
| 329 | ||
| 330 | ||
| 331 | (* expression lists *) | |
| 332 | (* nil *) | |
| 333 | ||
| 334 | apply (intro strip) | |
| 335 | apply (drule Nil_invers) | |
| 336 | apply (simp add: comb_nil_def) | |
| 337 | ||
| 338 | (* cons *) | |
| 339 | ||
| 340 | apply (intro strip) | |
| 341 | apply (drule Cons_invers, clarify) | |
| 342 | apply (drule_tac x=ST in spec) | |
| 343 | apply (drule_tac x="T # ST" in spec) | |
| 344 | apply ((drule spec)+, (drule mp, assumption)+) | |
| 345 | apply simp | |
| 346 | ||
| 347 | done | |
| 348 | ||
| 349 | ||
| 350 | ||
| 351 | lemmas compTpExpr_LT_ST [rule_format (no_asm)] = | |
| 352 | compTpExpr_Exprs_LT_ST [THEN conjunct1] | |
| 353 | ||
| 354 | lemmas compTpExprs_LT_ST [rule_format (no_asm)] = | |
| 355 | compTpExpr_Exprs_LT_ST [THEN conjunct2] | |
| 356 | ||
| 357 | lemma compTpStmt_LT_ST [rule_format (no_asm)]: " | |
| 358 | \<lbrakk> jmb = (pns,lvars,blk,res); | |
| 359 | wf_prog wf_java_mdecl G; | |
| 360 | wf_java_mdecl G C ((mn, pTs), rT, jmb); | |
| 361 | E = (local_env G C (mn, pTs) pns lvars)\<rbrakk> | |
| 362 | \<Longrightarrow> (\<forall> ST LT. | |
| 363 | E \<turnstile> s\<surd> \<longrightarrow> | |
| 364 | (is_inited_LT C pTs lvars LT) | |
| 365 | \<longrightarrow> sttp_of (compTpStmt jmb G s (ST, LT)) = (ST, LT))" | |
| 366 | ||
| 367 | apply (rule stmt.induct) | |
| 368 | ||
| 369 | (* Skip *) | |
| 370 | apply (intro strip) | |
| 371 | apply simp | |
| 372 | ||
| 373 | (* Expr *) | |
| 374 | apply (intro strip) | |
| 375 | apply (drule Expr_invers, erule exE) | |
| 376 | apply (simp (no_asm_simp) add: compTpExpr_LT_ST) | |
| 377 | apply (frule_tac ST=ST in compTpExpr_LT_ST, assumption+) | |
| 378 | apply (simp add: popST_def) | |
| 379 | ||
| 380 | (* Comp *) | |
| 381 | apply (intro strip) | |
| 382 | apply (drule Comp_invers, clarify) | |
| 383 | apply (simp (no_asm_use)) | |
| 384 | apply simp | |
| 385 | ||
| 386 | (* Cond *) | |
| 387 | apply (intro strip) | |
| 388 | apply (drule Cond_invers) | |
| 389 | apply (erule conjE)+ | |
| 390 | apply (drule_tac x=ST in spec) | |
| 391 | apply (drule_tac x=ST in spec) | |
| 392 | apply (drule spec)+ apply (drule mp, assumption)+ | |
| 393 | apply (drule_tac ST="PrimT Boolean # ST" in compTpExpr_LT_ST, assumption+) | |
| 394 | apply (simp add: popST_def pushST_def nochangeST_def) | |
| 395 | ||
| 396 | (* Loop *) | |
| 397 | apply (intro strip) | |
| 398 | apply (drule Loop_invers) | |
| 399 | apply (erule conjE)+ | |
| 400 | apply (drule_tac x=ST in spec) | |
| 401 | apply (drule spec)+ apply (drule mp, assumption)+ | |
| 402 | apply (drule_tac ST="PrimT Boolean # ST" in compTpExpr_LT_ST, assumption+) | |
| 403 | apply (simp add: popST_def pushST_def nochangeST_def) | |
| 404 | done | |
| 405 | ||
| 406 | ||
| 407 | ||
| 408 | lemma compTpInit_LT_ST: " | |
| 409 | sttp_of (compTpInit jmb (vn,ty) (ST, LT)) = (ST, LT[(index jmb vn):= OK ty])" | |
| 410 | by (simp add: compTpInit_def storeST_def pushST_def) | |
| 411 | ||
| 412 | ||
| 413 | lemma compTpInitLvars_LT_ST_aux [rule_format (no_asm)]: | |
| 414 | "\<forall> pre lvars_pre lvars0. | |
| 415 | jmb = (pns,lvars0,blk,res) \<and> | |
| 416 | lvars0 = (lvars_pre @ lvars) \<and> | |
| 417 | (length pns) + (length lvars_pre) + 1 = length pre \<and> | |
| 418 | disjoint_varnames pns (lvars_pre @ lvars) | |
| 419 | \<longrightarrow> | |
| 420 | sttp_of (compTpInitLvars jmb lvars (ST, pre @ replicate (length lvars) Err)) | |
| 421 | = (ST, pre @ map (Fun.comp OK snd) lvars)" | |
| 422 | apply (induct lvars) | |
| 423 | apply simp | |
| 424 | ||
| 425 | apply (intro strip) | |
| 426 | apply (subgoal_tac "\<exists> vn ty. a = (vn, ty)") | |
| 427 | prefer 2 apply (simp (no_asm_simp)) | |
| 428 | apply ((erule exE)+, simp (no_asm_simp)) | |
| 429 | ||
| 430 | apply (drule_tac x="pre @ [OK ty]" in spec) | |
| 431 | apply (drule_tac x="lvars_pre @ [a]" in spec) | |
| 432 | apply (drule_tac x="lvars0" in spec) | |
| 433 | apply (simp add: compTpInit_LT_ST index_of_var2) | |
| 434 | done | |
| 435 | ||
| 436 | lemma compTpInitLvars_LT_ST: | |
| 437 | "\<lbrakk> jmb = (pns, lvars, blk, res); wf_java_mdecl G C ((mn, pTs), rT, jmb) \<rbrakk> | |
| 438 | \<Longrightarrow>(sttp_of (compTpInitLvars jmb lvars (ST, start_LT C pTs (length lvars)))) | |
| 439 | = (ST, inited_LT C pTs lvars)" | |
| 440 | apply (simp add: start_LT_def inited_LT_def) | |
| 441 | apply (simp only: append_Cons [THEN sym]) | |
| 442 | apply (rule compTpInitLvars_LT_ST_aux) | |
| 443 | apply (auto dest: wf_java_mdecl_length_pTs_pns wf_java_mdecl_disjoint_varnames) | |
| 444 | done | |
| 445 | ||
| 446 | ||
| 447 | ||
| 448 | (********************************************************************************) | |
| 449 | ||
| 450 | lemma max_of_list_elem: "x \<in> set xs \<Longrightarrow> x \<le> (max_of_list xs)" | |
| 451 | by (induct xs, auto intro: le_maxI1 simp: le_max_iff_disj max_of_list_def) | |
| 452 | ||
| 453 | lemma max_of_list_sublist: "set xs \<subseteq> set ys | |
| 454 | \<Longrightarrow> (max_of_list xs) \<le> (max_of_list ys)" | |
| 455 | by (induct xs, auto dest: max_of_list_elem simp: max_of_list_def) | |
| 456 | ||
| 457 | lemma max_of_list_append [simp]: | |
| 458 | "max_of_list (xs @ ys) = max (max_of_list xs) (max_of_list ys)" | |
| 459 | apply (simp add: max_of_list_def) | |
| 460 | apply (induct xs) | |
| 461 | apply simp | |
| 462 | apply simp | |
| 463 | apply arith | |
| 464 | done | |
| 465 | ||
| 466 | ||
| 467 | lemma app_mono_mxs: "\<lbrakk> app i G mxs rT pc et s; mxs \<le> mxs' \<rbrakk> | |
| 468 | \<Longrightarrow> app i G mxs' rT pc et s" | |
| 469 | apply (case_tac s) | |
| 470 | apply (simp add: app_def) | |
| 471 | apply (case_tac i) | |
| 472 | apply (auto intro: less_trans) | |
| 473 | done | |
| 474 | ||
| 475 | ||
| 476 | ||
| 477 | lemma err_mono [simp]: "A \<subseteq> B \<Longrightarrow> err A \<subseteq> err B" | |
| 478 | by (auto simp: err_def) | |
| 479 | ||
| 480 | lemma opt_mono [simp]: "A \<subseteq> B \<Longrightarrow> opt A \<subseteq> opt B" | |
| 481 | by (auto simp: opt_def) | |
| 482 | ||
| 483 | ||
| 484 | lemma states_mono: "\<lbrakk> mxs \<le> mxs' \<rbrakk> | |
| 485 | \<Longrightarrow> states G mxs mxr \<subseteq> states G mxs' mxr" | |
| 486 | apply (simp add: states_def JVMType.sl_def) | |
| 14045 | 487 | apply (simp add: Product.esl_def stk_esl_def reg_sl_def | 
| 488 | upto_esl_def Listn.sl_def Err.sl_def JType.esl_def) | |
| 13673 | 489 | apply (simp add: Err.esl_def Err.le_def Listn.le_def) | 
| 490 | apply (simp add: Product.le_def Product.sup_def Err.sup_def) | |
| 491 | apply (simp add: Opt.esl_def Listn.sup_def) | |
| 492 | apply (rule err_mono) | |
| 493 | apply (rule opt_mono) | |
| 494 | apply (rule Sigma_mono) | |
| 495 | apply (rule Union_mono) | |
| 496 | apply auto | |
| 497 | done | |
| 498 | ||
| 499 | ||
| 500 | lemma check_type_mono: "\<lbrakk> check_type G mxs mxr s; mxs \<le> mxs' \<rbrakk> | |
| 501 | \<Longrightarrow> check_type G mxs' mxr s" | |
| 502 | apply (simp add: check_type_def) | |
| 503 | apply (frule_tac G=G and mxr=mxr in states_mono) | |
| 504 | apply auto | |
| 505 | done | |
| 506 | ||
| 507 | ||
| 508 | (* wt is preserved when adding instructions/state-types at the end *) | |
| 509 | lemma wt_instr_prefix: " | |
| 510 | \<lbrakk> wt_instr_altern (bc ! pc) cG rT mt mxs mxr max_pc et pc; | |
| 511 | bc' = bc @ bc_post; mt' = mt @ mt_post; | |
| 512 | mxs \<le> mxs'; max_pc \<le> max_pc'; | |
| 513 | pc < length bc; pc < length mt; | |
| 514 | max_pc = (length mt)\<rbrakk> | |
| 515 | \<Longrightarrow> wt_instr_altern (bc' ! pc) cG rT mt' mxs' mxr max_pc' et pc" | |
| 516 | apply (simp add: wt_instr_altern_def nth_append) | |
| 517 | apply (auto intro: app_mono_mxs check_type_mono) | |
| 518 | done | |
| 519 | ||
| 520 | ||
| 521 | (************************************************************************) | |
| 522 | ||
| 523 | ||
| 524 | ||
| 525 | lemma pc_succs_shift: "pc'\<in>set (succs i (pc'' + n)) | |
| 526 | \<Longrightarrow> ((pc' - n) \<in>set (succs i pc''))" | |
| 527 | apply (induct i) | |
| 528 | apply simp+ | |
| 529 | (* case Goto *) | |
| 14045 | 530 | apply arith | 
| 13673 | 531 | (* case Ifcmpeq *) | 
| 532 | apply simp | |
| 533 | apply (erule disjE) | |
| 14045 | 534 | apply arith | 
| 535 | apply arith | |
| 13673 | 536 | (* case Throw *) | 
| 537 | apply simp | |
| 538 | done | |
| 539 | ||
| 540 | ||
| 541 | lemma pc_succs_le: "\<lbrakk> pc' \<in> set (succs i (pc'' + n)); | |
| 542 | \<forall> b. ((i = (Goto b) \<or> i=(Ifcmpeq b)) \<longrightarrow> 0 \<le> (int pc'' + b)) \<rbrakk> | |
| 543 | \<Longrightarrow> n \<le> pc'" | |
| 544 | apply (induct i) | |
| 545 | apply simp+ | |
| 546 | (* case Goto *) | |
| 14045 | 547 | apply arith | 
| 13673 | 548 | (* case Ifcmpeq *) | 
| 549 | apply simp | |
| 550 | apply (erule disjE) | |
| 551 | apply simp | |
| 14045 | 552 | apply arith | 
| 13673 | 553 | (* case Throw *) | 
| 554 | apply simp | |
| 555 | done | |
| 556 | ||
| 557 | ||
| 558 | (**********************************************************************) | |
| 559 | ||
| 560 | constdefs | |
| 561 | offset_xcentry :: "[nat, exception_entry] \<Rightarrow> exception_entry" | |
| 562 | "offset_xcentry == | |
| 563 | \<lambda> n (start_pc, end_pc, handler_pc, catch_type). | |
| 564 | (start_pc + n, end_pc + n, handler_pc + n, catch_type)" | |
| 565 | ||
| 566 | offset_xctable :: "[nat, exception_table] \<Rightarrow> exception_table" | |
| 567 | "offset_xctable n == (map (offset_xcentry n))" | |
| 568 | ||
| 569 | lemma match_xcentry_offset [simp]: " | |
| 570 | match_exception_entry G cn (pc + n) (offset_xcentry n ee) = | |
| 571 | match_exception_entry G cn pc ee" | |
| 572 | by (simp add: match_exception_entry_def offset_xcentry_def split_beta) | |
| 573 | ||
| 574 | lemma match_xctable_offset: " | |
| 575 | (match_exception_table G cn (pc + n) (offset_xctable n et)) = | |
| 576 | (option_map (\<lambda> pc'. pc' + n) (match_exception_table G cn pc et))" | |
| 577 | apply (induct et) | |
| 578 | apply (simp add: offset_xctable_def)+ | |
| 579 | apply (case_tac "match_exception_entry G cn pc a") | |
| 580 | apply (simp add: offset_xcentry_def split_beta)+ | |
| 581 | done | |
| 582 | ||
| 583 | ||
| 584 | lemma match_offset [simp]: " | |
| 585 | match G cn (pc + n) (offset_xctable n et) = match G cn pc et" | |
| 586 | apply (induct et) | |
| 587 | apply (simp add: offset_xctable_def)+ | |
| 588 | done | |
| 589 | ||
| 590 | lemma match_any_offset [simp]: " | |
| 591 | match_any G (pc + n) (offset_xctable n et) = match_any G pc et" | |
| 592 | apply (induct et) | |
| 593 | apply (simp add: offset_xctable_def offset_xcentry_def split_beta)+ | |
| 594 | done | |
| 595 | ||
| 596 | lemma app_mono_pc: "\<lbrakk> app i G mxs rT pc et s; pc'= pc + n \<rbrakk> | |
| 597 | \<Longrightarrow> app i G mxs rT pc' (offset_xctable n et) s" | |
| 598 | apply (case_tac s) | |
| 599 | apply (simp add: app_def) | |
| 600 | apply (case_tac i) | |
| 601 | apply (auto) | |
| 602 | done | |
| 603 | ||
| 604 | (**********************************************************************) | |
| 605 | ||
| 606 | (* Currently: empty exception_table *) | |
| 607 | ||
| 608 | syntax | |
| 609 | empty_et :: exception_table | |
| 610 | translations | |
| 611 | "empty_et" => "[]" | |
| 612 | ||
| 613 | ||
| 614 | ||
| 615 | (* move into Effect.thy *) | |
| 616 | lemma xcpt_names_Nil [simp]: "(xcpt_names (i, G, pc, [])) = []" | |
| 617 | by (induct i, simp_all) | |
| 618 | ||
| 619 | lemma xcpt_eff_Nil [simp]: "(xcpt_eff i G pc s []) = []" | |
| 620 | by (simp add: xcpt_eff_def) | |
| 621 | ||
| 622 | ||
| 623 | lemma app_jumps_lem: "\<lbrakk> app i cG mxs rT pc empty_et s; s=(Some st) \<rbrakk> | |
| 624 | \<Longrightarrow> \<forall> b. ((i = (Goto b) \<or> i=(Ifcmpeq b)) \<longrightarrow> 0 \<le> (int pc + b))" | |
| 625 | apply (simp only:) | |
| 626 | apply (induct i) | |
| 627 | apply auto | |
| 628 | done | |
| 629 | ||
| 630 | ||
| 631 | (* wt is preserved when adding instructions/state-types to the front *) | |
| 632 | lemma wt_instr_offset: " | |
| 633 | \<lbrakk> \<forall> pc'' < length mt. | |
| 634 | wt_instr_altern ((bc@bc_post) ! pc'') cG rT (mt@mt_post) mxs mxr max_pc empty_et pc''; | |
| 635 | bc' = bc_pre @ bc @ bc_post; mt' = mt_pre @ mt @ mt_post; | |
| 636 | length bc_pre = length mt_pre; length bc = length mt; | |
| 637 | length mt_pre \<le> pc; pc < length (mt_pre @ mt); | |
| 638 | mxs \<le> mxs'; max_pc + length mt_pre \<le> max_pc' \<rbrakk> | |
| 639 | \<Longrightarrow> wt_instr_altern (bc' ! pc) cG rT mt' mxs' mxr max_pc' empty_et pc" | |
| 640 | ||
| 641 | apply (simp add: wt_instr_altern_def) | |
| 642 | apply (subgoal_tac "\<exists> pc''. pc = pc'' + length mt_pre", erule exE) | |
| 643 | prefer 2 apply (rule_tac x="pc - length mt_pre" in exI, arith) | |
| 644 | ||
| 645 | apply (drule_tac x=pc'' in spec) | |
| 646 | apply (drule mp) apply arith (* show pc'' < length mt *) | |
| 647 | apply clarify | |
| 648 | ||
| 649 | apply (rule conjI) | |
| 650 | (* app *) | |
| 651 | apply (simp add: nth_append) | |
| 652 | apply (rule app_mono_mxs) | |
| 653 | apply (frule app_mono_pc) apply (rule HOL.refl) apply (simp add: offset_xctable_def) | |
| 654 | apply assumption+ | |
| 655 | ||
| 656 | (* check_type *) | |
| 657 | apply (rule conjI) | |
| 658 | apply (simp add: nth_append) | |
| 659 | apply (rule check_type_mono) apply assumption+ | |
| 660 | ||
| 661 | (* ..eff.. *) | |
| 662 | apply (intro ballI) | |
| 663 | apply (subgoal_tac "\<exists> pc' s'. x = (pc', s')", (erule exE)+, simp) | |
| 664 | ||
| 665 | apply (case_tac s') | |
| 666 | (* s' = None *) | |
| 667 | apply (simp add: eff_def nth_append norm_eff_def) | |
| 668 | apply (frule_tac x="(pc', None)" and f=fst and b=pc' in rev_image_eqI) | |
| 669 | apply (simp (no_asm_simp)) | |
| 670 | apply (simp only: fst_conv image_compose [THEN sym] Fun.comp_def) | |
| 671 | apply simp | |
| 672 | apply (frule pc_succs_shift) | |
| 673 | apply (drule bspec, assumption) | |
| 674 | apply arith | |
| 675 | ||
| 676 | (* s' = Some a *) | |
| 677 | apply (drule_tac x="(pc' - length mt_pre, s')" in bspec) | |
| 678 | ||
| 679 | (* show (pc' - length mt_pre, s') \<in> set (eff \<dots>) *) | |
| 680 | apply (simp add: eff_def) | |
| 681 | (* norm_eff *) | |
| 682 | apply (clarsimp simp: nth_append pc_succs_shift) | |
| 683 | ||
| 684 | (* show P x of bspec *) | |
| 685 | apply simp | |
| 686 | apply (subgoal_tac "length mt_pre \<le> pc'") | |
| 687 | apply (simp add: nth_append) apply arith | |
| 688 | ||
| 689 | (* subgoals *) | |
| 690 | apply (simp add: eff_def xcpt_eff_def) | |
