| 
12224
 | 
     1  | 
(*  Title       : MacLaurin.thy
  | 
| 
 | 
     2  | 
    Author      : Jacques D. Fleuriot
  | 
| 
 | 
     3  | 
    Copyright   : 2001 University of Edinburgh
  | 
| 
 | 
     4  | 
    Description : MacLaurin series
  | 
| 
 | 
     5  | 
*)
  | 
| 
 | 
     6  | 
  | 
| 
 | 
     7  | 
Goal "sumr 0 n (%m. f (m + k)) = sumr 0 (n + k) f - sumr 0 k f";
  | 
| 
 | 
     8  | 
by (induct_tac "n" 1);
  | 
| 
 | 
     9  | 
by Auto_tac;
  | 
| 
 | 
    10  | 
qed "sumr_offset";
  | 
| 
 | 
    11  | 
  | 
| 
 | 
    12  | 
Goal "ALL f. sumr 0 n (%m. f (m + k)) = sumr 0 (n + k) f - sumr 0 k f";
  | 
| 
 | 
    13  | 
by (induct_tac "n" 1);
  | 
| 
 | 
    14  | 
by Auto_tac;
  | 
| 
 | 
    15  | 
qed "sumr_offset2";
  | 
| 
 | 
    16  | 
  | 
| 
 | 
    17  | 
Goal "sumr 0 (n + k) f = sumr 0 n (%m. f (m + k)) + sumr 0 k f";
  | 
| 
 | 
    18  | 
by (simp_tac (simpset() addsimps [sumr_offset]) 1);
  | 
| 
 | 
    19  | 
qed "sumr_offset3";
  | 
| 
 | 
    20  | 
  | 
| 
 | 
    21  | 
Goal "ALL n f. sumr 0 (n + k) f = sumr 0 n (%m. f (m + k)) + sumr 0 k f";
  | 
| 
 | 
    22  | 
by (simp_tac (simpset() addsimps [sumr_offset]) 1);
  | 
| 
 | 
    23  | 
qed "sumr_offset4";
  | 
| 
 | 
    24  | 
  | 
| 
 | 
    25  | 
Goal "0 < n ==> \
  | 
| 
 | 
    26  | 
\     sumr (Suc 0) (Suc n) (%n. (if even(n) then 0 else \
  | 
| 
 | 
    27  | 
\            ((- 1) ^ ((n - (Suc 0)) div 2))/(real (fact n))) * a ^ n) = \
  | 
| 
 | 
    28  | 
\     sumr 0 (Suc n) (%n. (if even(n) then 0 else \
  | 
| 
 | 
    29  | 
\            ((- 1) ^ ((n - (Suc 0)) div 2))/(real (fact n))) * a ^ n)";
  | 
| 
 | 
    30  | 
by (res_inst_tac [("n1","1")] (sumr_split_add RS subst) 1);
 | 
| 
 | 
    31  | 
by Auto_tac;
  | 
| 
 | 
    32  | 
qed "sumr_from_1_from_0";
  | 
| 
 | 
    33  | 
  | 
| 
 | 
    34  | 
(*---------------------------------------------------------------------------*)
  | 
| 
 | 
    35  | 
(* Maclaurin's theorem with Lagrange form of remainder                       *)
  | 
| 
 | 
    36  | 
(*---------------------------------------------------------------------------*)
  | 
| 
 | 
    37  | 
  | 
| 
 | 
    38  | 
(* Annoying: Proof is now even longer due mostly to 
  | 
| 
 | 
    39  | 
   change in behaviour of simplifier  since Isabelle99 *)
  | 
| 
 | 
    40  | 
Goal " [| 0 < h; 0 < n; diff 0 = f; \
  | 
| 
 | 
    41  | 
\      ALL m t. \
  | 
| 
 | 
    42  | 
\         m < n & 0 <= t & t <= h --> DERIV (diff m) t :> diff (Suc m) t |] \
  | 
| 
 | 
    43  | 
\   ==> EX t. 0 < t & \
  | 
| 
 | 
    44  | 
\             t < h & \
  | 
| 
 | 
    45  | 