| 691 | apply (clarsimp) | |
| 692 | apply (rule pc_succs_le) apply assumption+ | |
| 693 | apply (subgoal_tac "\<exists> st. mt ! pc'' = Some st", erule exE) | |
| 694 | apply (rule_tac s="Some st" and st=st and cG=cG and mxs=mxs and rT=rT | |
| 695 | in app_jumps_lem) | |
| 696 | apply (simp add: nth_append)+ | |
| 697 | (* subgoal \<exists> st. mt ! pc'' = Some st *) | |
| 698 | apply (simp add: norm_eff_def option_map_def nth_append) | |
| 699 | apply (case_tac "mt ! pc''") | |
| 700 | apply simp+ | |
| 701 | done | |
| 702 | ||
| 703 | ||
| 704 | (**********************************************************************) | |
| 705 | ||
| 706 | ||
| 707 | constdefs | |
| 708 | start_sttp_resp_cons :: "[state_type \<Rightarrow> method_type \<times> state_type] \<Rightarrow> bool" | |
| 709 | "start_sttp_resp_cons f == | |
| 710 | (\<forall> sttp. let (mt', sttp') = (f sttp) in (\<exists>mt'_rest. mt' = Some sttp # mt'_rest))" | |
| 711 | ||
| 712 | start_sttp_resp :: "[state_type \<Rightarrow> method_type \<times> state_type] \<Rightarrow> bool" | |
| 713 | "start_sttp_resp f == (f = comb_nil) \<or> (start_sttp_resp_cons f)" | |
| 714 | ||
| 715 | lemma start_sttp_resp_comb_nil [simp]: "start_sttp_resp comb_nil" | |
| 716 | by (simp add: start_sttp_resp_def) | |
| 717 | ||
| 718 | lemma start_sttp_resp_cons_comb_cons [simp]: "start_sttp_resp_cons f | |
| 719 | \<Longrightarrow> start_sttp_resp_cons (f \<box> f')" | |
| 720 | apply (simp add: start_sttp_resp_cons_def comb_def split_beta) | |
| 721 | apply (rule allI) | |
| 722 | apply (drule_tac x=sttp in spec) | |
| 723 | apply auto | |
| 724 | done | |
| 725 | ||
| 726 | lemma start_sttp_resp_cons_comb_cons_r: "\<lbrakk> start_sttp_resp f; start_sttp_resp_cons f'\<rbrakk> | |
| 727 | \<Longrightarrow> start_sttp_resp_cons (f \<box> f')" | |
| 728 | apply (simp add: start_sttp_resp_def) | |
| 729 | apply (erule disjE) | |
| 730 | apply simp+ | |
| 731 | done | |
| 732 | ||
| 733 | lemma start_sttp_resp_cons_comb [simp]: "start_sttp_resp_cons f | |
| 734 | \<Longrightarrow> start_sttp_resp (f \<box> f')" | |
| 735 | by (simp add: start_sttp_resp_def) | |
| 736 | ||
| 737 | lemma start_sttp_resp_comb: "\<lbrakk> start_sttp_resp f; start_sttp_resp f' \<rbrakk> | |
| 738 | \<Longrightarrow> start_sttp_resp (f \<box> f')" | |
| 739 | apply (simp add: start_sttp_resp_def) | |
| 740 | apply (erule disjE) | |
| 741 | apply simp | |
| 742 | apply (erule disjE) | |
| 743 | apply simp+ | |
| 744 | done | |
| 745 | ||
| 746 | lemma start_sttp_resp_cons_nochangeST [simp]: "start_sttp_resp_cons nochangeST" | |
| 747 | by (simp add: start_sttp_resp_cons_def nochangeST_def) | |
| 748 | ||
| 749 | lemma start_sttp_resp_cons_pushST [simp]: "start_sttp_resp_cons (pushST Ts)" | |
| 750 | by (simp add: start_sttp_resp_cons_def pushST_def split_beta) | |
| 751 | ||
| 752 | lemma start_sttp_resp_cons_dupST [simp]: "start_sttp_resp_cons dupST" | |
| 753 | by (simp add: start_sttp_resp_cons_def dupST_def split_beta) | |
| 754 | ||
| 755 | lemma start_sttp_resp_cons_dup_x1ST [simp]: "start_sttp_resp_cons dup_x1ST" | |
| 756 | by (simp add: start_sttp_resp_cons_def dup_x1ST_def split_beta) | |
| 757 | ||
| 758 | lemma start_sttp_resp_cons_popST [simp]: "start_sttp_resp_cons (popST n)" | |
| 759 | by (simp add: start_sttp_resp_cons_def popST_def split_beta) | |
| 760 | ||
| 761 | lemma start_sttp_resp_cons_replST [simp]: "start_sttp_resp_cons (replST n tp)" | |
| 762 | by (simp add: start_sttp_resp_cons_def replST_def split_beta) | |
| 763 | ||
| 764 | lemma start_sttp_resp_cons_storeST [simp]: "start_sttp_resp_cons (storeST i tp)" | |
| 765 | by (simp add: start_sttp_resp_cons_def storeST_def split_beta) | |
| 766 | ||
| 767 | lemma start_sttp_resp_cons_compTpExpr [simp]: "start_sttp_resp_cons (compTpExpr jmb G ex)" | |
| 768 | apply (induct ex) | |
| 769 | apply simp+ | |
| 770 | apply (simp add: start_sttp_resp_cons_def comb_def pushST_def split_beta) (* LAcc *) | |
| 771 | apply simp+ | |
| 772 | done | |
| 773 | ||
| 774 | lemma start_sttp_resp_cons_compTpInit [simp]: "start_sttp_resp_cons (compTpInit jmb lv)" | |
| 775 | by (simp add: compTpInit_def split_beta) | |
| 776 | ||
| 777 | ||
| 778 | lemma start_sttp_resp_nochangeST [simp]: "start_sttp_resp nochangeST" | |
| 779 | by (simp add: start_sttp_resp_def) | |
| 780 | ||
| 781 | lemma start_sttp_resp_pushST [simp]: "start_sttp_resp (pushST Ts)" | |
| 782 | by (simp add: start_sttp_resp_def) | |
| 783 | ||
| 784 | lemma start_sttp_resp_dupST [simp]: "start_sttp_resp dupST" | |
| 785 | by (simp add: start_sttp_resp_def) | |
| 786 | ||
| 787 | lemma start_sttp_resp_dup_x1ST [simp]: "start_sttp_resp dup_x1ST" | |
| 788 | by (simp add: start_sttp_resp_def) | |
| 789 | ||
| 790 | lemma start_sttp_resp_popST [simp]: "start_sttp_resp (popST n)" | |
| 791 | by (simp add: start_sttp_resp_def) | |
| 792 | ||
| 793 | lemma start_sttp_resp_replST [simp]: "start_sttp_resp (replST n tp)" | |
| 794 | by (simp add: start_sttp_resp_def) | |
| 795 | ||
| 796 | lemma start_sttp_resp_storeST [simp]: "start_sttp_resp (storeST i tp)" | |
| 797 | by (simp add: start_sttp_resp_def) | |
| 798 | ||
| 799 | lemma start_sttp_resp_compTpExpr [simp]: "start_sttp_resp (compTpExpr jmb G ex)" | |
| 800 | by (simp add: start_sttp_resp_def) | |
| 801 | ||
| 802 | lemma start_sttp_resp_compTpExprs [simp]: "start_sttp_resp (compTpExprs jmb G exs)" | |
| 803 | by (induct exs, (simp add: start_sttp_resp_comb)+) | |
| 804 | ||
| 805 | lemma start_sttp_resp_compTpStmt [simp]: "start_sttp_resp (compTpStmt jmb G s)" | |
| 806 | by (induct s, (simp add: start_sttp_resp_comb)+) | |
| 807 | ||
| 808 | lemma start_sttp_resp_compTpInitLvars [simp]: "start_sttp_resp (compTpInitLvars jmb lvars)" | |
| 809 | by (induct lvars, simp+) | |
| 810 | ||
| 811 | ||
| 812 | ||
| 813 | ||
| 814 | (* ********************************************************************** *) | |
| 13679 | 815 | section "length of compExpr/ compTpExprs" | 
| 13673 | 816 | (* ********************************************************************** *) | 
| 817 | ||
| 818 | lemma length_comb [simp]: "length (mt_of ((f1 \<box> f2) sttp)) = | |
| 819 | length (mt_of (f1 sttp)) + length (mt_of (f2 (sttp_of (f1 sttp))))" | |
| 820 | by (simp add: comb_def split_beta) | |
| 821 | ||
| 822 | ||
| 823 | lemma length_comb_nil [simp]: "length (mt_of (comb_nil sttp)) = 0" | |
| 824 | by (simp add: comb_nil_def) | |
| 825 | ||
| 826 | lemma length_nochangeST [simp]: "length (mt_of (nochangeST sttp)) = 1" | |
| 827 | by (simp add: nochangeST_def) | |
| 828 | ||
| 829 | lemma length_pushST [simp]: "length (mt_of (pushST Ts sttp)) = 1" | |
| 830 | by (simp add: pushST_def split_beta) | |
| 831 | ||
| 832 | lemma length_dupST [simp]: "length (mt_of (dupST sttp)) = 1" | |
| 833 | by (simp add: dupST_def split_beta) | |
| 834 | ||
| 835 | lemma length_dup_x1ST [simp]: "length (mt_of (dup_x1ST sttp)) = 1" | |
| 836 | by (simp add: dup_x1ST_def split_beta) | |
| 837 | ||
| 838 | lemma length_popST [simp]: "length (mt_of (popST n sttp)) = 1" | |
| 839 | by (simp add: popST_def split_beta) | |
| 840 | ||
| 841 | lemma length_replST [simp]: "length (mt_of (replST n tp sttp)) = 1" | |
| 842 | by (simp add: replST_def split_beta) | |
| 843 | ||
| 844 | lemma length_storeST [simp]: "length (mt_of (storeST i tp sttp)) = 1" | |
| 845 | by (simp add: storeST_def split_beta) | |
| 846 | ||
| 847 | ||
| 848 | lemma length_compTpExpr_Exprs [rule_format]: " | |
| 849 | (\<forall> sttp. (length (mt_of (compTpExpr jmb G ex sttp)) = length (compExpr jmb ex))) | |
| 850 | \<and> (\<forall> sttp. (length (mt_of (compTpExprs jmb G exs sttp)) = length (compExprs jmb exs)))" | |
| 851 | apply (rule expr.induct) | |
| 852 | apply simp+ | |
| 853 | apply (case_tac binop) | |
| 854 | apply simp+ | |
| 855 | apply (simp add: pushST_def split_beta) | |
| 856 | apply simp+ | |
| 857 | done | |
| 858 | ||
| 859 | lemma length_compTpExpr: "length (mt_of (compTpExpr jmb G ex sttp)) = length (compExpr jmb ex)" | |
| 860 | by (rule length_compTpExpr_Exprs [THEN conjunct1 [THEN spec]]) | |
| 861 | ||
| 862 | lemma length_compTpExprs: "length (mt_of (compTpExprs jmb G exs sttp)) = length (compExprs jmb exs)" | |
| 863 | by (rule length_compTpExpr_Exprs [THEN conjunct2 [THEN spec]]) | |
| 864 | ||
| 865 | lemma length_compTpStmt [rule_format]: " | |
| 866 | (\<forall> sttp. (length (mt_of (compTpStmt jmb G s sttp)) = length (compStmt jmb s)))" | |
| 867 | apply (rule stmt.induct) | |
| 868 | apply (simp add: length_compTpExpr)+ | |
| 869 | done | |
| 870 | ||
| 871 | ||
| 872 | lemma length_compTpInit: "length (mt_of (compTpInit jmb lv sttp)) = length (compInit jmb lv)" | |
| 873 | by (simp add: compTpInit_def compInit_def split_beta) | |
| 874 | ||
| 875 | lemma length_compTpInitLvars [rule_format]: | |
| 876 | "\<forall> sttp. length (mt_of (compTpInitLvars jmb lvars sttp)) = length (compInitLvars jmb lvars)" | |
| 877 | by (induct lvars, (simp add: compInitLvars_def length_compTpInit split_beta)+) | |
| 878 | ||
| 879 | ||
| 880 | (* ********************************************************************** *) | |
| 13679 | 881 | section "Correspondence bytecode - method types" | 
| 13673 | 882 | (* ********************************************************************** *) | 
| 883 | ||
| 884 | syntax | |
| 885 | ST_of :: "state_type \<Rightarrow> opstack_type" | |
| 886 | LT_of :: "state_type \<Rightarrow> locvars_type" | |
| 887 | translations | |
| 888 | "ST_of" => "fst" | |
| 889 | "LT_of" => "snd" | |
| 890 | ||
| 891 | lemma states_lower: | |
| 892 | "\<lbrakk> OK (Some (ST, LT)) \<in> states cG mxs mxr; length ST \<le> mxs\<rbrakk> | |
| 893 | \<Longrightarrow> OK (Some (ST, LT)) \<in> states cG (length ST) mxr" | |
| 894 | apply (simp add: states_def JVMType.sl_def) | |
| 895 | apply (simp add: Product.esl_def stk_esl_def reg_sl_def upto_esl_def Listn.sl_def Err.sl_def | |
| 896 | JType.esl_def) | |
| 897 | apply (simp add: Err.esl_def Err.le_def Listn.le_def) | |
| 898 | apply (simp add: Product.le_def Product.sup_def Err.sup_def) | |
| 899 | apply (simp add: Opt.esl_def Listn.sup_def) | |
| 900 | apply clarify | |
| 901 | apply auto | |
| 902 | done | |
| 903 | ||
| 904 | lemma check_type_lower: | |
| 905 | "\<lbrakk> check_type cG mxs mxr (OK (Some (ST, LT))); length ST \<le> mxs\<rbrakk> | |
| 906 | \<Longrightarrow>check_type cG (length ST) mxr (OK (Some (ST, LT)))" | |
| 907 | by (simp add: check_type_def states_lower) | |
| 908 | ||
| 909 | lemma max_same_iter [simp]: "max (x::'a::linorder) (max x y) = max x y" | |
| 910 | by (simp del: max_assoc add: max_assoc [THEN sym]) | |
| 911 | ||
| 912 | (* ******************************************************************* *) | |
| 913 | ||
| 914 | constdefs | |
| 915 | bc_mt_corresp :: " | |
| 916 | [bytecode, state_type \<Rightarrow> method_type \<times> state_type, state_type, jvm_prog, ty, nat, p_count] | |
| 917 | \<Rightarrow> bool" | |
| 918 | ||
| 919 | "bc_mt_corresp bc f sttp0 cG rT mxr idx == | |
| 920 | let (mt, sttp) = f sttp0 in | |
| 921 | (length bc = length mt \<and> | |
| 922 | ((check_type cG (length (ST_of sttp0)) mxr (OK (Some sttp0))) \<longrightarrow> | |
| 923 | (\<forall> mxs. | |
| 924 | mxs = max_ssize (mt@[Some sttp]) \<longrightarrow> | |
| 925 | (\<forall> pc. pc < idx \<longrightarrow> | |
| 926 | wt_instr_altern (bc ! pc) cG rT (mt@[Some sttp]) mxs mxr (length mt + 1) empty_et pc) | |
| 927 | \<and> | |
| 928 | check_type cG mxs mxr (OK ((mt@[Some sttp]) ! idx)))))" | |
| 929 | ||
| 930 | ||
| 931 | lemma bc_mt_corresp_comb: " | |
| 932 | \<lbrakk> bc' = (bc1@bc2); l' = (length bc'); | |
| 933 | bc_mt_corresp bc1 f1 sttp0 cG rT mxr (length bc1); | |
| 934 | bc_mt_corresp bc2 f2 (sttp_of (f1 sttp0)) cG rT mxr (length bc2); | |
| 935 | start_sttp_resp f2\<rbrakk> | |
| 936 | \<Longrightarrow> bc_mt_corresp bc' (f1 \<box> f2) sttp0 cG rT mxr l'" | |
| 937 | apply (subgoal_tac "\<exists> mt1 sttp1. (f1 sttp0) = (mt1, sttp1)", (erule exE)+) | |
| 938 | apply (subgoal_tac "\<exists> mt2 sttp2. (f2 sttp1) = (mt2, sttp2)", (erule exE)+) | |
| 939 | ||
| 940 | (* unfold start_sttp_resp and make case distinction *) | |
| 941 | apply (simp only: start_sttp_resp_def) | |
| 942 | apply (erule disjE) | |
| 943 | (* case f2 = comb_nil *) | |
| 944 | apply (simp add: bc_mt_corresp_def comb_nil_def start_sttp_resp_cons_def) | |
| 945 | apply (erule conjE)+ | |
| 946 | apply (intro strip) | |
| 947 | apply simp | |
| 948 | ||
| 949 | (* case start_sttp_resp_cons f2 *) | |
| 950 | apply (simp add: bc_mt_corresp_def comb_def start_sttp_resp_cons_def del: all_simps) | |
| 951 | apply (intro strip) | |
| 952 | apply (erule conjE)+ | |
| 953 | apply (drule mp, assumption) | |
| 954 | apply (subgoal_tac "check_type cG (length (fst sttp1)) mxr (OK (Some sttp1))") | |
| 955 | apply (erule conjE)+ | |
| 956 | apply (drule mp, assumption) | |
| 957 | apply (erule conjE)+ | |
| 958 | ||
| 959 | apply (rule conjI) | |
| 960 | (* show wt_instr \<dots> *) | |
| 961 | ||
| 962 | apply (drule_tac x=sttp1 in spec, simp) | |
| 963 | apply (erule exE) | |
| 964 | apply (intro strip) | |
| 965 | apply (case_tac "pc < length mt1") | |
| 966 | ||
| 967 | (* case pc < length mt1 *) | |
| 968 | apply (drule spec, drule mp, simp) | |
| 969 | apply simp | |
| 970 | apply (rule_tac mt="mt1 @ [Some sttp1]" in wt_instr_prefix) | |
| 971 | apply assumption+ apply (rule HOL.refl) | |
| 972 | apply (simp (no_asm_simp)) | |
| 973 | apply (simp (no_asm_simp) add: max_ssize_def) | |
| 974 | apply (simp add: max_of_list_def max_ac) | |
| 975 | apply arith | |
| 976 | apply (simp (no_asm_simp))+ | |
| 977 | ||
| 978 | (* case pc \<ge> length mt1 *) | |
| 979 | apply (rule_tac bc=bc2 and mt=mt2 and bc_post="[]" and mt_post="[Some sttp2]" | |
| 980 | and mxr=mxr | |
| 981 | in wt_instr_offset) | |
| 982 | apply simp | |
| 983 | apply (simp (no_asm_simp))+ | |
| 984 | apply simp | |
| 985 | apply (simp add: max_ssize_def max_of_list_append) apply (simp (no_asm_simp) add: max_def) | |
| 986 | apply (simp (no_asm_simp))+ | |
| 987 | ||
| 988 | (* show check_type \<dots> *) | |
| 989 | apply (subgoal_tac "((mt2 @ [Some sttp2]) ! length bc2) = Some sttp2") | |
| 990 | apply (simp only:) | |
| 991 | apply (rule check_type_mono) apply assumption | |
| 992 | apply (simp (no_asm_simp) add: max_ssize_def max_of_list_append max_ac) | |
| 993 | apply arith | |
| 994 | apply (simp add: nth_append) | |
| 995 | ||
| 996 | apply (erule conjE)+ | |
| 997 | apply (case_tac sttp1) | |
| 998 | apply (simp add: check_type_def) | |
| 999 | apply (rule states_lower, assumption) | |