\             f h = \
  | 
| 
 | 
    46  | 
\             sumr 0 n (%m. (diff m 0 / real (fact m)) * h ^ m) + \
  | 
| 
 | 
    47  | 
\             (diff n t / real (fact n)) * h ^ n";
  | 
| 
 | 
    48  | 
by (case_tac "n = 0" 1);
  | 
| 
 | 
    49  | 
by (Force_tac 1);
  | 
| 
 | 
    50  | 
by (dtac not0_implies_Suc 1);
  | 
| 
 | 
    51  | 
by (etac exE 1);
  | 
| 
 | 
    52  | 
by (subgoal_tac 
  | 
| 
 | 
    53  | 
     "EX B. f h = sumr 0 n (%m. (diff m 0 / real (fact m)) * (h ^ m)) \
  | 
| 
 | 
    54  | 
\                  + (B * ((h ^ n) / real (fact n)))" 1);
  | 
| 
 | 
    55  | 
  | 
| 
 | 
    56  | 
by (simp_tac (HOL_ss addsimps [real_add_commute, real_divide_def,
  | 
| 
 | 
    57  | 
    ARITH_PROVE "(x = z + (y::real)) = (x - y = z)"]) 2);
  | 
| 
 | 
    58  | 
by (res_inst_tac 
  | 
| 
 | 
    59  | 
  [("x","(f(h) - sumr 0 n (%m. (diff(m)(0) / real (fact m)) * (h ^ m))) \
 | 
| 
 | 
    60  | 
\        * real (fact n) / (h ^ n)")] exI 2);
  | 
| 
 | 
    61  | 
by (simp_tac (HOL_ss addsimps [real_mult_assoc,real_divide_def]) 2);
  | 
| 
 | 
    62  | 
 by (rtac (CLAIM "x = (1::real) ==>  a = a * (x::real)") 2);
  | 
| 
 | 
    63  | 
by (asm_simp_tac (HOL_ss addsimps 
  | 
| 
 | 
    64  | 
    [CLAIM "(a::real) * (b * (c * d)) = (d * a) * (b * c)"]
  | 
| 
 | 
    65  | 
     delsimps [realpow_Suc]) 2);
  | 
| 
 | 
    66  | 
by (rtac (real_mult_inv_left RS ssubst) 2);
  | 
| 
 | 
    67  | 
by (rtac (real_mult_inv_left RS ssubst) 3);
  | 
| 
 | 
    68  | 
by (dtac (realpow_gt_zero RS real_not_refl2 RS not_sym) 2);
  | 
| 
 | 
    69  | 
by (assume_tac 2);
  | 
| 
 | 
    70  | 
by (rtac real_of_nat_fact_not_zero 2);
  | 
| 
 | 
    71  | 
by (Simp_tac 2);
  | 
| 
 | 
    72  | 
by (etac exE 1);
  | 
| 
 | 
    73  | 
by (cut_inst_tac [("b","%t. f t - \
 | 
| 
 | 
    74  | 
\      (sumr 0 n (%m. (diff m 0 / real (fact m)) * (t ^ m)) + \
  | 
| 
 | 
    75  | 
\                       (B * ((t ^ n) / real (fact n))))")] 
  | 
| 
 | 
    76  | 
    (CLAIM "EX g. g = b") 1);
  | 
| 
 | 
    77  | 
by (etac exE 1);
  | 
| 
 | 
    78  | 
by (subgoal_tac "g 0 = 0 & g h =0" 1);
  | 
| 
 | 
    79  | 
by (asm_simp_tac (simpset() addsimps 
  | 
| 
 | 
    80  | 
    [ARITH_PROVE "(x - y = z) = (x = z + (y::real))"]
  | 
| 
 | 
    81  | 
    delsimps [sumr_Suc]) 2);
  | 
| 
 | 
    82  | 
by (cut_inst_tac [("n","m"),("k","1")] sumr_offset2 2);
 | 
| 
 | 
    83  | 
by (asm_full_simp_tac (simpset() addsimps 
  | 
| 
 | 
    84  | 
    [ARITH_PROVE "(x = y - z) = (y = x + (z::real))"]
  | 
| 
 | 
    85  | 
    delsimps [sumr_Suc]) 2);
  | 
| 
 | 
    86  | 
by (cut_inst_tac [("b","%m t. diff m t - \
 | 
| 
 | 
    87  | 
\      (sumr 0 (n - m) (%p. (diff (m + p) 0 / real (fact p)) * (t ^ p)) \
  | 
| 
 | 
    88  | 
\       + (B * ((t ^ (n - m)) / real (fact(n - m)))))")] 
  | 
| 
 | 
    89  | 
    (CLAIM "EX difg. difg = b") 1);
  | 
| 
 | 
    90  | 
by (etac exE 1);
  | 
| 
 | 
    91  | 
by (subgoal_tac "difg 0 = g" 1);
  | 
| 
 | 
    92  | 
by (asm_simp_tac (simpset() delsimps [realpow_Suc,fact_Suc]) 2);
  | 
| 
 | 
    93  | 
by (subgoal_tac "ALL m t. m < n & 0 <= t & t <= h --> \
  | 
| 
 | 
    94  | 
\                   DERIV (difg m) t :> difg (Suc m) t" 1);
  | 
| 
 | 
    95  | 
by (Clarify_tac 2);
  | 
| 
 | 
    96  | 
by (rtac DERIV_diff 2);
  | 
| 
 | 
    97  | 
by (Asm_simp_tac 2);
  | 
| 
 | 
    98  | 
by DERIV_tac;
  | 
| 
 | 
    99  | 
by DERIV_tac;
  | 
| 
 | 
   100  | 
by (rtac lemma_DERIV_subst 3);
  | 
| 
 | 
   101  | 
by (rtac DERIV_quotient 3);
  | 
| 
 | 
   102  | 
by (rtac DERIV_const 4);
  | 
| 
 | 
   103  | 
by (rtac DERIV_pow 3);
  | 
| 
 | 
   104  | 
by (asm_simp_tac (simpset() addsimps [real_inverse_distrib,
  | 
| 
 | 
   105  | 
    CLAIM_SIMP "(a::real) * b * c * (d * e) = a * b * (c * d) * e" 
  | 
| 
 | 
   106  | 
    real_mult_ac,fact_diff_Suc]) 4);
  | 
| 
 | 
   107  | 
by (Asm_simp_tac 3);
  | 
| 
 | 
   108  | 
by (forw_inst_tac [("m","ma")] less_add_one 2);
 | 
| 
 | 
   109  | 
by (Clarify_tac 2);
  | 
| 
 | 
   110  | 
by (asm_simp_tac (simpset() addsimps 
  | 
| 
 | 
   111  | 
    [CLAIM "Suc m = ma + d + 1 ==> m - ma = d"]
  | 
| 
 | 
   112  | 
    delsimps [sumr_Suc]) 2);
  | 
| 
 | 
   113  | 
by (asm_simp_tac (simpset() addsimps [(simplify (simpset() delsimps [sumr_Suc]) 
  | 
| 
 | 
   114  | 
          (read_instantiate [("k","1")] sumr_offset4))] 
 | 
| 
 | 
   115  | 
    delsimps [sumr_Suc,fact_Suc,realpow_Suc]) 2);
  | 
| 
 | 
   116  | 
by (rtac lemma_DERIV_subst 2);
  | 
| 
 | 
   117  | 
by (rtac DERIV_add 2);
  | 
| 
 | 
   118  | 
by (rtac DERIV_const 3);
  | 
| 
 | 
   119  | 
by (rtac DERIV_sumr 2);
  | 
| 
 | 
   120  | 
by (Clarify_tac 2);
  | 
| 
 | 
   121  | 
by (Simp_tac 3);
  | 
| 
 | 
   122  | 
by (simp_tac (simpset() addsimps [real_divide_def,real_mult_assoc] 
  | 
| 
 | 
   123  | 
    delsimps [fact_Suc,realpow_Suc]) 2);
  | 
| 
 | 
   124  | 
by (rtac DERIV_cmult 2);
  | 
| 
 | 
   125  | 
by (rtac lemma_DERIV_subst 2);
  | 
| 
 | 
   126  | 
by DERIV_tac;
  | 
| 
 | 
   127  | 
by (rtac (fact_Suc RS ssubst) 2);
  | 
| 
 | 
   128  | 
by (rtac (real_of_nat_mult RS ssubst) 2);
  | 
| 
 | 
   129  | 
by (simp_tac (simpset() addsimps [real_inverse_distrib] @