| 1000 | apply (simp (no_asm_simp) add: max_ssize_def max_of_list_append) | |
| 1001 | apply (simp (no_asm_simp) add: max_of_list_def ssize_sto_def max_def) | |
| 1002 | apply (simp (no_asm_simp))+ | |
| 1003 | done | |
| 1004 | ||
| 1005 | ||
| 1006 | lemma bc_mt_corresp_zero [simp]: "\<lbrakk> length (mt_of (f sttp)) = length bc; start_sttp_resp f\<rbrakk> | |
| 1007 | \<Longrightarrow> bc_mt_corresp bc f sttp cG rT mxr 0" | |
| 1008 | apply (simp add: bc_mt_corresp_def start_sttp_resp_def split_beta) | |
| 1009 | apply (erule disjE) | |
| 1010 | apply (simp add: max_ssize_def max_of_list_def ssize_sto_def split_beta) | |
| 1011 | apply (intro strip) | |
| 1012 | apply (simp add: start_sttp_resp_cons_def split_beta) | |
| 1013 | apply (drule_tac x=sttp in spec, erule exE) | |
| 1014 | apply simp | |
| 1015 | apply (rule check_type_mono, assumption) | |
| 1016 | apply (simp add: max_ssize_def max_of_list_def ssize_sto_def max_def split_beta) | |
| 1017 | done | |
| 1018 | ||
| 1019 | (* ********************************************************************** *) | |
| 1020 | ||
| 1021 | ||
| 1022 | constdefs | |
| 1023 | mt_sttp_flatten :: "method_type \<times> state_type \<Rightarrow> method_type" | |
| 1024 | "mt_sttp_flatten mt_sttp == (mt_of mt_sttp) @ [Some (sttp_of mt_sttp)]" | |
| 1025 | ||
| 1026 | ||
| 1027 | lemma mt_sttp_flatten_length [simp]: "n = (length (mt_of (f sttp))) | |
| 1028 | \<Longrightarrow> (mt_sttp_flatten (f sttp)) ! n = Some (sttp_of (f sttp))" | |
| 1029 | by (simp add: mt_sttp_flatten_def) | |
| 1030 | ||
| 1031 | lemma mt_sttp_flatten_comb: "(mt_sttp_flatten ((f1 \<box> f2) sttp)) = | |
| 1032 | (mt_of (f1 sttp)) @ (mt_sttp_flatten (f2 (sttp_of (f1 sttp))))" | |
| 1033 | by (simp add: mt_sttp_flatten_def comb_def split_beta) | |
| 1034 | ||
| 1035 | lemma mt_sttp_flatten_comb_length [simp]: "\<lbrakk> n1 = length (mt_of (f1 sttp)); n1 \<le> n \<rbrakk> | |
| 1036 | \<Longrightarrow> (mt_sttp_flatten ((f1 \<box> f2) sttp) ! n) = (mt_sttp_flatten (f2 (sttp_of (f1 sttp))) ! (n - n1))" | |
| 1037 | by (simp add: mt_sttp_flatten_comb nth_append) | |
| 1038 | ||
| 1039 | lemma mt_sttp_flatten_comb_zero [simp]: "start_sttp_resp f | |
| 1040 | \<Longrightarrow> (mt_sttp_flatten (f sttp)) ! 0 = Some sttp" | |
| 1041 | apply (simp only: start_sttp_resp_def) | |
| 1042 | apply (erule disjE) | |
| 1043 | apply (simp add: comb_nil_def mt_sttp_flatten_def) | |
| 1044 | apply (simp add: start_sttp_resp_cons_def mt_sttp_flatten_def split_beta) | |
| 1045 | apply (drule_tac x=sttp in spec) | |
| 1046 | apply (erule exE) | |
| 1047 | apply simp | |
| 1048 | done | |
| 1049 | ||
| 1050 | ||
| 1051 | (* move into prelude -- compare with nat_int_length *) | |
| 1052 | lemma int_outside_right: "0 \<le> (m::int) \<Longrightarrow> m + (int n) = int ((nat m) + n)" | |
| 1053 | by simp | |
| 1054 | ||
| 1055 | lemma int_outside_left: "0 \<le> (m::int) \<Longrightarrow> (int n) + m = int (n + (nat m))" | |
| 1056 | by simp | |
| 1057 | ||
| 1058 | ||
| 1059 | ||
| 1060 | ||
| 1061 | (* ********************************************************************** *) | |
| 1062 | (* bc_mt_corresp for individual instructions *) | |
| 1063 | (* ---------------------------------------------------------------------- *) | |
| 1064 | ||
| 1065 | lemma less_Suc [simp] : "n \<le> k \<Longrightarrow> (k < Suc n) = (k = n)" | |
| 1066 | by arith | |
| 1067 | ||
| 1068 | lemmas check_type_simps = check_type_def states_def JVMType.sl_def | |
| 1069 | Product.esl_def stk_esl_def reg_sl_def upto_esl_def Listn.sl_def Err.sl_def | |
| 1070 | JType.esl_def Err.esl_def Err.le_def Listn.le_def Product.le_def Product.sup_def Err.sup_def | |
| 1071 | Opt.esl_def Listn.sup_def | |
| 1072 | ||
| 1073 | ||
| 1074 | lemma check_type_push: "\<lbrakk> | |
| 1075 | is_class cG cname; check_type cG (length ST) mxr (OK (Some (ST, LT))) \<rbrakk> | |
| 1076 | \<Longrightarrow> check_type cG (Suc (length ST)) mxr (OK (Some (Class cname # ST, LT)))" | |
| 1077 | apply (simp add: check_type_simps) | |
| 1078 | apply clarify | |
| 1079 | apply (rule_tac x="Suc (length ST)" in exI) | |
| 1080 | apply simp+ | |
| 1081 | done | |
| 1082 | ||
| 1083 | lemma bc_mt_corresp_New: "\<lbrakk>is_class cG cname \<rbrakk> | |
| 1084 | \<Longrightarrow> bc_mt_corresp [New cname] (pushST [Class cname]) (ST, LT) cG rT mxr (Suc 0)" | |
| 1085 | apply (simp add: bc_mt_corresp_def pushST_def wt_instr_altern_def | |
| 1086 | max_ssize_def max_of_list_def ssize_sto_def max_def | |
| 1087 | eff_def norm_eff_def) | |
| 1088 | apply (intro strip) | |
| 1089 | apply (rule conjI) | |
| 1090 | apply (rule check_type_mono, assumption, simp) | |
| 1091 | apply (simp add: check_type_push) | |
| 1092 | done | |
| 1093 | ||
| 1094 | lemma bc_mt_corresp_Pop: " | |
| 1095 | bc_mt_corresp [Pop] (popST (Suc 0)) (T # ST, LT) cG rT mxr (Suc 0)" | |
| 1096 | apply (simp add: bc_mt_corresp_def popST_def wt_instr_altern_def eff_def norm_eff_def) | |
| 1097 | apply (simp add: max_ssize_def ssize_sto_def max_of_list_def) | |
| 1098 | apply (simp add: max_def) | |
| 1099 | apply (simp add: check_type_simps) | |
| 1100 | apply clarify | |
| 1101 | apply (rule_tac x="(length ST)" in exI) | |
| 1102 | apply simp+ | |
| 1103 | done | |
| 1104 | ||
| 1105 | lemma bc_mt_corresp_Checkcast: "\<lbrakk> is_class cG cname; sttp = (ST, LT); | |
| 1106 | (\<exists>rT STo. ST = RefT rT # STo) \<rbrakk> | |
| 1107 | \<Longrightarrow> bc_mt_corresp [Checkcast cname] (replST (Suc 0) (Class cname)) sttp cG rT mxr (Suc 0)" | |
| 1108 | apply (erule exE)+ | |
| 1109 | apply (simp add: bc_mt_corresp_def replST_def wt_instr_altern_def eff_def norm_eff_def) | |
| 1110 | apply (simp add: max_ssize_def max_of_list_def ssize_sto_def max_def) | |
| 1111 | apply (simp add: check_type_simps) | |
| 1112 | apply clarify | |
| 1113 | apply (rule_tac x="Suc (length STo)" in exI) | |
| 1114 | apply simp+ | |
| 1115 | done | |
| 1116 | ||
| 1117 | ||
| 1118 | lemma bc_mt_corresp_LitPush: "\<lbrakk> typeof (\<lambda>v. None) val = Some T \<rbrakk> | |
| 1119 | \<Longrightarrow> bc_mt_corresp [LitPush val] (pushST [T]) sttp cG rT mxr (Suc 0)" | |
| 1120 | apply (subgoal_tac "\<exists> ST LT. sttp= (ST, LT)", (erule exE)+) | |
| 1121 | apply (simp add: bc_mt_corresp_def pushST_def wt_instr_altern_def | |
| 1122 | max_ssize_def max_of_list_def ssize_sto_def max_def | |
| 1123 | eff_def norm_eff_def) | |
| 1124 | apply (intro strip) | |
| 1125 | apply (rule conjI) | |
| 1126 | apply (rule check_type_mono, assumption, simp) | |
| 1127 | apply (simp add: check_type_simps) | |
| 1128 | apply clarify | |
| 1129 | apply (rule_tac x="Suc (length ST)" in exI) | |
| 1130 | apply simp | |
| 1131 | apply (drule sym) | |
| 1132 | apply (case_tac val) | |
| 1133 | apply simp+ | |
| 1134 | done | |
| 1135 | ||
| 1136 | ||
| 1137 | lemma bc_mt_corresp_LitPush_CT: "\<lbrakk> typeof (\<lambda>v. None) val = Some T \<and> cG \<turnstile> T \<preceq> T'; | |
| 1138 | is_type cG T' \<rbrakk> | |
| 1139 | \<Longrightarrow> bc_mt_corresp [LitPush val] (pushST [T']) sttp cG rT mxr (Suc 0)" | |
| 1140 | apply (subgoal_tac "\<exists> ST LT. sttp= (ST, LT)", (erule exE)+) | |
| 1141 | apply (simp add: bc_mt_corresp_def pushST_def wt_instr_altern_def | |
| 1142 | max_ssize_def max_of_list_def ssize_sto_def max_def | |
| 1143 | eff_def norm_eff_def) | |
| 1144 | apply (intro strip) | |
| 1145 | apply (rule conjI) | |
| 1146 | apply (rule check_type_mono, assumption, simp) | |
| 1147 | apply (simp add: check_type_simps) | |
| 1148 | apply (simp add: sup_state_Cons) | |
| 1149 | apply clarify | |
| 1150 | apply (rule_tac x="Suc (length ST)" in exI) | |
| 1151 | apply simp | |
| 1152 | apply simp+ | |
| 1153 | done | |
| 1154 | ||
| 1155 | lemma bc_mt_corresp_Load: "\<lbrakk> i < length LT; LT ! i \<noteq> Err; mxr = length LT \<rbrakk> | |
| 1156 | \<Longrightarrow> bc_mt_corresp [Load i] | |
| 1157 | (\<lambda>(ST, LT). pushST [ok_val (LT ! i)] (ST, LT)) (ST, LT) cG rT mxr (Suc 0)" | |
| 1158 | apply (simp add: bc_mt_corresp_def pushST_def wt_instr_altern_def | |
| 1159 | max_ssize_def max_of_list_def ssize_sto_def max_def | |
| 1160 | eff_def norm_eff_def) | |
| 1161 | apply (intro strip) | |
| 1162 | apply (rule conjI) | |
| 1163 | apply (rule check_type_mono, assumption, simp) | |
| 1164 | apply (simp add: check_type_simps) | |
| 1165 | apply clarify | |
| 1166 | apply (rule_tac x="Suc (length ST)" in exI) | |
| 1167 | apply (simp (no_asm_simp)) | |
| 1168 | apply (simp only: err_def) | |
| 1169 | apply (frule listE_nth_in) apply assumption | |
| 1170 | apply (subgoal_tac "LT ! i \<in> {x. \<exists>y\<in>types cG. x = OK y}")
 | |
| 1171 | apply (drule CollectD) apply (erule bexE) | |
| 1172 | apply (simp (no_asm_simp) ) | |
| 1173 | apply blast | |
| 1174 | apply blast | |
| 1175 | done | |
| 1176 | ||
| 1177 | ||
| 1178 | lemma bc_mt_corresp_Store_init: "\<lbrakk> i < length LT \<rbrakk> | |
| 1179 | \<Longrightarrow> bc_mt_corresp [Store i] (storeST i T) (T # ST, LT) cG rT mxr (Suc 0)" | |
| 1180 | apply (simp add: bc_mt_corresp_def storeST_def wt_instr_altern_def eff_def norm_eff_def) | |
| 1181 | apply (simp add: max_ssize_def max_of_list_def ) | |
| 1182 | apply (simp add: ssize_sto_def) apply (simp add: max_def) | |
| 1183 | apply (intro strip) | |
| 1184 | apply (simp add: check_type_simps) | |
| 1185 | apply clarify | |
| 1186 | apply (rule conjI) | |
| 1187 | apply (rule_tac x="(length ST)" in exI) | |
| 1188 | apply simp+ | |
| 1189 | done | |
| 1190 | ||
| 1191 | ||
| 1192 | ||
| 1193 | lemma bc_mt_corresp_Store: "\<lbrakk> i < length LT; cG \<turnstile> LT[i := OK T] <=l LT \<rbrakk> | |
| 1194 | \<Longrightarrow> bc_mt_corresp [Store i] (popST (Suc 0)) (T # ST, LT) cG rT mxr (Suc 0)" | |
| 1195 | apply (simp add: bc_mt_corresp_def popST_def wt_instr_altern_def eff_def norm_eff_def) | |
| 1196 | apply (simp add: sup_state_conv) | |
| 1197 | apply (simp add: max_ssize_def max_of_list_def ssize_sto_def) | |
| 1198 | apply (simp add: max_def) | |
| 1199 | apply (intro strip) | |
| 1200 | apply (simp add: check_type_simps) | |
| 1201 | apply clarify | |
| 1202 | apply (rule_tac x="(length ST)" in exI) | |
| 1203 | apply simp+ | |
| 1204 | done | |
| 1205 | ||
| 1206 | ||
| 1207 | lemma bc_mt_corresp_Dup: " | |
| 1208 | bc_mt_corresp [Dup] dupST (T # ST, LT) cG rT mxr (Suc 0)" | |
| 1209 | apply (simp add: bc_mt_corresp_def dupST_def wt_instr_altern_def | |
| 1210 | max_ssize_def max_of_list_def ssize_sto_def max_def | |
| 1211 | eff_def norm_eff_def) | |
| 1212 | apply (intro strip) | |
| 1213 | apply (rule conjI) | |
| 1214 | apply (rule check_type_mono, assumption, simp) | |
| 1215 | apply (simp add: check_type_simps) | |
| 1216 | apply clarify | |
| 1217 | apply (rule_tac x="Suc (Suc (length ST))" in exI) | |
| 1218 | apply simp+ | |
| 1219 | done | |
| 1220 | ||
| 1221 | lemma bc_mt_corresp_Dup_x1: " | |
| 1222 | bc_mt_corresp [Dup_x1] dup_x1ST (T1 # T2 # ST, LT) cG rT mxr (Suc 0)" | |
| 1223 | apply (simp add: bc_mt_corresp_def dup_x1ST_def wt_instr_altern_def | |
| 1224 | max_ssize_def max_of_list_def ssize_sto_def max_def | |
| 1225 | eff_def norm_eff_def) | |
| 1226 | apply (intro strip) | |
| 1227 | apply (rule conjI) | |
| 1228 | apply (rule check_type_mono, assumption, simp) | |
| 1229 | apply (simp add: check_type_simps) | |
| 1230 | apply clarify | |
| 1231 | apply (rule_tac x="Suc (Suc (Suc (length ST)))" in exI) | |
| 1232 | apply simp+ | |
| 1233 | done | |
| 1234 | ||
| 1235 | ||
| 1236 | ||
| 1237 | lemma bc_mt_corresp_IAdd: " | |
| 1238 | bc_mt_corresp [IAdd] (replST 2 (PrimT Integer)) | |
| 1239 | (PrimT Integer # PrimT Integer # ST, LT) cG rT mxr (Suc 0)" | |
| 1240 | apply (simp add: bc_mt_corresp_def replST_def wt_instr_altern_def eff_def norm_eff_def) | |
| 1241 | apply (simp add: max_ssize_def max_of_list_def ssize_sto_def max_def) | |
| 1242 | apply (simp add: check_type_simps) | |
| 1243 | apply clarify | |
| 1244 | apply (rule_tac x="Suc (length ST)" in exI) | |
| 1245 | apply simp+ | |
| 1246 | done | |
| 1247 | ||
| 1248 | lemma bc_mt_corresp_Getfield: "\<lbrakk> wf_prog wf_mb G; | |
| 1249 | field (G, C) vname = Some (cname, T); is_class G C \<rbrakk> | |
| 1250 | \<Longrightarrow> bc_mt_corresp [Getfield vname cname] | |
| 1251 | (replST (Suc 0) (snd (the (field (G, cname) vname)))) | |
| 1252 | (Class C # ST, LT) (comp G) rT mxr (Suc 0)" | |
| 14045 | 1253 | apply (frule wf_prog_ws_prog [THEN wf_subcls1]) | 
| 13673 | 1254 | apply (frule field_in_fd, assumption+) | 
| 1255 | apply (frule widen_field, assumption+) | |
| 1256 | apply (simp add: bc_mt_corresp_def replST_def wt_instr_altern_def eff_def norm_eff_def) | |
| 14045 | 1257 | apply (simp add: comp_field comp_subcls1 comp_widen comp_is_class) | 
| 13673 | 1258 | apply (simp add: max_ssize_def max_of_list_def ssize_sto_def) | 
| 1259 | apply (intro strip) | |
| 1260 | apply (simp add: check_type_simps) | |
| 1261 | apply clarify | |
| 1262 | apply (rule_tac x="Suc (length ST)" in exI) | |
| 1263 | apply simp+ | |
| 14045 | 1264 | apply (simp only: comp_is_type) | 
| 13673 | 1265 | apply (rule_tac C=cname in fields_is_type) | 
| 1266 | apply (simp add: field_def) | |
| 1267 | apply (drule JBasis.table_of_remap_SomeD)+ | |
| 1268 | apply assumption+ | |
| 14045 | 1269 | apply (erule wf_prog_ws_prog) | 
| 1270 | apply assumption | |
| 13673 | 1271 | done | 
| 1272 | ||
| 1273 | lemma bc_mt_corresp_Putfield: "\<lbrakk> wf_prog wf_mb G; | |
| 1274 | field (G, C) vname = Some (cname, Ta); G \<turnstile> T \<preceq> Ta; is_class G C \<rbrakk> | |
| 1275 | \<Longrightarrow> bc_mt_corresp [Putfield vname cname] (popST 2) (T # Class C # T # ST, LT) | |
| 1276 | (comp G) rT mxr (Suc 0)" | |
| 14045 | 1277 | apply (frule wf_prog_ws_prog [THEN wf_subcls1]) | 
| 13673 | 1278 | apply (frule field_in_fd, assumption+) | 
| 1279 | apply (frule widen_field, assumption+) | |
| 1280 | apply (simp add: bc_mt_corresp_def popST_def wt_instr_altern_def eff_def norm_eff_def) | |
| 14045 | 1281 | apply (simp add: comp_field comp_subcls1 comp_widen comp_is_class) | 
| 13673 | 1282 | apply (simp add: max_ssize_def max_of_list_def ssize_sto_def max_def) | 
| 1283 | ||
| 1284 | apply (intro strip) | |
| 1285 | apply (simp add: check_type_simps) | |
| 1286 | apply clarify | |
| 1287 | apply (rule_tac x="Suc (length ST)" in exI) | |
| 1288 | apply simp+ | |
| 1289 | done | |
| 1290 | ||
| 1291 | ||
| 1292 | ||
| 1293 | lemma Call_app: "\<lbrakk> wf_prog wf_mb G; is_class G cname; | |
| 1294 | STs = rev pTsa @ Class cname # ST; | |
| 1295 | max_spec G cname (mname, pTsa) = {((md, T), pTs')} \<rbrakk>
 | |