  | 
| 
 | 
   130  | 
    real_mult_ac) 2);
  | 
| 
 | 
   131  | 
by (subgoal_tac "ALL ma. ma < n --> \
  | 
| 
 | 
   132  | 
\        (EX t. 0 < t & t < h & difg (Suc ma) t = 0)" 1);
  | 
| 
 | 
   133  | 
by (rotate_tac 11 1);
  | 
| 
 | 
   134  | 
by (dres_inst_tac [("x","m")] spec 1);
 | 
| 
 | 
   135  | 
by (etac impE 1);
  | 
| 
 | 
   136  | 
by (Asm_simp_tac 1);
  | 
| 
 | 
   137  | 
by (etac exE 1);
  | 
| 
 | 
   138  | 
by (res_inst_tac [("x","t")] exI 1);
 | 
| 
 | 
   139  | 
by (asm_full_simp_tac (simpset() addsimps 
  | 
| 
 | 
   140  | 
     [ARITH_PROVE "(x - y = 0) = (y = (x::real))"] 
  | 
| 
 | 
   141  | 
      delsimps [realpow_Suc,fact_Suc]) 1);
  | 
| 
 | 
   142  | 
by (subgoal_tac "ALL m. m < n --> difg m 0 = 0" 1);
  | 
| 
 | 
   143  | 
by (Clarify_tac 2);
  | 
| 
 | 
   144  | 
by (Asm_simp_tac 2);
  | 
| 
 | 
   145  | 
by (forw_inst_tac [("m","ma")] less_add_one 2);
 | 
| 
 | 
   146  | 
by (Clarify_tac 2);
  | 
| 
 | 
   147  | 
by (asm_simp_tac (simpset() delsimps [sumr_Suc]) 2);
  | 
| 
 | 
   148  | 
by (asm_simp_tac (simpset() addsimps [(simplify (simpset() delsimps [sumr_Suc]) 
  | 
| 
 | 
   149  | 
          (read_instantiate [("k","1")] sumr_offset4))] 
 | 
| 
 | 
   150  | 
    delsimps [sumr_Suc,fact_Suc,realpow_Suc]) 2);
  | 
| 
 | 
   151  | 
by (subgoal_tac "ALL m. m < n --> (EX t. 0 < t & t < h & \
  | 
| 
 | 
   152  | 
\                DERIV (difg m) t :> 0)" 1);
  | 
| 
 | 
   153  | 
by (rtac allI 1 THEN rtac impI 1);
  | 
| 
 | 
   154  | 
by (rotate_tac 12 1);
  | 
| 
 | 
   155  | 
by (dres_inst_tac [("x","ma")] spec 1);
 | 
| 
 | 
   156  | 
by (etac impE 1 THEN assume_tac 1);
  | 
| 
 | 
   157  | 
by (etac exE 1);
  | 
| 
 | 
   158  | 
by (res_inst_tac [("x","t")] exI 1);
 | 
| 
 | 
   159  | 
(* do some tidying up *)
  | 
| 
 | 
   160  | 
by (ALLGOALS(thin_tac "difg = \
  | 
| 
 | 
   161  | 
\          (%m t. diff m t - \
  | 
| 
 | 
   162  | 
\                 (sumr 0 (n - m) \
  | 
| 
 | 
   163  | 
\                   (%p. diff (m + p) 0 / real (fact p) * t ^ p) + \
  | 
| 
 | 
   164  | 
\                  B * (t ^ (n - m) / real (fact (n - m)))))"));
  | 
| 
 | 
   165  | 
by (ALLGOALS(thin_tac "g = \
  | 
| 
 | 
   166  | 
\          (%t. f t - \
  | 
| 
 | 
   167  | 
\               (sumr 0 n (%m. diff m 0 / real  (fact m) * t ^ m) + \
  | 
| 
 | 
   168  | 
\                B * (t ^ n / real (fact n))))"));
  | 
| 
 | 
   169  | 
by (ALLGOALS(thin_tac "f h = \
  | 
| 
 | 
   170  | 
\          sumr 0 n (%m. diff m 0 / real (fact m) * h ^ m) + \
  | 
| 
 | 
   171  | 
\          B * (h ^ n / real (fact n))"));
  | 
| 
 | 
   172  | 
(* back to business *)
  | 
| 
 | 
   173  | 
by (Asm_simp_tac 1);
  | 
| 
 | 
   174  | 
by (rtac DERIV_unique 1);
  | 
| 
 | 
   175  | 
by (Blast_tac 2);
  | 
| 
 | 
   176  | 
by (Force_tac 1);
  | 
| 
 | 
   177  | 
by (rtac allI 1 THEN induct_tac "ma" 1);
  | 
| 
 | 
   178  | 
by (rtac impI 1 THEN rtac Rolle 1);
  | 
| 
 | 
   179  | 
by (assume_tac 1);
  | 
| 
 | 
   180  | 
by (Asm_full_simp_tac 1);
  | 
| 
 | 
   181  | 
by (Asm_full_simp_tac 1);
  | 
| 
 | 
   182  | 
by (subgoal_tac "ALL t. 0 <= t & t <= h --> g differentiable t" 1);
  | 
| 
 | 
   183  | 
by (asm_full_simp_tac (simpset() addsimps [differentiable_def]) 1);
  | 
| 
 | 
   184  | 
by (blast_tac (claset() addDs [DERIV_isCont]) 1);
  | 
| 
 | 
   185  | 
by (asm_full_simp_tac (simpset() addsimps [differentiable_def]) 1);
  | 
| 
 | 
   186  | 
by (Clarify_tac 1);
  | 
| 
 | 
   187  | 
by (res_inst_tac [("x","difg (Suc 0) t")] exI 1);
 | 
| 
 | 
   188  | 
by (Force_tac 1);
  | 
| 
 | 
   189  | 
by (asm_full_simp_tac (simpset() addsimps [differentiable_def]) 1);
  | 
| 
 | 
   190  | 
by (Clarify_tac 1);
  | 
| 
 | 
   191  | 
by (res_inst_tac [("x","difg (Suc 0) x")] exI 1);
 | 
| 
 | 
   192  | 
by (Force_tac 1);
  | 
| 
 | 
   193  | 
by (Step_tac 1);
  | 
| 
 | 
   194  | 
by (Force_tac 1);
  | 
| 
 | 
   195  | 
by (subgoal_tac "EX ta. 0 < ta & ta < t & \
  | 
| 
 | 
   196  | 
\                DERIV difg (Suc n) ta :> 0" 1);
  | 
| 
 | 
   197  | 
by (rtac Rolle 2 THEN assume_tac 2);
  | 
| 
 | 
   198  | 
by (Asm_full_simp_tac 2);
  | 
| 
 | 
   199  | 
by (rotate_tac 2 2);
  | 
| 
 | 
   200  | 
by (dres_inst_tac [("x","n")] spec 2);
 | 
| 
 | 
   201  | 
by (ftac (ARITH_PROVE "n < m  ==> n < Suc m") 2);
  | 
| 
 | 
   202  | 
by (rtac DERIV_unique 2);
  | 
| 
 | 
   203  | 
by (assume_tac 3);
  | 
| 
 | 
   204  | 
by (Force_tac 2);
  | 
| 
 | 
   205  | 
by (subgoal_tac 
  | 
| 
 | 
   206  | 
    "ALL ta. 0 <= ta & ta <= t --> (difg (Suc n)) differentiable ta" 2);
  | 
| 
 | 
   207  | 
by (asm_full_simp_tac (simpset() addsimps [differentiable_def]) 2);
  | 
| 
 | 
   208  | 
by (blast_tac (claset() addSDs [DERIV_isCont]) 2);
  | 
| 
 | 
   209  | 
by (asm_full_simp_tac (simpset() addsimps [differentiable_def]) 2);
  | 
| 
 | 
   210  | 
by (Clarify_tac 2);
  | 
| 
 | 
   211  | 
by (res_inst_tac [("x","difg (Suc (Suc n)) ta")] exI 2);
 | 
| 
 | 
   212  | 
by (Force_tac 2);
  | 
| 
 | 
   213  | 
by (asm_full_simp_tac (simpset() addsimps [differentiable_def]) 2);
  | 
| 
 | 
   214  | 
by (Clarify_tac 2);
  | 
| 
 | 
   215  | 
by (res_inst_tac [("x","difg (Suc (Suc n)) x")] exI 2);