| 1296 | \<Longrightarrow> app (Invoke cname mname pTs') (comp G) (length (T # ST)) rT 0 empty_et (Some (STs, LTs))" | |
| 1297 | apply (subgoal_tac "(\<exists>mD' rT' comp_b. | |
| 1298 | method (comp G, cname) (mname, pTs') = Some (mD', rT', comp_b))") | |
| 1299 | apply (simp add: comp_is_class) | |
| 1300 | apply (rule_tac x=pTsa in exI) | |
| 1301 | apply (rule_tac x="Class cname" in exI) | |
| 14045 | 1302 | apply (simp add: max_spec_preserves_length comp_is_class) | 
| 13673 | 1303 | apply (frule max_spec2mheads, (erule exE)+, (erule conjE)+) | 
| 14045 | 1304 | apply (simp add: split_paired_all comp_widen list_all2_def) | 
| 13673 | 1305 | apply (frule max_spec2mheads, (erule exE)+, (erule conjE)+) | 
| 1306 | apply (rule exI)+ | |
| 14045 | 1307 | apply (simp add: wf_prog_ws_prog [THEN comp_method]) | 
| 1308 | apply auto | |
| 13673 | 1309 | done | 
| 1310 | ||
| 1311 | ||
| 1312 | lemma bc_mt_corresp_Invoke: "\<lbrakk> wf_prog wf_mb G; | |
| 1313 |   max_spec G cname (mname, pTsa) = {((md, T), fpTs)};
 | |
| 1314 | is_class G cname \<rbrakk> | |
| 1315 | \<Longrightarrow> bc_mt_corresp [Invoke cname mname fpTs] (replST (Suc (length pTsa)) T) | |
| 1316 | (rev pTsa @ Class cname # ST, LT) (comp G) rT mxr (Suc 0)" | |
| 1317 | apply (simp add: bc_mt_corresp_def wt_instr_altern_def eff_def norm_eff_def) | |
| 1318 | apply (simp add: replST_def del: appInvoke) | |
| 1319 | apply (intro strip) | |
| 1320 | apply (rule conjI) | |
| 1321 | ||
| 1322 | -- "app" | |
| 1323 | apply (rule Call_app [THEN app_mono_mxs]) apply assumption+ | |
| 1324 | apply (rule HOL.refl) apply assumption | |
| 1325 | apply (simp add: max_ssize_def max_of_list_elem ssize_sto_def) | |
| 1326 | ||
| 13676 | 1327 |   -- {* @{text "<=s"} *}
 | 
| 13673 | 1328 | apply (frule max_spec2mheads, (erule exE)+, (erule conjE)+) | 
| 14045 | 1329 | apply (simp add: wf_prog_ws_prog [THEN comp_method]) | 
| 13673 | 1330 | apply (simp add: max_spec_preserves_length [THEN sym]) | 
| 1331 | ||
| 13676 | 1332 |   -- "@{text check_type}"
 | 
| 13673 | 1333 | apply (simp add: max_ssize_def ssize_sto_def max_def) | 
| 1334 | apply (simp add: max_of_list_def) | |
| 1335 | apply (subgoal_tac "(max (length pTsa + length ST) (length ST)) = (length pTsa + length ST)") | |
| 1336 | apply simp | |
| 1337 | apply (simp add: check_type_simps) | |
| 1338 | apply clarify | |
| 1339 | apply (rule_tac x="Suc (length ST)" in exI) | |
| 1340 | apply simp+ | |
| 14045 | 1341 | apply (simp only: comp_is_type) | 
| 13673 | 1342 | apply (frule method_wf_mdecl) apply assumption apply assumption | 
| 1343 | apply (simp add: wf_mdecl_def wf_mhead_def) | |
| 1344 | apply (simp add: max_def) | |
| 1345 | done | |
| 1346 | ||
| 1347 | ||
| 1348 | lemma wt_instr_Ifcmpeq: "\<lbrakk>Suc pc < max_pc; | |
| 1349 | 0 \<le> (int pc + i); nat (int pc + i) < max_pc; | |
| 1350 | (mt_sttp_flatten f ! pc = Some (ts#ts'#ST,LT)) \<and> | |
| 1351 | ((\<exists>p. ts = PrimT p \<and> ts' = PrimT p) \<or> (\<exists>r r'. ts = RefT r \<and> ts' = RefT r')); | |
| 1352 | mt_sttp_flatten f ! Suc pc = Some (ST,LT); | |
| 1353 | mt_sttp_flatten f ! nat (int pc + i) = Some (ST,LT); | |
| 1354 | check_type (TranslComp.comp G) mxs mxr (OK (Some (ts # ts' # ST, LT))) \<rbrakk> | |
| 1355 | \<Longrightarrow> wt_instr_altern (Ifcmpeq i) (comp G) rT (mt_sttp_flatten f) mxs mxr max_pc empty_et pc" | |
| 1356 | by (simp add: wt_instr_altern_def eff_def norm_eff_def) | |
| 1357 | ||
| 1358 | ||
| 1359 | lemma wt_instr_Goto: "\<lbrakk> 0 \<le> (int pc + i); nat (int pc + i) < max_pc; | |
| 1360 | mt_sttp_flatten f ! nat (int pc + i) = (mt_sttp_flatten f ! pc); | |
| 1361 | check_type (TranslComp.comp G) mxs mxr (OK (mt_sttp_flatten f ! pc)) \<rbrakk> | |
| 1362 | \<Longrightarrow> wt_instr_altern (Goto i) (comp G) rT (mt_sttp_flatten f) mxs mxr max_pc empty_et pc" | |
| 1363 | apply (case_tac "(mt_sttp_flatten f ! pc)") | |
| 1364 | apply (simp add: wt_instr_altern_def eff_def norm_eff_def app_def xcpt_app_def)+ | |
| 1365 | done | |
| 1366 | ||
| 1367 | ||
| 1368 | ||
| 1369 | ||
| 1370 | (* ********************************************************************** *) | |
| 1371 | ||
| 1372 | ||
| 1373 | ||
| 1374 | lemma bc_mt_corresp_comb_inside: " | |
| 1375 | \<lbrakk> | |
| 1376 | bc_mt_corresp bc' f' sttp0 cG rT mxr l1; | |
| 1377 | bc' = (bc1@bc2@bc3); f'= (f1 \<box> f2 \<box> f3); | |
| 1378 | l1 = (length bc1); l12 = (length (bc1@bc2)); | |
| 1379 | bc_mt_corresp bc2 f2 (sttp_of (f1 sttp0)) cG rT mxr (length bc2); | |
| 1380 | length bc1 = length (mt_of (f1 sttp0)); | |
| 1381 | start_sttp_resp f2; start_sttp_resp f3\<rbrakk> | |
| 1382 | \<Longrightarrow> bc_mt_corresp bc' f' sttp0 cG rT mxr l12" | |
| 1383 | apply (subgoal_tac "\<exists> mt1 sttp1. (f1 sttp0) = (mt1, sttp1)", (erule exE)+) | |
| 1384 | apply (subgoal_tac "\<exists> mt2 sttp2. (f2 sttp1) = (mt2, sttp2)", (erule exE)+) | |
| 1385 | apply (subgoal_tac "\<exists> mt3 sttp3. (f3 sttp2) = (mt3, sttp3)", (erule exE)+) | |
| 1386 | ||
| 1387 | (* unfold start_sttp_resp and make case distinction *) | |
| 1388 | apply (simp only: start_sttp_resp_def) | |
| 1389 | apply (erule_tac Q="start_sttp_resp_cons f2" in disjE) | |
| 1390 | (* case f2 = comb_nil *) | |
| 1391 | apply (simp add: bc_mt_corresp_def comb_nil_def start_sttp_resp_cons_def) | |
| 1392 | ||
| 1393 | (* case start_sttp_resp_cons f2 *) | |
| 1394 | apply (simp add: bc_mt_corresp_def comb_def start_sttp_resp_cons_def) | |
| 1395 | apply (drule_tac x=sttp1 in spec, simp, erule exE) | |
| 1396 | apply (intro strip, (erule conjE)+) | |
| 1397 | ||
| 1398 | ||
| 1399 | (* get rid of all check_type info *) | |
| 1400 | apply (subgoal_tac "check_type cG (length (fst sttp1)) mxr (OK (Some sttp1))") | |
| 1401 | apply (subgoal_tac "check_type cG (max_ssize (mt2 @ [Some sttp2])) mxr (OK (Some sttp2))") | |
| 1402 | apply (subgoal_tac "check_type cG (max_ssize (mt1 @ mt2 @ mt3 @ [Some sttp3])) mxr | |
| 1403 | (OK ((mt2 @ mt3 @ [Some sttp3]) ! length mt2))") | |
| 1404 | apply simp | |
| 1405 | ||
| 1406 | ||
| 1407 | ||
| 1408 | apply (intro strip, (erule conjE)+) | |
| 1409 | apply (case_tac "pc < length mt1") | |
| 1410 | ||
| 1411 | (* case pc < length mt1 *) | |
| 1412 | apply (drule spec, drule mp, assumption) | |
| 1413 | apply assumption | |
| 1414 | ||
| 1415 | (* case pc \<ge> length mt1 *) | |
| 1416 | (* case distinction on start_sttp_resp f3 *) | |
| 1417 | apply (erule_tac P="f3 = comb_nil" in disjE) | |
| 1418 | ||
| 1419 | (* case f3 = comb_nil *) | |
| 1420 | apply (subgoal_tac "mt3 = [] \<and> sttp2 = sttp3") apply (erule conjE)+ | |
| 1421 | apply (subgoal_tac "bc3=[]") | |
| 1422 | ||
| 1423 | apply (rule_tac bc_pre=bc1 and bc=bc2 and bc_post=bc3 | |
| 1424 | and mt_pre=mt1 and mt=mt2 and mt_post="mt3@ [Some sttp3]" | |
| 1425 | and mxs="(max_ssize (mt2 @ [(Some sttp2)]))" | |
| 1426 | and max_pc="(Suc (length mt2))" | |
| 1427 | in wt_instr_offset) | |
| 1428 | apply simp | |
| 1429 | apply (rule HOL.refl)+ | |
| 1430 | apply (simp (no_asm_simp))+ | |
| 1431 | ||
| 1432 | apply (simp (no_asm_simp) add: max_ssize_def del: max_of_list_append) | |
| 1433 | apply (rule max_of_list_sublist) | |
| 1434 | apply (simp (no_asm_simp) only: set_append set.simps map.simps) apply blast | |
| 1435 | apply (simp (no_asm_simp)) | |
| 1436 | apply simp (* subgoal bc3 = [] *) | |
| 1437 | apply (simp add: comb_nil_def) (* subgoal mt3 = [] \<and> sttp2 = sttp3 *) | |
| 1438 | ||
| 1439 | (* case start_sttp_resp_cons f3 *) | |
| 1440 | apply (subgoal_tac "\<exists>mt3_rest. (mt3 = Some sttp2 # mt3_rest)", erule exE) | |
| 1441 | apply (rule_tac bc_pre=bc1 and bc=bc2 and bc_post=bc3 | |
| 1442 | and mt_pre=mt1 and mt=mt2 and mt_post="mt3@ [Some sttp3]" | |
| 1443 | and mxs="(max_ssize (mt2 @ [Some sttp2]))" | |
| 1444 | and max_pc="(Suc (length mt2))" | |
| 1445 | in wt_instr_offset) | |
| 1446 | apply (intro strip) | |
| 1447 | apply (rule_tac bc=bc2 and mt="(mt2 @ [Some sttp2])" | |
| 1448 | and mxs="(max_ssize (mt2 @ [Some sttp2]))" | |
| 1449 | and max_pc="(Suc (length mt2))" | |
| 1450 | in wt_instr_prefix) | |
| 1451 | ||
| 1452 | ||
| 1453 | (* preconditions of wt_instr_prefix *) | |
| 1454 | apply simp | |
| 1455 | apply (rule HOL.refl) | |
| 1456 | apply (simp (no_asm_simp))+ | |
| 1457 | apply simp+ | |
| 1458 | (* (some) preconditions of wt_instr_offset *) | |
| 1459 | apply (simp (no_asm_simp) add: max_ssize_def del: max_of_list_append) | |
| 1460 | apply (rule max_of_list_sublist) | |
| 1461 | apply (simp (no_asm_simp) only: set_append set.simps map.simps) apply blast | |
| 1462 | apply (simp (no_asm_simp)) | |
| 1463 | ||
| 1464 | apply (drule_tac x=sttp2 in spec, simp) (* subgoal \<exists>mt3_rest. \<dots> *) | |
| 1465 | ||
| 1466 | (* subgoals check_type*) | |
| 1467 | (* \<dots> ! length mt2 *) | |
| 1468 | apply simp | |
| 1469 | ||
| 1470 | apply (erule_tac P="f3 = comb_nil" in disjE) | |
| 1471 | ||
| 1472 | (* -- case f3 = comb_nil *) | |
| 1473 | apply (subgoal_tac "mt3 = [] \<and> sttp2 = sttp3") apply (erule conjE)+ | |
| 1474 | apply simp | |
| 1475 | apply (rule check_type_mono, assumption) | |
| 1476 | apply (simp only: max_ssize_def) apply (rule max_of_list_sublist) apply (simp (no_asm_simp)) | |
| 1477 | apply blast | |
| 1478 | apply simp (* subgoal bc3 = [] *) | |
| 1479 | apply (simp add: comb_nil_def) (* subgoal mt3 = [] \<and> sttp2 = sttp3 *) | |
| 1480 | ||
| 1481 | ||
| 1482 | (* -- case start_sttp_resp_cons f3 *) | |
| 1483 | apply (subgoal_tac "\<exists>mt3_rest. (mt3 = Some sttp2 # mt3_rest)", erule exE) | |
| 1484 | apply (simp (no_asm_simp) add: nth_append) | |
| 1485 | apply (erule conjE)+ | |
| 1486 | apply (rule check_type_mono, assumption) | |
| 1487 | apply (simp only: max_ssize_def) apply (rule max_of_list_sublist) apply (simp (no_asm_simp)) | |
| 1488 | apply blast | |
| 1489 | apply (drule_tac x=sttp2 in spec, simp) (* subgoal \<exists>mt3_rest. \<dots> *) | |
| 1490 | ||
| 1491 | ||
| 1492 | (* subgoal check_type \<dots> Some sttp2 *) | |
| 1493 | apply (simp add: nth_append) | |
| 1494 | ||
| 1495 | (* subgoal check_type \<dots> Some sttp1 *) | |
| 1496 | apply (simp add: nth_append) | |
| 1497 | apply (erule conjE)+ | |
| 1498 | apply (case_tac "sttp1", simp) | |
| 1499 | apply (rule check_type_lower) apply assumption | |
| 1500 | apply (simp (no_asm_simp) add: max_ssize_def ssize_sto_def) | |
| 1501 | apply (simp (no_asm_simp) add: max_of_list_def max_def) | |
| 1502 | ||
| 1503 | (* subgoals \<exists> ... *) | |
| 1504 | apply (rule surj_pair)+ | |
| 1505 | done | |
| 1506 | ||
| 1507 | ||
| 1508 | (* ******************** *) | |
| 1509 | constdefs | |
| 1510 | contracting :: "(state_type \<Rightarrow> method_type \<times> state_type) \<Rightarrow> bool" | |
| 1511 | "contracting f == (\<forall> ST LT. | |
| 1512 | let (ST', LT') = sttp_of (f (ST, LT)) | |
| 1513 | in (length ST' \<le> length ST \<and> set ST' \<subseteq> set ST \<and> | |
| 1514 | length LT' = length LT \<and> set LT' \<subseteq> set LT))" | |
| 1515 | ||
| 1516 | ||
| 1517 | (* ### possibly move into HOL *) | |
| 1518 | lemma set_drop_Suc [rule_format]: "\<forall> xs. set (drop (Suc n) xs) \<subseteq> set (drop n xs)" | |
| 1519 | apply (induct n) | |
| 1520 | apply simp | |
| 1521 | apply (intro strip) | |
| 1522 | apply (rule list.induct) | |
| 1523 | apply simp | |
| 1524 | apply simp apply blast | |
| 1525 | apply (intro strip) | |
| 1526 | apply (rule_tac | |
| 1527 | P="\<lambda> xs. set (drop (Suc (Suc n)) xs) \<subseteq> set (drop (Suc n) xs)" in list.induct) | |
| 1528 | apply simp+ | |
| 1529 | done | |
| 1530 | ||
| 1531 | lemma set_drop_le [rule_format,simp]: "\<forall> n xs. n \<le> m \<longrightarrow> set (drop m xs) \<subseteq> set (drop n xs)" | |
| 1532 | apply (induct m) | |
| 1533 | apply simp | |
| 1534 | apply (intro strip) | |
| 1535 | apply (subgoal_tac "na \<le> n \<or> na = Suc n") | |
| 1536 | apply (erule disjE) | |
| 1537 | apply (frule_tac x=na in spec, drule_tac x=xs in spec, drule mp, assumption) | |
| 1538 | apply (rule set_drop_Suc [THEN subset_trans], assumption) | |
| 1539 | apply auto | |
| 1540 | done | |
| 1541 | ||
| 1542 | lemma set_drop [simp] : "set (drop m xs) \<subseteq> set xs" | |
| 1543 | apply (rule_tac B="set (drop 0 xs)" in subset_trans) | |
| 1544 | apply (rule set_drop_le) | |
| 1545 | apply simp+ | |
| 1546 | done | |
| 1547 | ||
| 1548 | ||
| 1549 | ||
| 1550 | lemma contracting_popST [simp]: "contracting (popST n)" | |
| 1551 | by (simp add: contracting_def popST_def) | |
| 1552 | ||
| 1553 | lemma contracting_nochangeST [simp]: "contracting nochangeST" | |
| 1554 | by (simp add: contracting_def nochangeST_def) | |
| 1555 | ||
| 1556 | ||
| 1557 | lemma check_type_contracting: "\<lbrakk> check_type cG mxs mxr (OK (Some sttp)); contracting f\<rbrakk> | |
| 1558 | \<Longrightarrow> check_type cG mxs mxr (OK (Some (sttp_of (f sttp))))" | |
| 1559 | apply (subgoal_tac "\<exists> ST LT. sttp = (ST, LT)", (erule exE)+) | |
| 1560 | apply (simp add: check_type_simps contracting_def) | |
| 1561 | apply clarify | |
| 1562 | apply (drule_tac x=ST in spec, drule_tac x=LT in spec) | |
| 1563 | apply (case_tac "(sttp_of (f (ST, LT)))") | |
| 1564 | apply simp | |
| 1565 | apply (erule conjE)+ | |
| 1566 | ||
| 1567 | apply (drule listE_set)+ | |
| 1568 | apply (rule conjI) | |
| 1569 | apply (rule_tac x="length a" in exI) apply simp | |
| 1570 | apply (rule listI) apply simp apply blast | |
| 1571 | apply (rule listI) apply simp apply blast | |
| 1572 | apply auto | |
| 1573 | done | |
| 1574 | ||
| 1575 | (* ******************** *) | |
| 1576 | ||
| 1577 | ||
| 1578 | lemma bc_mt_corresp_comb_wt_instr: " | |
| 1579 | \<lbrakk> bc_mt_corresp bc' f' sttp0 cG rT mxr l1; | |
| 1580 | bc' = (bc1@[inst]@bc3); f'= (f1 \<box> f2 \<box> f3); | |
| 1581 | l1 = (length bc1); | |
| 1582 | length bc1 = length (mt_of (f1 sttp0)); | |
| 1583 | length (mt_of (f2 (sttp_of (f1 sttp0)))) = 1; | |
| 1584 | start_sttp_resp_cons f1; start_sttp_resp_cons f2; start_sttp_resp f3; | |
| 1585 | ||
| 1586 | check_type cG (max_ssize (mt_sttp_flatten (f' sttp0))) mxr | |
| 1587 | (OK ((mt_sttp_flatten (f' sttp0)) ! (length bc1))) | |
| 1588 | \<longrightarrow> | |
| 1589 | wt_instr_altern inst cG rT | |
| 1590 | (mt_sttp_flatten (f' sttp0)) | |
| 1591 | (max_ssize (mt_sttp_flatten (f' sttp0))) | |
| 1592 | mxr | |
| 1593 | (Suc (length bc')) | |
| 1594 | empty_et | |
| 1595 | (length bc1); | |
| 1596 | contracting f2 | |
| 1597 | \<rbrakk> | |
| 1598 | \<Longrightarrow> bc_mt_corresp bc' f' sttp0 cG rT mxr (length (bc1@[inst]))" | |
| 1599 | apply (subgoal_tac "\<exists> mt1 sttp1. (f1 sttp0) = (mt1, sttp1)", (erule exE)+) | |