 | 
| 
 | 
   216  | 
by (Force_tac 2);
  | 
| 
 | 
   217  | 
by (Step_tac 1);
  | 
| 
 | 
   218  | 
by (res_inst_tac [("x","ta")] exI 1);
 | 
| 
 | 
   219  | 
by (Force_tac 1);
  | 
| 
 | 
   220  | 
qed "Maclaurin";
  | 
| 
 | 
   221  | 
  | 
| 
 | 
   222  | 
Goal "0 < h & 0 < n & diff 0 = f & \
  | 
| 
 | 
   223  | 
\      (ALL m t. \
  | 
| 
 | 
   224  | 
\         m < n & 0 <= t & t <= h --> DERIV (diff m) t :> diff (Suc m) t) \
  | 
| 
 | 
   225  | 
\   --> (EX t. 0 < t & \
  | 
| 
 | 
   226  | 
\             t < h & \
  | 
| 
 | 
   227  | 
\             f h = \
  | 
| 
 | 
   228  | 
\             sumr 0 n (%m. diff m 0 / real (fact m) * h ^ m) + \
  | 
| 
 | 
   229  | 
\             diff n t / real (fact n) * h ^ n)";
  | 
| 
 | 
   230  | 
by (blast_tac (claset() addIs [Maclaurin]) 1);
  | 
| 
 | 
   231  | 
qed "Maclaurin_objl";
  | 
| 
 | 
   232  | 
  | 
| 
 | 
   233  | 
Goal " [| 0 < h; diff 0 = f; \
  | 
| 
 | 
   234  | 
\      ALL m t. \
  | 
| 
 | 
   235  | 
\         m < n & 0 <= t & t <= h --> DERIV (diff m) t :> diff (Suc m) t |] \
  | 
| 
 | 
   236  | 
\   ==> EX t. 0 < t & \
  | 
| 
 | 
   237  | 
\             t <= h & \
  | 
| 
 | 
   238  | 
\             f h = \
  | 
| 
 | 
   239  | 
\             sumr 0 n (%m. diff m 0 / real (fact m) * h ^ m) + \
  | 
| 
 | 
   240  | 
\             diff n t / real (fact n) * h ^ n";
  | 
| 
 | 
   241  | 
by (case_tac "n" 1);
  | 
| 
 | 
   242  | 
by Auto_tac;
  | 
| 
 | 
   243  | 
by (dtac Maclaurin 1 THEN Auto_tac);
  | 
| 
 | 
   244  | 
qed "Maclaurin2";
  | 
| 
 | 
   245  | 
  | 
| 
 | 
   246  | 
Goal "0 < h & diff 0 = f & \
  | 
| 
 | 
   247  | 
\      (ALL m t. \
  | 
| 
 | 
   248  | 
\         m < n & 0 <= t & t <= h --> DERIV (diff m) t :> diff (Suc m) t) \
  | 
| 
 | 
   249  | 
\   --> (EX t. 0 < t & \
  | 
| 
 | 
   250  | 
\             t <= h & \
  | 
| 
 | 
   251  | 
\             f h = \
  | 
| 
 | 
   252  | 
\             sumr 0 n (%m. diff m 0 / real (fact m) * h ^ m) + \
  | 
| 
 | 
   253  | 
\             diff n t / real (fact n) * h ^ n)";
  | 
| 
 | 
   254  | 
by (blast_tac (claset() addIs [Maclaurin2]) 1);
  | 
| 
 | 
   255  | 
qed "Maclaurin2_objl";
  | 
| 
 | 
   256  | 
  | 
| 
 | 
   257  | 
Goal " [| h < 0; 0 < n; diff 0 = f; \
  | 
| 
 | 
   258  | 
\      ALL m t. \
  | 
| 
 | 
   259  | 
\         m < n & h <= t & t <= 0 --> DERIV (diff m) t :> diff (Suc m) t |] \
  | 
| 
 | 
   260  | 
\   ==> EX t. h < t & \
  | 
| 
 | 
   261  | 
\             t < 0 & \
  | 
| 
 | 
   262  | 
\             f h = \
  | 
| 
 | 
   263  | 