| 1600 | apply (subgoal_tac "\<exists> mt2 sttp2. (f2 sttp1) = (mt2, sttp2)", (erule exE)+) | |
| 1601 | apply (subgoal_tac "\<exists> mt3 sttp3. (f3 sttp2) = (mt3, sttp3)", (erule exE)+) | |
| 1602 | ||
| 1603 | apply (simp add: bc_mt_corresp_def comb_def start_sttp_resp_cons_def | |
| 1604 | mt_sttp_flatten_def) | |
| 1605 | ||
| 1606 | apply (intro strip, (erule conjE)+) | |
| 1607 | apply (drule mp, assumption)+ apply (erule conjE)+ | |
| 1608 | apply (drule mp, assumption) | |
| 1609 | apply (rule conjI) | |
| 1610 | ||
| 1611 | (* wt_instr \<dots> *) | |
| 1612 | apply (intro strip) | |
| 1613 | apply (case_tac "pc < length mt1") | |
| 1614 | ||
| 1615 | (* case pc < length mt1 *) | |
| 1616 | apply (drule spec, drule mp, assumption) | |
| 1617 | apply assumption | |
| 1618 | ||
| 1619 | (* case pc \<ge> length mt1 *) | |
| 1620 | apply (subgoal_tac "pc = length mt1") prefer 2 apply arith | |
| 1621 | apply (simp only:) | |
| 1622 | apply (simp add: nth_append mt_sttp_flatten_def) | |
| 1623 | ||
| 1624 | ||
| 1625 | (* check_type \<dots> *) | |
| 1626 | apply (simp add: start_sttp_resp_def) | |
| 1627 | apply (drule_tac x="sttp0" in spec, simp, erule exE) | |
| 1628 | apply (drule_tac x="sttp1" in spec, simp, erule exE) | |
| 1629 | ||
| 1630 | apply (subgoal_tac "check_type cG (max_ssize (mt1 @ mt2 @ mt3 @ [Some sttp3])) mxr | |
| 1631 | (OK (Some (sttp_of (f2 sttp1))))") | |
| 1632 | ||
| 1633 | apply (simp only:) | |
| 1634 | ||
| 1635 | apply (erule disjE) | |
| 1636 | (* case f3 = comb_nil *) | |
| 1637 | apply (subgoal_tac "((mt1 @ mt2 @ mt3 @ [Some sttp3]) ! Suc (length mt1)) = (Some (snd (f2 sttp1)))")apply (subgoal_tac "mt3 = [] \<and> sttp2 = sttp3") apply (erule conjE)+ | |
| 1638 | apply (simp add: nth_append) | |
| 1639 | apply (simp add: comb_nil_def) (* subgoal mt3 = [] \<and> sttp2 = sttp3 *) | |
| 1640 | apply (simp add: nth_append comb_nil_def) (* subgoal \<dots> ! Suc (length mt1) *) | |
| 1641 | ||
| 1642 | (* case start_sttp_resp_cons f3 *) | |
| 1643 | apply (simp add: start_sttp_resp_cons_def) | |
| 1644 | apply (drule_tac x="sttp2" in spec, simp, erule exE) | |
| 1645 | apply (simp add: nth_append) | |
| 1646 | ||
| 1647 | (* subgoal check_type *) | |
| 1648 | apply (rule check_type_contracting) | |
| 1649 | apply (subgoal_tac "((mt1 @ mt2 @ mt3 @ [Some sttp3]) ! length mt1) = (Some sttp1)") | |
| 1650 | apply (simp add: nth_append) | |
| 1651 | apply (simp add: nth_append) | |
| 1652 | ||
| 1653 | apply assumption | |
| 1654 | ||
| 1655 | (* subgoals *) | |
| 1656 | apply (rule surj_pair)+ | |
| 1657 | done | |
| 1658 | ||
| 1659 | ||
| 1660 | lemma compTpExpr_LT_ST_rewr [simp]: "\<lbrakk> | |
| 1661 | wf_java_prog G; | |
| 1662 | wf_java_mdecl G C ((mn, pTs), rT, (pns, lvars, blk, res)); | |
| 1663 | local_env G C (mn, pTs) pns lvars \<turnstile> ex :: T; | |
| 1664 | is_inited_LT C pTs lvars LT\<rbrakk> | |
| 1665 | \<Longrightarrow> sttp_of (compTpExpr (pns, lvars, blk, res) G ex (ST, LT)) = (T # ST, LT)" | |
| 1666 | apply (rule compTpExpr_LT_ST) | |
| 1667 | apply auto | |
| 1668 | done | |
| 1669 | ||
| 1670 | ||
| 1671 | ||
| 1672 | ||
| 1673 | lemma wt_method_compTpExpr_Exprs_corresp: " | |
| 1674 | \<lbrakk> jmb = (pns,lvars,blk,res); | |
| 1675 | wf_prog wf_java_mdecl G; | |
| 1676 | wf_java_mdecl G C ((mn, pTs), rT, jmb); | |
| 1677 | E = (local_env G C (mn, pTs) pns lvars)\<rbrakk> | |
| 1678 | \<Longrightarrow> | |
| 1679 | (\<forall> ST LT T bc' f'. | |
| 1680 | E \<turnstile> ex :: T \<longrightarrow> | |
| 1681 | (is_inited_LT C pTs lvars LT) \<longrightarrow> | |
| 1682 | bc' = (compExpr jmb ex) \<longrightarrow> | |
| 1683 | f' = (compTpExpr jmb G ex) | |
| 1684 | \<longrightarrow> bc_mt_corresp bc' f' (ST, LT) (comp G) rT (length LT) (length bc')) | |
| 1685 | \<and> | |
| 1686 | (\<forall> ST LT Ts. | |
| 1687 | E \<turnstile> exs [::] Ts \<longrightarrow> | |
| 1688 | (is_inited_LT C pTs lvars LT) | |
| 1689 | \<longrightarrow> bc_mt_corresp (compExprs jmb exs) (compTpExprs jmb G exs) (ST, LT) (comp G) rT (length LT) (length (compExprs jmb exs)))" | |
| 1690 | ||
| 1691 | apply (rule expr.induct) | |
| 1692 | ||
| 1693 | ||
| 1694 | (* expresssions *) | |
| 1695 | ||
| 1696 | (* NewC *) | |
| 1697 | apply (intro allI impI) | |
| 1698 | apply (simp only:) | |
| 1699 | apply (drule NewC_invers) | |
| 1700 | apply (simp (no_asm_use)) | |
| 1701 | apply (rule bc_mt_corresp_New) | |
| 1702 | apply (simp add: comp_is_class) | |
| 1703 | ||
| 1704 | (* Cast *) | |
| 1705 | apply (intro allI impI) | |
| 1706 | apply (simp only:) | |
| 1707 | apply (drule Cast_invers) | |
| 1708 | apply clarify | |
| 1709 | apply (simp (no_asm_use)) | |
| 1710 | apply (rule bc_mt_corresp_comb) apply (rule HOL.refl, simp (no_asm_simp), blast) | |
| 1711 | apply (simp (no_asm_simp), rule bc_mt_corresp_Checkcast) | |
| 1712 | apply (simp add: comp_is_class) | |
| 1713 | apply (simp only: compTpExpr_LT_ST) | |
| 14045 | 1714 | apply (drule cast_RefT) | 
| 13673 | 1715 | apply blast | 
| 1716 | apply (simp add: start_sttp_resp_def) | |
| 1717 | ||
| 1718 | (* Lit *) | |
| 1719 | apply (intro allI impI) | |
| 1720 | apply (simp only:) | |
| 1721 | apply (drule Lit_invers) | |
| 1722 | (* apply (simp (no_asm_use)) *) | |
| 1723 | apply simp | |
| 1724 | apply (rule bc_mt_corresp_LitPush) | |
| 1725 | apply assumption | |
| 1726 | ||
| 1727 | ||
| 1728 | (* BinOp *) | |
| 1729 | ||
| 1730 | apply (intro allI impI) | |
| 1731 | apply (simp (no_asm_simp) only:) | |
| 1732 | apply (drule BinOp_invers, erule exE, (erule conjE)+) | |
| 1733 | apply (case_tac binop) | |
| 1734 | apply (simp (no_asm_simp)) | |
| 1735 | ||
| 1736 | (* case Eq *) | |
| 1737 | apply (subgoal_tac "bc_mt_corresp bc' f' (ST, LT) (comp G) rT (length LT) 0") | |
| 1738 | prefer 2 | |
| 1739 | apply (rule bc_mt_corresp_zero) apply (simp add: length_compTpExpr) | |
| 1740 | apply (simp (no_asm_simp)) | |
| 1741 | ||
| 14174 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
14045diff
changeset | 1742 | apply (drule_tac ?bc1.0="[]" and ?bc2.0 = "compExpr jmb expr1" | 
| 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
14045diff
changeset | 1743 | and ?f1.0=comb_nil and ?f2.0 = "compTpExpr jmb G expr1" | 
| 13673 | 1744 | in bc_mt_corresp_comb_inside) | 
| 1745 | apply (simp (no_asm_simp))+ | |
| 1746 | apply blast | |
| 1747 | apply (simp (no_asm_simp) add: length_compTpExpr)+ | |
| 1748 | ||
| 14174 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
14045diff
changeset | 1749 | apply (drule_tac ?bc2.0 = "compExpr jmb expr2" and ?f2.0 = "compTpExpr jmb G expr2" | 
| 13673 | 1750 | in bc_mt_corresp_comb_inside) | 
| 1751 | apply (simp (no_asm_simp))+ | |
| 1752 | apply (simp only: compTpExpr_LT_ST) | |
| 1753 | apply (simp (no_asm_simp) add: length_compTpExpr) | |
| 1754 | apply (simp (no_asm_simp)) | |
| 1755 | apply (simp (no_asm_simp)) | |
| 1756 | ||
| 14174 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
14045diff
changeset | 1757 | apply (drule_tac ?bc1.0 = "compExpr jmb expr1 @ compExpr jmb expr2" | 
| 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
14045diff
changeset | 1758 | and inst = "Ifcmpeq 3" and ?bc3.0 = "[LitPush (Bool False),Goto 2, LitPush (Bool True)]" | 
| 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
14045diff
changeset | 1759 | and ?f1.0="compTpExpr jmb G expr1 \<box> compTpExpr jmb G expr2" | 
| 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
14045diff
changeset | 1760 | and ?f2.0="popST 2" and ?f3.0="pushST [PrimT Boolean] \<box> popST 1 \<box> pushST [PrimT Boolean]" | 
| 13673 | 1761 | in bc_mt_corresp_comb_wt_instr) | 
| 1762 | apply (simp (no_asm_simp) add: length_compTpExpr)+ | |
| 1763 | ||
| 1764 | (* wt_instr *) | |
| 1765 | apply (intro strip) | |
| 1766 | apply (simp (no_asm_simp) add: wt_instr_altern_def length_compTpExpr eff_def) | |
| 1767 | apply (simp (no_asm_simp) add: norm_eff_def) | |
| 1768 | apply (simp (no_asm_simp) only: int_outside_left nat_int) | |
| 1769 | apply (simp (no_asm_simp) add: length_compTpExpr) | |
| 1770 | apply (simp only: compTpExpr_LT_ST)+ | |
| 1771 | apply (simp add: eff_def norm_eff_def popST_def pushST_def mt_sttp_flatten_def) | |
| 1772 | apply (case_tac Ta) apply (simp (no_asm_simp)) apply (simp (no_asm_simp)) | |
| 1773 | apply (rule contracting_popST) (* contracting (popST 2) *) | |
| 1774 | ||
| 14174 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
14045diff
changeset | 1775 | apply (drule_tac ?bc1.0 = "compExpr jmb expr1 @ compExpr jmb expr2 @ [Ifcmpeq 3]" | 
| 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
14045diff
changeset | 1776 | and ?bc2.0 = "[LitPush (Bool False)]" | 
| 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
14045diff
changeset | 1777 | and ?bc3.0 = "[Goto 2, LitPush (Bool True)]" | 
| 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
14045diff
changeset | 1778 | and ?f1.0 = "compTpExpr jmb G expr1 \<box> compTpExpr jmb G expr2 \<box> popST 2" | 
| 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
14045diff
changeset | 1779 | and ?f2.0 = "pushST [PrimT Boolean]" | 
| 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
14045diff
changeset | 1780 | and ?f3.0 = "popST (Suc 0) \<box> pushST [PrimT Boolean]" | 
| 13673 | 1781 | in bc_mt_corresp_comb_inside) | 
| 1782 | apply (simp (no_asm_simp))+ | |
| 1783 | apply (simp add: compTpExpr_LT_ST_rewr popST_def) | |
| 1784 | apply (rule_tac T="(PrimT Boolean)" in bc_mt_corresp_LitPush) apply (simp (no_asm_simp)) | |
| 1785 | apply (simp (no_asm_simp) add: length_compTpExpr) | |
| 1786 | apply (simp (no_asm_simp)) | |
| 1787 | apply (simp (no_asm_simp) add: start_sttp_resp_def) | |
| 1788 | ||
| 1789 | ||
| 14174 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
14045diff
changeset | 1790 | apply (drule_tac ?bc1.0 = "compExpr jmb expr1 @ compExpr jmb expr2 @ [Ifcmpeq 3, LitPush (Bool False)]" | 
| 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
14045diff
changeset | 1791 | and inst = "Goto 2" and ?bc3.0 = "[LitPush (Bool True)]" | 
| 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
14045diff
changeset | 1792 | and ?f1.0="compTpExpr jmb G expr1 \<box> compTpExpr jmb G expr2 \<box> popST 2 \<box> pushST [PrimT Boolean]" | 
| 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
14045diff
changeset | 1793 | and ?f2.0="popST 1" and ?f3.0="pushST [PrimT Boolean]" | 
| 13673 | 1794 | in bc_mt_corresp_comb_wt_instr) | 
| 1795 | apply (simp (no_asm_simp) add: length_compTpExpr)+ | |
| 1796 | ||
| 1797 | (* wt_instr *) | |
| 1798 | apply (simp (no_asm_simp) add: wt_instr_altern_def length_compTpExpr) | |
| 1799 | apply (simp (no_asm_simp) add: eff_def norm_eff_def) | |
| 1800 | apply (simp (no_asm_simp) only: int_outside_right nat_int) | |
| 1801 | apply (simp (no_asm_simp) add: length_compTpExpr) | |
| 1802 | apply (simp only: compTpExpr_LT_ST)+ | |
| 1803 | apply (simp add: eff_def norm_eff_def popST_def pushST_def) | |
| 1804 | apply (rule contracting_popST) (* contracting (popST 1) *) | |
| 1805 | ||
| 1806 | apply (drule_tac | |
| 14174 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
14045diff
changeset | 1807 | ?bc1.0 = "compExpr jmb expr1 @ compExpr jmb expr2 @ [Ifcmpeq 3, LitPush (Bool False), Goto 2]" | 
| 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
14045diff
changeset | 1808 | and ?bc2.0 = "[LitPush (Bool True)]" | 
| 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
14045diff
changeset | 1809 | and ?bc3.0 = "[]" | 
| 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
14045diff
changeset | 1810 | and ?f1.0 = "compTpExpr jmb G expr1 \<box> compTpExpr jmb G expr2 \<box> popST 2 \<box> | 
| 13673 | 1811 | pushST [PrimT Boolean] \<box> popST (Suc 0)" | 
| 14174 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
14045diff
changeset | 1812 | and ?f2.0 = "pushST [PrimT Boolean]" | 
| 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
14045diff
changeset | 1813 | and ?f3.0 = "comb_nil" | 
| 13673 | 1814 | in bc_mt_corresp_comb_inside) | 
| 1815 | apply (simp (no_asm_simp))+ | |
| 1816 | apply (simp add: compTpExpr_LT_ST_rewr popST_def) | |
| 1817 | apply (rule_tac T="(PrimT Boolean)" in bc_mt_corresp_LitPush) apply (simp (no_asm_simp)) | |
| 1818 | apply (simp (no_asm_simp) add: length_compTpExpr) | |
| 1819 | apply (simp (no_asm_simp) add: start_sttp_resp_def) | |
| 1820 | apply (simp (no_asm_simp)) | |
| 1821 | ||
| 1822 | apply simp | |
| 1823 | ||
| 1824 | (* case Add *) | |
| 1825 | apply simp | |
| 1826 | apply (rule bc_mt_corresp_comb) apply (rule HOL.refl) apply simp apply blast | |
| 1827 | apply (rule bc_mt_corresp_comb, rule HOL.refl) | |
| 1828 | apply (simp only: compTpExpr_LT_ST) | |
| 1829 | apply (simp only: compTpExpr_LT_ST) apply blast | |
| 1830 | ||
| 1831 | apply (simp only: compTpExpr_LT_ST) | |
| 1832 | apply simp | |
| 1833 | apply (rule bc_mt_corresp_IAdd) | |
| 1834 | apply (simp (no_asm_simp) add: start_sttp_resp_def) | |
| 1835 | apply (simp (no_asm_simp) add: start_sttp_resp_def) | |
| 1836 | ||
| 1837 | ||
| 1838 | (* LAcc *) | |
| 1839 | apply (intro allI impI) | |
| 1840 | apply (simp only:) | |
| 1841 | apply (drule LAcc_invers) | |
| 1842 | apply (frule wf_java_mdecl_length_pTs_pns) | |
| 1843 | apply clarify | |
| 1844 | apply (simp add: is_inited_LT_def) | |
| 1845 | apply (rule bc_mt_corresp_Load) | |
| 1846 | apply (rule index_in_bounds) apply simp apply assumption | |
| 1847 | apply (rule inited_LT_at_index_no_err) | |
| 1848 | apply (rule index_in_bounds) apply simp apply assumption | |
| 1849 | apply (rule HOL.refl) | |
| 1850 | ||
| 1851 | ||
| 1852 | (* LAss *) | |
| 1853 | apply (intro allI impI) | |
| 1854 | apply (simp only:) | |
| 1855 | apply (drule LAss_invers, erule exE, (erule conjE)+) | |
| 1856 | apply (drule LAcc_invers) | |
| 1857 | apply (frule wf_java_mdecl_disjoint_varnames, simp add: disjoint_varnames_def) | |
| 1858 | apply (frule wf_java_mdecl_length_pTs_pns) | |
| 1859 | apply clarify | |
| 1860 | apply (simp (no_asm_use)) | |
| 1861 | apply (rule bc_mt_corresp_comb) apply (rule HOL.refl, simp (no_asm_simp), blast) | |
| 14174 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
14045diff
changeset | 1862 | apply (rule_tac ?bc1.0="[Dup]" and ?bc2.0="[Store (index (pns, lvars, blk, res) vname)]" | 
| 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
14045diff
changeset | 1863 | and ?f1.0="dupST" and ?f2.0="popST (Suc 0)" | 
| 13673 | 1864 | in bc_mt_corresp_comb) | 
| 1865 | apply (simp (no_asm_simp))+ | |
| 1866 | apply (rule bc_mt_corresp_Dup) | |
| 1867 | apply (simp only: compTpExpr_LT_ST) | |
| 1868 | apply (simp add: dupST_def is_inited_LT_def) | |
| 1869 | apply (rule bc_mt_corresp_Store) | |
| 1870 | apply (rule index_in_bounds) | |
| 1871 | apply simp apply assumption | |
| 1872 | apply (rule sup_loc_update_index, assumption+) | |
| 1873 | apply simp apply assumption+ | |
| 1874 | apply (simp add: start_sttp_resp_def) | |
| 1875 | apply (simp add: start_sttp_resp_def) | |
| 1876 | ||
| 1877 | (* FAcc *) | |
| 1878 | apply (intro allI impI) | |
| 1879 | apply (simp only:) | |
| 1880 | apply (drule FAcc_invers) | |
| 1881 | apply clarify | |
| 1882 | apply (simp (no_asm_use)) | |
| 1883 | apply (rule bc_mt_corresp_comb) apply (rule HOL.refl, simp (no_asm_simp), blast) | |
| 1884 | apply (simp (no_asm_simp)) | |
| 1885 | apply (rule bc_mt_corresp_Getfield) apply assumption+ | |
| 14045 | 1886 | apply (fast intro: wt_class_expr_is_class) | 
| 13673 | 1887 | apply (simp (no_asm_simp) add: start_sttp_resp_def) | 
| 1888 | ||
| 1889 | ||
| 1890 | (* FAss *) | |
| 1891 | apply (intro allI impI) | |
| 1892 | apply (simp only:) | |
| 1893 | apply (drule FAss_invers, erule exE, (erule conjE)+) | |
| 1894 | apply (drule FAcc_invers) | |
| 1895 | apply clarify | |
| 1896 | apply (simp (no_asm_use)) | |
| 1897 | apply (rule bc_mt_corresp_comb) apply (rule HOL.refl) apply simp apply blast | |
| 1898 | apply (simp only: compTpExpr_LT_ST) | |
| 1899 | apply (rule bc_mt_corresp_comb, (rule HOL.refl)+) apply blast | |
| 1900 | apply (simp only: compTpExpr_LT_ST) | |
| 14174 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
14045diff
changeset | 1901 | apply (rule_tac ?bc1.0="[Dup_x1]" and ?bc2.0="[Putfield vname cname]" in bc_mt_corresp_comb) | 
| 13673 | 1902 | apply (simp (no_asm_simp))+ | 
| 1903 | apply (rule bc_mt_corresp_Dup_x1) | |
| 1904 | apply (simp (no_asm_simp) add: dup_x1ST_def) | |
| 1905 | apply (rule bc_mt_corresp_Putfield) apply assumption+ | |
| 14045 | 1906 | apply (fast intro: wt_class_expr_is_class) | 
| 13673 | 1907 | apply (simp (no_asm_simp) add: start_sttp_resp_def) | 
| 1908 | apply (simp (no_asm_simp) add: start_sttp_resp_def) | |
| 1909 | apply (simp (no_asm_simp) add: start_sttp_resp_def) | |
| 1910 | ||
| 1911 | (* Call *) | |
| 1912 | apply (intro allI impI) | |
| 1913 | apply (simp only:) | |
| 1914 | apply (drule Call_invers) | |
| 1915 | apply clarify | |
| 1916 | apply (simp (no_asm_use)) | |
| 1917 | apply (rule bc_mt_corresp_comb) apply (rule HOL.refl) apply simp apply blast | |
| 1918 | apply (simp only: compTpExpr_LT_ST) | |
| 1919 | apply (rule bc_mt_corresp_comb, (rule HOL.refl)+) apply blast | |
| 1920 | apply (simp only: compTpExprs_LT_ST) | |
| 1921 | apply (simp (no_asm_simp)) | |
| 1922 | apply (rule bc_mt_corresp_Invoke) apply assumption+ | |
| 14045 | 1923 | apply (fast intro: wt_class_expr_is_class) | 
| 13673 | 1924 | apply (simp (no_asm_simp) add: start_sttp_resp_def) | 
| 1925 | apply (rule start_sttp_resp_comb) | |
| 1926 | apply (simp (no_asm_simp)) | |
| 1927 | apply (simp (no_asm_simp) add: start_sttp_resp_def) | |
| 1928 | ||
| 1929 | ||
| 1930 | (* expression lists *) | |
| 1931 | (* nil *) | |
| 1932 | ||
| 1933 | apply (intro allI impI) | |
| 1934 | apply (drule Nil_invers) | |
| 1935 | apply simp | |
| 1936 | ||
| 1937 | (* cons *) | |
| 1938 | ||
| 1939 | apply (intro allI impI) | |
| 1940 | apply (drule Cons_invers, (erule exE)+, (erule conjE)+) | |
| 1941 | apply clarify | |
| 1942 | apply (simp (no_asm_use)) | |
| 1943 | apply (rule bc_mt_corresp_comb) apply (rule HOL.refl) apply simp apply blast | |
| 1944 | apply (simp only: compTpExpr_LT_ST) | |
| 1945 | apply blast | |
| 1946 | apply simp | |
| 1947 | ||
| 1948 | done | |
| 1949 | ||
| 1950 | ||
| 1951 | lemmas wt_method_compTpExpr_corresp [rule_format (no_asm)] = | |
| 1952 | wt_method_compTpExpr_Exprs_corresp [THEN conjunct1] | |
| 1953 | ||
| 1954 | ||
| 1955 | (* ********************************************************************** *) | |
| 1956 | ||
| 1957 | ||
| 1958 | ||
| 1959 | ||
| 1960 | lemma wt_method_compTpStmt_corresp [rule_format (no_asm)]: " | |
| 1961 | \<lbrakk> jmb = (pns,lvars,blk,res); | |
| 1962 | wf_prog wf_java_mdecl G; | |
| 1963 | wf_java_mdecl G C ((mn, pTs), rT, jmb); | |
| 1964 | E = (local_env G C (mn, pTs) pns lvars)\<rbrakk> | |
| 1965 | \<Longrightarrow> | |
| 1966 | (\<forall> ST LT T bc' f'. | |
| 1967 | E \<turnstile> s\<surd> \<longrightarrow> | |
| 1968 | (is_inited_LT C pTs lvars LT) \<longrightarrow> | |
| 1969 | bc' = (compStmt jmb s) \<longrightarrow> | |
| 1970 | f' = (compTpStmt jmb G s) | |
| 1971 | \<longrightarrow> bc_mt_corresp bc' f' (ST, LT) (comp G) rT (length LT) (length bc'))" | |
| 1972 | ||
| 1973 | apply (rule stmt.induct) | |
| 1974 | ||
| 1975 | (* Skip *) | |
| 1976 | apply (intro allI impI) | |
| 1977 | apply simp | |
| 1978 | ||
| 1979 | ||
| 1980 | (* Expr *) | |
| 1981 | apply (intro allI impI) | |
| 1982 | apply (drule Expr_invers, erule exE) | |
| 1983 | apply (simp (no_asm_simp)) | |
| 1984 | apply (rule bc_mt_corresp_comb) apply (rule HOL.refl, simp (no_asm_simp)) | |
| 1985 | apply (rule wt_method_compTpExpr_corresp) apply assumption+ | |
| 1986 | apply (simp add: compTpExpr_LT_ST [of _ pns lvars blk res])+ | |
| 1987 | apply (rule bc_mt_corresp_Pop) | |
| 1988 | apply (simp add: start_sttp_resp_def) | |
| 1989 | ||
| 1990 | ||
| 1991 | (* Comp *) | |
| 1992 | apply (intro allI impI) | |
| 1993 | apply (drule Comp_invers) | |
| 1994 | apply clarify | |
| 1995 | apply (simp (no_asm_use)) | |
| 1996 | apply (rule bc_mt_corresp_comb) apply (rule HOL.refl) | |
| 1997 | apply (simp (no_asm_simp)) apply blast | |
| 1998 | apply (simp only: compTpStmt_LT_ST) | |
| 1999 | apply (simp (no_asm_simp)) | |
| 2000 | ||
| 2001 | (* Cond *) | |
| 2002 | apply (intro allI impI) | |
| 2003 | apply (simp (no_asm_simp) only:) | |
| 2004 | apply (drule Cond_invers, (erule conjE)+) | |
| 2005 | apply (simp (no_asm_simp)) | |
| 2006 | ||
| 2007 | apply (subgoal_tac "bc_mt_corresp bc' f' (ST, LT) (comp G) rT (length LT) 0") | |
| 2008 | prefer 2 | |
| 2009 | apply (rule bc_mt_corresp_zero) | |
| 2010 | apply (simp (no_asm_simp) add: length_compTpStmt length_compTpExpr) | |
| 2011 | apply (simp (no_asm_simp)) | |
| 2012 | ||
| 14174 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
14045diff
changeset | 2013 | apply (drule_tac ?bc1.0="[]" and ?bc2.0 = "[LitPush (Bool False)]" | 
| 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
14045diff
changeset | 2014 | and ?bc3.0="compExpr jmb expr @ Ifcmpeq (2 + int (length (compStmt jmb stmt1))) # | 
| 13673 | 2015 | compStmt jmb stmt1 @ Goto (1 + int (length (compStmt jmb stmt2))) # | 
| 2016 | compStmt jmb stmt2" | |
| 14174 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
14045diff
changeset | 2017 | and ?f1.0=comb_nil and ?f2.0 = "pushST [PrimT Boolean]" | 
| 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
14045diff
changeset | 2018 | and ?f3.0="compTpExpr jmb G expr \<box> popST 2 \<box> compTpStmt jmb G stmt1 \<box> | 
| 13673 | 2019 | nochangeST \<box> compTpStmt jmb G stmt2" | 
| 2020 | in bc_mt_corresp_comb_inside) | |
| 2021 | apply (simp (no_asm_simp))+ | |
| 2022 | apply (rule_tac T="(PrimT Boolean)" in bc_mt_corresp_LitPush) | |
| 2023 | apply (simp (no_asm_simp) add: start_sttp_resp_def)+ | |
| 2024 | ||
| 14174 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
14045diff
changeset | 2025 | apply (drule_tac ?bc1.0="[LitPush (Bool False)]" and ?bc2.0 = "compExpr jmb expr" | 
| 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
14045diff
changeset | 2026 | and ?bc3.0="Ifcmpeq (2 + int (length (compStmt jmb stmt1))) # | 
| 13673 | 2027 | compStmt jmb stmt1 @ Goto (1 + int (length (compStmt jmb stmt2))) # | 
| 2028 | compStmt jmb stmt2" | |
| 14174 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
14045diff
changeset | 2029 | and ?f1.0="pushST [PrimT Boolean]" and ?f2.0 = "compTpExpr jmb G expr" | 
| 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
14045diff
changeset | 2030 | and ?f3.0="popST 2 \<box> compTpStmt jmb G stmt1 \<box> | 
| 13673 | 2031 | nochangeST \<box> compTpStmt jmb G stmt2" | 
| 2032 | in bc_mt_corresp_comb_inside) | |
| 2033 | apply (simp (no_asm_simp))+ | |
| 2034 | apply (simp (no_asm_simp) add: pushST_def) | |
| 2035 | apply (rule wt_method_compTpExpr_corresp) apply assumption+ | |
| 2036 | apply (simp (no_asm_simp))+ | |
| 2037 | ||
| 2038 | ||
| 14174 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
14045diff
changeset | 2039 | apply (drule_tac ?bc1.0 = "[LitPush (Bool False)] @ compExpr jmb expr" | 
| 13673 | 2040 | and inst = "Ifcmpeq (2 + int (length (compStmt jmb stmt1)))" | 
| 14174 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
14045diff
changeset | 2041 | and ?bc3.0 = "compStmt jmb stmt1 @ Goto (1 + int (length (compStmt jmb stmt2))) # | 
| 13673 | 2042 | compStmt jmb stmt2" | 
| 14174 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
14045diff
changeset | 2043 | and ?f1.0="pushST [PrimT Boolean] \<box> compTpExpr jmb G expr" and ?f2.0 = "popST 2" | 
| 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
14045diff
changeset | 2044 | and ?f3.0="compTpStmt jmb G stmt1 \<box> nochangeST \<box> compTpStmt jmb G stmt2" | 
| 13673 | 2045 | in bc_mt_corresp_comb_wt_instr) | 
| 2046 | apply (simp (no_asm_simp) add: length_compTpExpr)+ | |
| 2047 | apply (simp (no_asm_simp) add: start_sttp_resp_comb) | |
| 2048 | ||
| 2049 | (* wt_instr *) | |
| 2050 | apply (intro strip) | |
| 2051 | apply (rule_tac ts="PrimT Boolean" and ts'="PrimT Boolean" | |
| 2052 | and ST=ST and LT=LT | |
| 2053 | in wt_instr_Ifcmpeq) | |
| 2054 | apply (simp (no_asm_simp)) | |
| 2055 | apply (simp (no_asm_simp) only: int_outside_right nat_int, simp (no_asm_simp)) | |
| 2056 | apply (simp (no_asm_simp) only: int_outside_right nat_int, simp (no_asm_simp)) | |
| 2057 | (* current pc *) | |
| 2058 | apply (simp add: length_compTpExpr pushST_def) | |
| 2059 | apply (simp only: compTpExpr_LT_ST) | |
| 2060 | (* Suc pc *) | |
| 2061 | apply (simp add: length_compTpExpr pushST_def) | |
| 2062 | apply (simp add: popST_def start_sttp_resp_comb) | |
| 2063 | (* jump goal *) | |
| 2064 | apply (simp (no_asm_simp) only: int_outside_right nat_int, simp (no_asm_simp)) | |
| 2065 | apply (simp add: length_compTpExpr pushST_def) | |
| 2066 | apply (simp add: popST_def start_sttp_resp_comb length_compTpStmt) | |
| 2067 | apply (simp only: compTpStmt_LT_ST) | |
| 2068 | apply (simp add: nochangeST_def) | |
| 2069 | (* check_type *) | |
| 2070 | apply (subgoal_tac " | |
| 2071 | (mt_sttp_flatten (f' (ST, LT)) ! length ([LitPush (Bool False)] @ compExpr jmb expr)) = | |
| 2072 | (Some (PrimT Boolean # PrimT Boolean # ST, LT))") | |
| 2073 | apply (simp only:) | |
| 2074 | apply (simp (no_asm_simp)) apply (rule trans, rule mt_sttp_flatten_comb_length) | |
| 2075 | apply (rule HOL.refl) apply (simp (no_asm_simp) add: length_compTpExpr) | |
| 2076 | apply (simp (no_asm_simp) add: length_compTpExpr pushST_def) | |
| 2077 | apply (simp only: compTpExpr_LT_ST_rewr) | |
| 2078 | (* contracting\<dots> *) | |
| 2079 | apply (rule contracting_popST) | |
| 2080 | ||
| 2081 | apply (drule_tac | |
| 14174 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
14045diff
changeset | 2082 | ?bc1.0="[LitPush (Bool False)] @ compExpr jmb expr @ | 
| 13673 | 2083 | [Ifcmpeq (2 + int (length (compStmt jmb stmt1)))] " | 
| 14174 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
14045diff
changeset | 2084 | and ?bc2.0 = "compStmt jmb stmt1" | 
| 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
14045diff
changeset | 2085 | and ?bc3.0="Goto (1 + int (length (compStmt jmb stmt2))) # compStmt jmb stmt2" | 
| 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
14045diff
changeset | 2086 | and ?f1.0="pushST [PrimT Boolean] \<box> compTpExpr jmb G expr \<box> popST 2" | 
| 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
14045diff
changeset | 2087 | and ?f2.0 = "compTpStmt jmb G stmt1" | 
| 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
14045diff
changeset | 2088 | and ?f3.0="nochangeST \<box> compTpStmt jmb G stmt2" | 
| 13673 | 2089 | in bc_mt_corresp_comb_inside) | 
| 2090 | apply (simp (no_asm_simp))+ | |
| 2091 | apply (simp (no_asm_simp) add: pushST_def popST_def compTpExpr_LT_ST) | |
| 2092 | apply (simp only: compTpExpr_LT_ST) | |
| 2093 | apply (simp (no_asm_simp)) | |
| 2094 | apply (simp (no_asm_simp) add: length_compTpExpr)+ | |
| 2095 | ||
| 2096 | ||
| 14174 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
14045diff
changeset | 2097 | apply (drule_tac ?bc1.0 = "[LitPush (Bool False)] @ compExpr jmb expr @ [Ifcmpeq (2 + int (length (compStmt jmb stmt1)))] @ compStmt jmb stmt1" | 
| 13673 | 2098 | and inst = "Goto (1 + int (length (compStmt jmb stmt2)))" | 
| 14174 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
14045diff
changeset | 2099 | and ?bc3.0 = "compStmt jmb stmt2" | 
| 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
14045diff
changeset | 2100 | and ?f1.0="pushST [PrimT Boolean] \<box> compTpExpr jmb G expr \<box> popST 2 \<box> | 
| 13673 | 2101 | compTpStmt jmb G stmt1" | 
| 14174 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
14045diff
changeset | 2102 | and ?f2.0 = "nochangeST" | 
| 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
14045diff
changeset | 2103 | and ?f3.0="compTpStmt jmb G stmt2" | 
| 13673 | 2104 | in bc_mt_corresp_comb_wt_instr) | 
| 2105 | apply (simp (no_asm_simp) add: length_compTpExpr length_compTpStmt)+ | |
| 2106 | apply (intro strip) | |
| 2107 | apply (rule wt_instr_Goto) | |
| 2108 | apply (simp (no_asm_simp) only: int_outside_right nat_int, simp (no_asm_simp)) | |
| 2109 | apply (simp (no_asm_simp) only: int_outside_right nat_int, simp (no_asm_simp)) | |
| 2110 | (* \<dots> ! nat (int pc + i) = \<dots> ! pc *) | |
| 2111 | apply (simp (no_asm_simp) only: int_outside_right nat_int, simp (no_asm_simp)) | |
| 2112 | apply (simp (no_asm_simp) add: length_compTpExpr length_compTpStmt) | |
| 2113 | apply (simp (no_asm_simp) add: pushST_def popST_def nochangeST_def) | |
| 2114 | apply (simp only: compTpExpr_LT_ST compTpStmt_LT_ST) | |
| 2115 | apply (simp (no_asm_simp) add: pushST_def popST_def nochangeST_def) | |
| 2116 | apply (simp only: compTpExpr_LT_ST compTpStmt_LT_ST) | |
| 2117 | apply (simp only:) | |
| 2118 | apply (simp add: length_compTpExpr length_compTpStmt) | |
| 2119 | apply (rule contracting_nochangeST) | |
| 2120 | ||
| 2121 | ||
| 2122 | apply (drule_tac | |
| 14174 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
14045diff
changeset | 2123 | ?bc1.0= "[LitPush (Bool False)] @ compExpr jmb expr @ | 
| 13673 | 2124 | [Ifcmpeq (2 + int (length (compStmt jmb stmt1)))] @ | 
| 2125 | compStmt jmb stmt1 @ [Goto (1 + int (length (compStmt jmb stmt2)))]" | |
| 14174 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
14045diff
changeset | 2126 | and ?bc2.0 = "compStmt jmb stmt2" | 
| 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
14045diff
changeset | 2127 | and ?bc3.0="[]" | 
| 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
14045diff
changeset | 2128 | and ?f1.0="pushST [PrimT Boolean] \<box> compTpExpr jmb G expr \<box> popST 2 \<box> | 
| 13673 | 2129 | compTpStmt jmb G stmt1 \<box> nochangeST" | 
| 14174 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
14045diff
changeset | 2130 | and ?f2.0 = "compTpStmt jmb G stmt2" | 
| 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
14045diff
changeset | 2131 | and ?f3.0="comb_nil" | 
| 13673 | 2132 | in bc_mt_corresp_comb_inside) | 
| 2133 | apply (simp (no_asm_simp))+ | |
| 2134 | apply (simp (no_asm_simp) add: pushST_def popST_def nochangeST_def compTpExpr_LT_ST) | |
| 2135 | apply (simp only: compTpExpr_LT_ST) | |
| 2136 | apply (simp (no_asm_simp)) | |
| 2137 | apply (simp only: compTpStmt_LT_ST) | |
| 2138 | apply (simp (no_asm_simp) add: length_compTpExpr length_compTpStmt)+ | |
| 2139 | ||
| 2140 | apply simp | |
| 2141 | ||
| 2142 | ||
| 2143 | (* Loop *) | |
| 2144 | apply (intro allI impI) | |
| 2145 | apply (simp (no_asm_simp) only:) | |
| 2146 | apply (drule Loop_invers, (erule conjE)+) | |
| 2147 | apply (simp (no_asm_simp)) | |
| 2148 | ||
| 2149 | apply (subgoal_tac "bc_mt_corresp bc' f' (ST, LT) (comp G) rT (length LT) 0") | |
| 2150 | prefer 2 | |
| 2151 | apply (rule bc_mt_corresp_zero) | |
| 2152 | apply (simp (no_asm_simp) add: length_compTpStmt length_compTpExpr) | |
| 2153 | apply (simp (no_asm_simp)) | |
| 2154 | ||
| 14174 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
14045diff
changeset | 2155 | apply (drule_tac ?bc1.0="[]" and ?bc2.0 = "[LitPush (Bool False)]" | 
| 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
14045diff
changeset | 2156 | and ?bc3.0="compExpr jmb expr @ Ifcmpeq (2 + int (length (compStmt jmb stmt))) # | 
| 13673 | 2157 | compStmt jmb stmt @ | 
| 2158 | [Goto (-2 + (- int (length (compStmt jmb stmt)) - int (length (compExpr jmb expr))))]" | |
| 14174 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
14045diff
changeset | 2159 | and ?f1.0=comb_nil and ?f2.0 = "pushST [PrimT Boolean]" | 
| 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
14045diff
changeset | 2160 | and ?f3.0="compTpExpr jmb G expr \<box> popST 2 \<box> compTpStmt jmb G stmt \<box> nochangeST" | 
| 13673 | 2161 | in bc_mt_corresp_comb_inside) | 
| 2162 | apply (simp (no_asm_simp))+ | |
| 2163 | apply (rule_tac T="(PrimT Boolean)" in bc_mt_corresp_LitPush) | |
| 2164 | apply (simp (no_asm_simp) add: start_sttp_resp_def)+ | |
| 2165 | ||
| 14174 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
14045diff
changeset | 2166 | apply (drule_tac ?bc1.0="[LitPush (Bool False)]" and ?bc2.0 = "compExpr jmb expr" | 
| 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
14045diff
changeset | 2167 | and ?bc3.0="Ifcmpeq (2 + int (length (compStmt jmb stmt))) # | 
| 13673 | 2168 | compStmt jmb stmt @ | 
| 2169 | [Goto (-2 + (- int (length (compStmt jmb stmt)) - int (length (compExpr jmb expr))))]" | |
| 14174 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
14045diff
changeset | 2170 | and ?f1.0="pushST [PrimT Boolean]" and ?f2.0 = "compTpExpr jmb G expr" | 
| 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
14045diff
changeset | 2171 | and ?f3.0="popST 2 \<box> compTpStmt jmb G stmt \<box> nochangeST" | 
| 13673 | 2172 | in bc_mt_corresp_comb_inside) | 
| 2173 | apply (simp (no_asm_simp))+ | |
| 2174 | apply (simp (no_asm_simp) add: pushST_def) | |
| 2175 | apply (rule wt_method_compTpExpr_corresp) apply assumption+ | |
| 2176 | apply (simp (no_asm_simp))+ | |
| 2177 | ||
| 2178 | ||
| 14174 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
14045diff
changeset | 2179 | apply (drule_tac ?bc1.0 = "[LitPush (Bool False)] @ compExpr jmb expr" | 
| 13673 | 2180 | and inst = "Ifcmpeq (2 + int (length (compStmt jmb stmt)))" | 
| 14174 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
14045diff
changeset | 2181 | and ?bc3.0 = "compStmt jmb stmt @ | 
| 13673 | 2182 | [Goto (-2 + (- int (length (compStmt jmb stmt)) - int (length (compExpr jmb expr))))]" | 
| 14174 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
14045diff
changeset | 2183 | and ?f1.0="pushST [PrimT Boolean] \<box> compTpExpr jmb G expr" and ?f2.0 = "popST 2" | 
| 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
14045diff
changeset | 2184 | and ?f3.0="compTpStmt jmb G stmt \<box> nochangeST" | 
| 13673 | 2185 | in bc_mt_corresp_comb_wt_instr) | 
| 2186 | apply (simp (no_asm_simp) add: length_compTpExpr)+ | |
| 2187 | apply (simp (no_asm_simp) add: start_sttp_resp_comb) | |
| 2188 | ||
| 2189 | (* wt_instr *) | |
| 2190 | apply (intro strip) | |
| 2191 | apply (rule_tac ts="PrimT Boolean" and ts'="PrimT Boolean" | |
| 2192 | and ST=ST and LT=LT | |
| 2193 | in wt_instr_Ifcmpeq) | |
| 2194 | apply (simp (no_asm_simp)) | |
| 2195 | apply (simp (no_asm_simp) only: int_outside_right nat_int, simp (no_asm_simp)) | |
| 2196 | apply (simp (no_asm_simp) only: int_outside_right nat_int, simp (no_asm_simp)) | |
| 2197 | (* current pc *) | |
| 2198 | apply (simp add: length_compTpExpr pushST_def) | |
| 2199 | apply (simp only: compTpExpr_LT_ST) | |
| 2200 | (* Suc pc *) | |
| 2201 | apply (simp add: length_compTpExpr pushST_def) | |
| 2202 | apply (simp add: popST_def start_sttp_resp_comb) | |
| 2203 | (* jump goal *) | |
| 2204 | apply (simp (no_asm_simp) only: int_outside_right nat_int, simp (no_asm_simp)) | |
| 2205 | apply (simp add: length_compTpExpr pushST_def) | |
| 2206 | apply (simp add: popST_def start_sttp_resp_comb length_compTpStmt) | |
| 2207 | apply (simp only: compTpStmt_LT_ST) | |
| 2208 | apply (simp add: nochangeST_def) | |
| 2209 | (* check_type *) | |
| 2210 | apply (subgoal_tac " | |
| 2211 | (mt_sttp_flatten (f' (ST, LT)) ! length ([LitPush (Bool False)] @ compExpr jmb expr)) = | |
| 2212 | (Some (PrimT Boolean # PrimT Boolean # ST, LT))") | |
| 2213 | apply (simp only:) | |
| 2214 | apply (simp (no_asm_simp)) apply (rule trans, rule mt_sttp_flatten_comb_length) | |
| 2215 | apply (rule HOL.refl) apply (simp (no_asm_simp) add: length_compTpExpr) | |
| 2216 | apply (simp (no_asm_simp) add: length_compTpExpr pushST_def) | |
| 2217 | apply (simp only: compTpExpr_LT_ST_rewr) | |
| 2218 | (* contracting\<dots> *) | |
| 2219 | apply (rule contracting_popST) | |
| 2220 | ||
| 2221 | apply (drule_tac | |
| 14174 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
14045diff
changeset | 2222 | ?bc1.0="[LitPush (Bool False)] @ compExpr jmb expr @ | 
| 13673 | 2223 | [Ifcmpeq (2 + int (length (compStmt jmb stmt)))] " | 
| 14174 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
14045diff
changeset | 2224 | and ?bc2.0 = "compStmt jmb stmt" | 
| 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
14045diff
changeset | 2225 | and ?bc3.0="[Goto (-2 + (- int (length (compStmt jmb stmt)) - int (length (compExpr jmb expr))))]" | 
| 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
14045diff
changeset | 2226 | and ?f1.0="pushST [PrimT Boolean] \<box> compTpExpr jmb G expr \<box> popST 2" | 
| 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
14045diff
changeset | 2227 | and ?f2.0 = "compTpStmt jmb G stmt" | 
| 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
14045diff
changeset | 2228 | and ?f3.0="nochangeST" | 
| 13673 | 2229 | in bc_mt_corresp_comb_inside) | 
| 2230 | apply (simp (no_asm_simp))+ | |
| 2231 | apply (simp (no_asm_simp) add: pushST_def popST_def compTpExpr_LT_ST) | |
| 2232 | apply (simp only: compTpExpr_LT_ST) | |
| 2233 | apply (simp (no_asm_simp)) | |
| 2234 | apply (simp (no_asm_simp) add: length_compTpExpr)+ | |
| 2235 | ||
| 2236 | ||
| 14174 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
14045diff
changeset | 2237 | apply (drule_tac ?bc1.0 = "[LitPush (Bool False)] @ compExpr jmb expr @ [Ifcmpeq (2 + int (length (compStmt jmb stmt)))] @ compStmt jmb stmt" | 
| 13673 | 2238 | and inst = "Goto (-2 + (- int (length (compStmt jmb stmt)) - int (length (compExpr jmb expr))))" | 
| 14174 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
14045diff
changeset | 2239 | and ?bc3.0 = "[]" | 
| 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
14045diff
changeset | 2240 | and ?f1.0="pushST [PrimT Boolean] \<box> compTpExpr jmb G expr \<box> popST 2 \<box> | 
| 13673 | 2241 | compTpStmt jmb G stmt" | 
| 14174 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
14045diff
changeset | 2242 | and ?f2.0 = "nochangeST" | 
| 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
14045diff
changeset | 2243 | and ?f3.0="comb_nil" | 
| 13673 | 2244 | in bc_mt_corresp_comb_wt_instr) | 
| 2245 | apply (simp (no_asm_simp) add: length_compTpExpr length_compTpStmt)+ | |
| 2246 | apply (intro strip) | |
| 2247 | apply (rule wt_instr_Goto) | |
| 14045 | 2248 | apply arith | 
| 2249 | apply arith | |
| 13673 | 2250 | (* \<dots> ! nat (int pc + i) = \<dots> ! pc *) | 
| 14045 | 2251 | apply (simp (no_asm_simp)) | 
| 13673 | 2252 | apply (simp (no_asm_simp) add: length_compTpExpr length_compTpStmt) | 
| 2253 | apply (simp (no_asm_simp) add: pushST_def popST_def nochangeST_def) | |
| 2254 | apply (simp only: compTpExpr_LT_ST compTpStmt_LT_ST) | |
| 2255 | apply (simp (no_asm_simp) add: length_compTpExpr length_compTpStmt) | |
| 2256 | apply (simp only: compTpExpr_LT_ST compTpStmt_LT_ST) | |
| 2257 | apply (simp (no_asm_simp) add: pushST_def popST_def nochangeST_def) | |
| 2258 | apply (simp (no_asm_simp) add: length_compTpExpr length_compTpStmt) | |
| 2259 | apply (simp only: compTpExpr_LT_ST compTpStmt_LT_ST) | |
| 2260 | ||
| 2261 | apply (simp add: length_compTpExpr length_compTpStmt) (* check_type *) | |
| 2262 | apply (simp add: pushST_def popST_def compTpExpr_LT_ST compTpStmt_LT_ST) | |
| 2263 | apply (rule contracting_nochangeST) | |
| 2264 | apply simp | |
| 2265 | ||
| 2266 | done | |
| 2267 | ||
| 2268 | ||
| 2269 | (**********************************************************************************) | |
| 2270 | ||
| 2271 | ||
| 2272 | ||
| 2273 | lemma wt_method_compTpInit_corresp: "\<lbrakk> jmb = (pns,lvars,blk,res); | |
| 2274 | wf_java_mdecl G C ((mn, pTs), rT, jmb); mxr = length LT; | |
| 2275 | length LT = (length pns) + (length lvars) + 1; vn \<in> set (map fst lvars); | |
| 2276 | bc = (compInit jmb (vn,ty)); f = (compTpInit jmb (vn,ty)); | |
| 2277 | is_type G ty \<rbrakk> | |
| 2278 | \<Longrightarrow> bc_mt_corresp bc f (ST, LT) (comp G) rT mxr (length bc)" | |
| 2279 | apply (simp add: compInit_def compTpInit_def split_beta) | |
| 14174 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
14045diff
changeset | 2280 | apply (rule_tac ?bc1.0="[load_default_val ty]" and ?bc2.0="[Store (index jmb vn)]" | 
| 13673 | 2281 | in bc_mt_corresp_comb) | 
| 2282 | apply simp+ | |
| 2283 | apply (simp add: load_default_val_def) | |
| 2284 | apply (rule typeof_default_val [THEN exE]) | |
| 2285 | ||
| 2286 | apply (rule bc_mt_corresp_LitPush_CT) apply assumption | |
| 2287 | apply (simp add: comp_is_type) | |
| 2288 | apply (simp add: pushST_def) | |
| 2289 | apply (rule bc_mt_corresp_Store_init) | |
| 2290 | apply simp | |
| 2291 | apply (rule index_length_lvars [THEN conjunct2]) | |
| 2292 | apply auto | |
| 2293 | done | |
| 2294 | ||
| 2295 | ||
| 2296 | lemma wt_method_compTpInitLvars_corresp_aux [rule_format (no_asm)]: " | |
| 2297 | \<forall> lvars_pre lvars0 ST LT. | |
| 2298 | jmb = (pns,lvars0,blk,res) \<and> | |
| 2299 | lvars0 = (lvars_pre @ lvars) \<and> | |
| 2300 | length LT = (length pns) + (length lvars0) + 1 \<and> | |
| 2301 | wf_java_mdecl G C ((mn, pTs), rT, jmb) | |
| 2302 | \<longrightarrow> bc_mt_corresp (compInitLvars jmb lvars) (compTpInitLvars jmb lvars) (ST, LT) (comp G) rT | |
| 2303 | (length LT) (length (compInitLvars jmb lvars))" | |
| 2304 | apply (induct lvars) | |
| 2305 | apply (simp add: compInitLvars_def) | |
| 2306 | ||
| 2307 | apply (intro strip, (erule conjE)+) | |
| 2308 | apply (subgoal_tac "\<exists> vn ty. a = (vn, ty)") | |
| 2309 | prefer 2 apply (simp (no_asm_simp)) | |
| 2310 | apply ((erule exE)+, simp (no_asm_simp)) | |
| 2311 | apply (drule_tac x="lvars_pre @ [a]" in spec) | |
| 2312 | apply (drule_tac x="lvars0" in spec) | |
| 2313 | apply (simp (no_asm_simp) add: compInitLvars_def) | |
| 14174 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
14045diff
changeset | 2314 | apply (rule_tac ?bc1.0="compInit jmb a" and ?bc2.0="compInitLvars jmb list" | 
| 13673 | 2315 | in bc_mt_corresp_comb) | 
| 2316 | apply (simp (no_asm_simp) add: compInitLvars_def)+ | |
| 2317 | ||
| 2318 | apply (rule_tac vn=vn and ty=ty in wt_method_compTpInit_corresp) | |
| 2319 | apply assumption+ | |
| 2320 | apply (simp (no_asm_simp))+ | |
| 2321 | apply (simp add: wf_java_mdecl_def) (* is_type G ty *) | |
| 2322 | apply (simp add: compTpInit_def storeST_def pushST_def) | |
| 2323 | apply simp | |
| 2324 | done | |
| 2325 | ||
| 2326 | ||
| 2327 | lemma wt_method_compTpInitLvars_corresp: "\<lbrakk> jmb = (pns,lvars,blk,res); | |
| 2328 | wf_java_mdecl G C ((mn, pTs), rT, jmb); | |
| 2329 | length LT = (length pns) + (length lvars) + 1; mxr = (length LT); | |
| 2330 | bc = (compInitLvars jmb lvars); f= (compTpInitLvars jmb lvars) \<rbrakk> | |
| 2331 | \<Longrightarrow> bc_mt_corresp bc f (ST, LT) (comp G) rT mxr (length bc)" | |
| 2332 | apply (simp only:) | |
| 2333 | apply (subgoal_tac "bc_mt_corresp (compInitLvars (pns, lvars, blk, res) lvars) | |
| 2334 | (compTpInitLvars (pns, lvars, blk, res) lvars) (ST, LT) (TranslComp.comp G) rT | |
| 2335 | (length LT) (length (compInitLvars (pns, lvars, blk, res) lvars))") | |
| 2336 | apply simp | |
| 2337 | apply (rule_tac lvars_pre="[]" in wt_method_compTpInitLvars_corresp_aux) | |
| 2338 | apply auto | |
| 2339 | done | |
| 2340 | ||
| 2341 | ||
| 2342 | (**********************************************************************************) | |
| 2343 | ||
| 2344 | ||
| 2345 | ||
| 2346 | lemma wt_method_comp_wo_return: "\<lbrakk> wf_prog wf_java_mdecl G; | |
| 2347 | wf_java_mdecl G C ((mn, pTs), rT, jmb); | |
| 2348 | bc = compInitLvars jmb lvars @ compStmt jmb blk @ compExpr jmb res; | |
| 2349 | jmb = (pns,lvars,blk,res); | |
| 2350 | f = (compTpInitLvars jmb lvars \<box> compTpStmt jmb G blk \<box> compTpExpr jmb G res); | |
| 2351 | sttp = (start_ST, start_LT C pTs (length lvars)); | |
| 2352 | li = (length (inited_LT C pTs lvars)) | |
| 2353 | \<rbrakk> | |
| 2354 | \<Longrightarrow> bc_mt_corresp bc f sttp (comp G) rT li (length bc)" | |
| 2355 | apply (subgoal_tac "\<exists> E. (E = (local_env G C (mn, pTs) pns lvars) \<and> E \<turnstile> blk \<surd> \<and> | |
| 2356 | (\<exists>T. E\<turnstile>res::T \<and> G\<turnstile>T\<preceq>rT))") | |
| 2357 | apply (erule exE, (erule conjE)+)+ | |
| 2358 | apply (simp only:) | |
| 2359 | apply (rule bc_mt_corresp_comb) apply (rule HOL.refl)+ | |
| 2360 | ||
| 2361 | (* InitLvars *) | |
| 2362 | apply (rule wt_method_compTpInitLvars_corresp) | |
| 2363 | apply assumption+ | |
| 2364 | apply (simp only:) | |
| 2365 | apply (simp (no_asm_simp) add: start_LT_def) | |
| 2366 | apply (rule wf_java_mdecl_length_pTs_pns, assumption) | |
| 2367 | apply (simp (no_asm_simp) only: start_LT_def) | |
| 2368 | apply (simp (no_asm_simp) add: inited_LT_def)+ | |
| 2369 | ||
| 2370 | apply (rule bc_mt_corresp_comb) apply (rule HOL.refl)+ | |
| 2371 | apply (simp (no_asm_simp) add: compTpInitLvars_LT_ST) | |
| 2372 | ||
| 2373 | (* stmt *) | |
| 2374 | apply (simp only: compTpInitLvars_LT_ST) | |
| 2375 | apply (subgoal_tac "(Suc (length pTs + length lvars)) = (length (inited_LT C pTs lvars))") | |
| 2376 | prefer 2 apply (simp (no_asm_simp) add: inited_LT_def) | |
| 2377 | apply (simp only:) | |
| 2378 | apply (rule_tac s=blk in wt_method_compTpStmt_corresp) | |
| 2379 | apply assumption+ | |
| 2380 | apply (simp only:)+ | |
| 2381 | apply (simp (no_asm_simp) add: is_inited_LT_def) | |
| 2382 | apply (simp only:)+ | |
| 2383 | ||
| 2384 | (* expr *) | |
| 2385 | apply (simp only: compTpInitLvars_LT_ST compTpStmt_LT_ST is_inited_LT_def) | |
| 2386 | apply (subgoal_tac "(Suc (length pTs + length lvars)) = (length (inited_LT C pTs lvars))") | |
| 2387 | prefer 2 apply (simp (no_asm_simp) add: inited_LT_def) | |
| 2388 | apply (simp only:) | |
| 2389 | apply (rule_tac ex=res in wt_method_compTpExpr_corresp) | |
| 2390 | apply assumption+ | |
| 2391 | apply (simp only:)+ | |
| 2392 | apply (simp (no_asm_simp) add: is_inited_LT_def) | |
| 2393 | apply (simp only:)+ | |
| 2394 | ||
| 2395 | (* start_sttp_resp *) | |
| 2396 | apply (simp add: start_sttp_resp_comb)+ | |
| 2397 | ||
| 2398 | (* subgoal *) | |
| 2399 | apply (simp add: wf_java_mdecl_def local_env_def) | |
| 2400 | done | |
| 2401 | ||
| 2402 | ||
| 2403 | (**********************************************************************************) | |
| 2404 | ||
| 2405 | ||
| 2406 | ||
| 2407 | lemma check_type_start: "\<lbrakk> wf_mhead cG (mn, pTs) rT; is_class cG C\<rbrakk> | |
| 2408 | \<Longrightarrow> check_type cG (length start_ST) (Suc (length pTs + mxl)) | |
| 2409 | (OK (Some (start_ST, start_LT C pTs mxl)))" | |
| 2410 | apply (simp add: check_type_def wf_mhead_def start_ST_def start_LT_def) | |
| 2411 | apply (simp add: check_type_simps) | |
| 2412 | apply (simp only: list_def) | |
| 2413 | apply (auto simp: err_def) | |
| 2414 | apply (subgoal_tac "set (replicate mxl Err) \<subseteq>  {Err}")
 | |
| 2415 | apply blast | |
| 2416 | apply (rule subset_replicate) | |
| 2417 | done | |
| 2418 | ||
| 2419 | ||
| 2420 | lemma wt_method_comp_aux: "\<lbrakk> bc' = bc @ [Return]; f' = (f \<box> nochangeST); | |
| 2421 | bc_mt_corresp bc f sttp0 cG rT (1+length pTs+mxl) (length bc); | |
| 2422 | start_sttp_resp_cons f'; | |
| 2423 | sttp0 = (start_ST, start_LT C pTs mxl); | |
| 2424 | mxs = max_ssize (mt_of (f' sttp0)); | |
| 2425 | wf_mhead cG (mn, pTs) rT; is_class cG C; | |
| 2426 | sttp_of (f sttp0) = (T # ST, LT); | |
| 2427 | ||
| 2428 | check_type cG mxs (1+length pTs+mxl) (OK (Some (T # ST, LT))) \<longrightarrow> | |
| 2429 | wt_instr_altern Return cG rT (mt_of (f' sttp0)) mxs (1+length pTs+mxl) | |
| 2430 | (Suc (length bc)) empty_et (length bc) | |
| 2431 | \<rbrakk> | |
| 2432 | \<Longrightarrow> wt_method_altern cG C pTs rT mxs mxl bc' empty_et (mt_of (f' sttp0))" | |
| 2433 | apply (subgoal_tac "check_type cG (length start_ST) (Suc (length pTs + mxl)) | |
| 2434 | (OK (Some (start_ST, start_LT C pTs mxl)))") | |
| 2435 | apply (subgoal_tac "check_type cG mxs (1+length pTs+mxl) (OK (Some (T # ST, LT)))") | |
| 2436 | ||
| 2437 | apply (simp add: wt_method_altern_def) | |
| 2438 | ||
| 2439 | (* length (.. f ..) = length bc *) | |
| 2440 | apply (rule conjI) | |
| 2441 | apply (simp add: bc_mt_corresp_def split_beta) | |
| 2442 | ||
| 2443 | (* check_bounded *) | |
| 2444 | apply (rule conjI) | |
| 2445 | apply (simp add: bc_mt_corresp_def split_beta check_bounded_def) | |
| 2446 | apply (erule conjE)+ | |
| 2447 | apply (intro strip) | |
| 2448 | apply (subgoal_tac "pc < (length bc) \<or> pc = length bc") | |
| 2449 | apply (erule disjE) | |
| 2450 | (* case pc < length bc *) | |
| 2451 | apply (subgoal_tac "(bc' ! pc) = (bc ! pc)") | |
| 2452 | apply (simp add: wt_instr_altern_def eff_def) | |
| 2453 | (* subgoal *) | |
| 2454 | apply (simp add: nth_append) | |
| 2455 | (* case pc = length bc *) | |
| 2456 | apply (subgoal_tac "(bc' ! pc) = Return") | |
| 2457 | apply (simp add: wt_instr_altern_def) | |
| 2458 | (* subgoal *) | |
| 2459 | apply (simp add: nth_append) | |
| 2460 | ||
| 2461 | (* subgoal pc < length bc \<or> pc = length bc *) | |
| 2462 | apply arith | |
| 2463 | ||
| 2464 | (* wt_start *) | |
| 2465 | apply (rule conjI) | |
| 2466 | apply (simp add: wt_start_def start_sttp_resp_cons_def split_beta) | |
| 2467 | apply (drule_tac x=sttp0 in spec) apply (erule exE) | |
| 2468 | apply (simp add: mt_sttp_flatten_def start_ST_def start_LT_def) | |
| 2469 | ||
| 2470 | (* wt_instr *) | |
| 2471 | apply (intro strip) | |
| 2472 | apply (subgoal_tac "pc < (length bc) \<or> pc = length bc") | |
| 2473 | apply (erule disjE) | |
| 2474 | ||
| 2475 | (* pc < (length bc) *) | |
| 2476 | apply (simp (no_asm_use) add: bc_mt_corresp_def mt_sttp_flatten_def split_beta) | |
| 2477 | apply (erule conjE)+ | |
| 2478 | apply (drule mp, assumption)+ | |
| 2479 | apply (erule conjE)+ | |
| 2480 | apply (drule spec, drule mp, assumption) | |
| 2481 | apply (simp add: nth_append) | |
| 2482 | apply (simp (no_asm_simp) add: comb_def split_beta nochangeST_def) | |
| 2483 | ||
| 2484 | (* pc = length bc *) | |
| 2485 | apply (simp add: nth_append) | |
| 2486 | ||
| 2487 | (* subgoal pc < (length bc) \<or> pc = length bc *) | |
| 2488 | apply arith | |
| 2489 | ||
| 2490 | (* subgoals *) | |
| 2491 | apply (simp (no_asm_use) add: bc_mt_corresp_def split_beta) | |
| 2492 | apply (subgoal_tac "check_type cG (length (fst sttp0)) (Suc (length pTs + mxl)) | |
| 2493 | (OK (Some sttp0))") | |
| 2494 | apply ((erule conjE)+, drule mp, assumption) | |
| 2495 | apply (simp add: nth_append) | |
| 2496 | apply (simp (no_asm_simp) add: comb_def nochangeST_def split_beta) | |
| 2497 | apply (simp (no_asm_simp)) | |
| 2498 | ||
| 2499 | apply (rule check_type_start, assumption+) | |
| 2500 | done | |
| 2501 | ||
| 2502 | ||
| 2503 | lemma wt_instr_Return: "\<lbrakk>fst f ! pc = Some (T # ST, LT); (G \<turnstile> T \<preceq> rT); pc < max_pc; | |
| 2504 | check_type (TranslComp.comp G) mxs mxr (OK (Some (T # ST, LT))) | |
| 2505 | \<rbrakk> | |
| 2506 | \<Longrightarrow> wt_instr_altern Return (comp G) rT (mt_of f) mxs mxr max_pc empty_et pc" | |
| 2507 | apply (case_tac "(mt_of f ! pc)") | |
| 2508 | apply (simp add: wt_instr_altern_def eff_def norm_eff_def app_def)+ | |
| 2509 | apply (drule sym) | |
| 2510 | apply (simp add: comp_widen xcpt_app_def) | |
| 2511 | done | |
| 2512 | ||
| 2513 | ||
| 2514 | theorem wt_method_comp: " | |
| 2515 | \<lbrakk> wf_java_prog G; (C, D, fds, mths) \<in> set G; jmdcl \<in> set mths; | |
| 2516 | jmdcl = ((mn,pTs), rT, jmb); | |
| 2517 | mt = (compTpMethod G C jmdcl); | |
| 2518 | (mxs, mxl, bc, et) = mtd_mb (compMethod G C jmdcl) \<rbrakk> | |
| 2519 | \<Longrightarrow> wt_method (comp G) C pTs rT mxs mxl bc et mt" | |
| 2520 | ||
| 2521 | (* show statement for wt_method_altern *) | |
| 2522 | apply (rule wt_method_altern_wt_method) | |
| 2523 | ||
| 2524 | apply (subgoal_tac "wf_java_mdecl G C jmdcl") | |
| 2525 | apply (subgoal_tac "wf_mhead G (mn, pTs) rT") | |
| 2526 | apply (subgoal_tac "is_class G C") | |
| 2527 | apply (subgoal_tac "\<forall> jmb. \<exists> pns lvars blk res. jmb = (pns, lvars, blk, res)") | |
| 2528 | apply (drule_tac x=jmb in spec, (erule exE)+) | |
| 2529 | apply (subgoal_tac "\<exists> E. (E = (local_env G C (mn, pTs) pns lvars) \<and> E \<turnstile> blk \<surd> \<and> | |
| 2530 | (\<exists>T. E\<turnstile>res::T \<and> G\<turnstile>T\<preceq>rT))") | |
| 2531 | apply (erule exE, (erule conjE)+)+ | |
| 2532 | apply (simp add: compMethod_def compTpMethod_def split_beta) | |
| 2533 | apply (rule_tac T=T and LT="inited_LT C pTs lvars" and ST=start_ST in wt_method_comp_aux) | |
| 2534 | ||
| 2535 | (* bc *) | |
| 2536 | apply (simp only: append_assoc [THEN sym]) | |
| 2537 | ||
| 2538 | (* comb *) | |
| 2539 | apply (simp only: comb_assoc [THEN sym]) | |
| 2540 | ||
| 2541 | (* bc_corresp *) | |
| 2542 | apply (rule wt_method_comp_wo_return) | |
| 2543 | apply assumption+ | |
| 2544 | apply (simp (no_asm_use) only: append_assoc) | |
| 2545 | apply (rule HOL.refl) | |
| 2546 | apply (simp (no_asm_simp))+ | |
| 2547 | apply (simp (no_asm_simp) add: inited_LT_def) | |
| 2548 | ||
| 2549 | (* start_sttp_resp *) | |
| 2550 | apply (simp add: start_sttp_resp_cons_comb_cons_r)+ | |
| 2551 | ||
| 2552 | (* wf_mhead / is_class *) | |
| 2553 | apply (simp add: wf_mhead_def comp_is_type) | |
| 2554 | apply (simp add: comp_is_class) | |
| 2555 | ||
| 2556 | (* sttp_of .. = (T # ST, LT) *) | |
| 2557 | apply (simp (no_asm_simp) add: compTpInitLvars_LT_ST compTpExpr_LT_ST compTpStmt_LT_ST is_inited_LT_def) | |
| 2558 | apply (subgoal_tac "(snd (compTpInitLvars (pns, lvars, blk, res) lvars | |
| 2559 | (start_ST, start_LT C pTs (length lvars)))) | |
| 2560 | = (start_ST, inited_LT C pTs lvars)") | |
| 2561 | prefer 2 apply (rule compTpInitLvars_LT_ST) apply (rule HOL.refl) apply assumption | |
| 2562 | apply (simp only:) | |
| 2563 | apply (subgoal_tac "(snd (compTpStmt (pns, lvars, blk, res) G blk | |
| 2564 | (start_ST, inited_LT C pTs lvars))) | |
| 2565 | = (start_ST, inited_LT C pTs lvars)") | |
| 2566 | prefer 2 apply (erule conjE)+ | |
| 2567 | apply (rule compTpStmt_LT_ST) apply (rule HOL.refl) apply assumption+ | |
| 2568 | apply (simp only:)+ apply (simp (no_asm_simp) add: is_inited_LT_def) | |
| 2569 | apply (simp only:) | |
| 2570 | apply (rule compTpExpr_LT_ST) apply (rule HOL.refl) apply assumption+ | |
| 2571 | apply (simp only:)+ apply (simp (no_asm_simp) add: is_inited_LT_def) | |
| 2572 | ||
| 2573 | ||
| 2574 | (* Return *) | |
| 2575 | apply (intro strip) | |
| 2576 | apply (rule_tac T=T and ST=start_ST and LT="inited_LT C pTs lvars" in wt_instr_Return) | |
| 2577 | apply (simp (no_asm_simp) add: nth_append | |
| 2578 | length_compTpInitLvars length_compTpStmt length_compTpExpr) | |
| 2579 | apply (simp only: compTpInitLvars_LT_ST compTpStmt_LT_ST compTpExpr_LT_ST | |
| 2580 | nochangeST_def) | |
| 2581 | apply (simp only: is_inited_LT_def compTpStmt_LT_ST compTpExpr_LT_ST) | |
| 2582 | apply (simp (no_asm_simp))+ | |
| 2583 | apply simp | |
| 2584 | ||
| 2585 | (* subgoal \<exists> E. \<dots> *) | |
| 2586 | apply (simp add: wf_java_mdecl_def local_env_def) | |
| 2587 | ||
| 2588 | (* subgoal jmb = (\<dots>) *) | |
| 2589 | apply (simp only: split_paired_All, simp) | |
| 2590 | ||
| 2591 | (* subgoal is_class / wf_mhead / wf_java_mdecl *) | |
| 14045 | 2592 | apply (blast intro: methd [THEN conjunct2]) | 
| 2593 | apply (frule wf_prog_wf_mdecl, assumption+) apply (simp only:) apply (simp add: wf_mdecl_def) | |
| 13673 | 2594 | apply (rule wf_java_prog_wf_java_mdecl, assumption+) | 
| 2595 | done | |
| 2596 | ||
| 2597 | ||
| 2598 | lemma comp_set_ms: "(C, D, fs, cms)\<in>set (comp G) | |
| 2599 | \<Longrightarrow> \<exists> ms. (C, D, fs, ms) \<in>set G \<and> cms = map (compMethod G C) ms" | |
| 2600 | by (auto simp: comp_def compClass_def) | |
| 2601 | ||
| 14045 | 2602 | |
| 2603 | (* ---------------------------------------------------------------------- *) | |
| 13673 | 2604 | |
| 13679 | 2605 | section "Main Theorem" | 
| 13673 | 2606 | (* MAIN THEOREM: | 
| 2607 | Methodtype computed by comp is correct for bytecode generated by compTp *) | |
| 2608 | theorem wt_prog_comp: "wf_java_prog G \<Longrightarrow> wt_jvm_prog (comp G) (compTp G)" | |
| 2609 | apply (simp add: wf_prog_def) | |
| 14045 | 2610 | |
| 13673 | 2611 | apply (subgoal_tac "wf_java_prog G") prefer 2 apply (simp add: wf_prog_def) | 
| 2612 | apply (simp (no_asm_simp) add: wf_prog_def wt_jvm_prog_def) | |
| 14045 | 2613 | apply (simp add: comp_ws_prog) | 
| 2614 | ||
| 2615 | apply (intro strip) | |
| 2616 | apply (subgoal_tac "\<exists> C D fs cms. c = (C, D, fs, cms)") | |
| 13673 | 2617 | apply clarify | 
| 2618 | apply (frule comp_set_ms) | |
| 2619 | apply clarify | |
| 2620 | apply (drule bspec, assumption) | |
| 2621 | apply (rule conjI) | |
| 14045 | 2622 | |
| 2623 | (* wf_mrT *) | |
| 2624 | apply (case_tac "C = Object") | |
| 2625 | apply (simp add: wf_mrT_def) | |
| 2626 | apply (subgoal_tac "is_class G D") | |
| 2627 | apply (simp add: comp_wf_mrT) | |
| 2628 | apply (simp add: wf_prog_def ws_prog_def ws_cdecl_def) | |
| 2629 | apply blast | |
| 2630 | ||
| 2631 | (* wf_cdecl_mdecl *) | |
| 2632 | apply (simp add: wf_cdecl_mdecl_def) | |
| 2633 | apply (simp add: split_beta) | |
| 2634 | apply (intro strip) | |
| 2635 | ||
| 2636 | (* show wt_method \<dots> *) | |
| 2637 | apply (subgoal_tac "\<exists> sig rT mb. x = (sig, rT, mb)") | |
| 13673 | 2638 | apply (erule exE)+ | 
| 2639 | apply (simp (no_asm_simp) add: compMethod_def split_beta) | |
| 2640 | apply (erule conjE)+ | |
| 2641 | apply (drule_tac x="(sig, rT, mb)" in bspec) apply simp | |
| 2642 | apply (rule_tac mn="fst sig" and pTs="snd sig" in wt_method_comp) | |
| 2643 | apply assumption+ | |
| 2644 | apply simp | |
| 2645 | apply (simp (no_asm_simp) add: compTp_def) | |
| 2646 | apply (simp (no_asm_simp) add: compMethod_def split_beta) | |
| 2647 | apply (frule WellForm.methd) apply assumption+ | |
| 2648 | apply simp | |
| 2649 | apply simp | |
| 2650 | apply (simp add: compMethod_def split_beta) | |
| 14045 | 2651 | apply auto | 
| 13673 | 2652 | done | 
| 2653 | ||
| 2654 | ||
| 2655 | ||
| 2656 | (**********************************************************************************) | |
| 2657 | ||
| 2658 | declare split_paired_All [simp add] | |
| 2659 | declare split_paired_Ex [simp add] | |
| 2660 | ||
| 2661 | ||
| 2662 | end |