\             sumr 0 n (%m. diff m 0 / real (fact m) * h ^ m) + \
  | 
| 
 | 
   264  | 
\             diff n t / real (fact n) * h ^ n";
  | 
| 
 | 
   265  | 
by (cut_inst_tac [("f","%x. f (-x)"),
 | 
| 
 | 
   266  | 
                 ("diff","%n x. ((- 1) ^ n) * diff n (-x)"),
 | 
| 
 | 
   267  | 
                 ("h","-h"),("n","n")] Maclaurin_objl 1);
 | 
| 
 | 
   268  | 
by (Asm_full_simp_tac 1);
  | 
| 
 | 
   269  | 
by (etac impE 1 THEN Step_tac 1);
  | 
| 
 | 
   270  | 
by (rtac (real_minus_mult_eq2 RS ssubst) 1);
  | 
| 
 | 
   271  | 
by (rtac DERIV_cmult 1);
  | 
| 
 | 
   272  | 
by (rtac lemma_DERIV_subst 1);
  | 
| 
 | 
   273  | 
by (rtac (read_instantiate [("g","uminus")] DERIV_chain2) 1);
 | 
| 
 | 
   274  | 
by (rtac DERIV_minus 2 THEN rtac DERIV_Id 2);
  | 
| 
 | 
   275  | 
by (Force_tac 2);
  | 
| 
 | 
   276  | 
by (Force_tac 1);
  | 
| 
 | 
   277  | 
by (res_inst_tac [("x","-t")] exI 1);
 | 
| 
 | 
   278  | 
by Auto_tac;
  | 
| 
 | 
   279  | 
by (rtac (CLAIM "[| x = x'; y = y' |] ==> x + y = x' + (y'::real)") 1);
  | 
| 
 | 
   280  | 
by (rtac sumr_fun_eq 1);
  | 
| 
 | 
   281  | 
by (Asm_full_simp_tac 1);
  | 
| 
 | 
   282  | 
by (auto_tac (claset(),simpset() addsimps [real_divide_def,
  | 
| 
 | 
   283  | 
    CLAIM "((a * b) * c) * d = (b * c) * (a * (d::real))",
  | 
| 
 | 
   284  | 
    realpow_mult RS sym]));
  | 
| 
 | 
   285  | 
qed "Maclaurin_minus";
  | 
| 
 | 
   286  | 
  | 
| 
 | 
   287  | 
Goal "(h < 0 & 0 < n & diff 0 = f & \
  | 
| 
 | 
   288  | 
\      (ALL m t. \
  | 
| 
 | 
   289  | 
\         m < n & h <= t & t <= 0 --> DERIV (diff m) t :> diff (Suc m) t))\
  | 
| 
 | 
   290  | 
\   --> (EX t. h < t & \
  | 
| 
 | 
   291  | 
\             t < 0 & \
  | 
| 
 | 
   292  | 
\             f h = \
  | 
| 
 | 
   293  | 
\             sumr 0 n (%m. diff m 0 / real (fact m) * h ^ m) + \
  | 
| 
 | 
   294  | 
\             diff n t / real (fact n) * h ^ n)";
  | 
| 
 | 
   295  | 
by (blast_tac (claset() addIs [Maclaurin_minus]) 1);
  | 
| 
 | 
   296  | 
qed "Maclaurin_minus_objl";
  | 
| 
 | 
   297  | 
  | 
| 
 | 
   298  | 
(* ------------------------------------------------------------------------- *)
  | 
| 
 | 
   299  | 
(* More convenient "bidirectional" version.                                  *)
  | 
| 
 | 
   300  | 
(* ------------------------------------------------------------------------- *)
  | 
| 
 | 
   301  | 
  | 
| 
 | 
   302  | 
(* not good for PVS sin_approx, cos_approx *)
  | 
| 
 | 
   303  | 
Goal " [| diff 0 = f; \
  | 
| 
 | 
   304  | 
\      ALL m t. \
  | 
| 
 | 
   305  | 
\         m < n & abs t <= abs x --> DERIV (diff m) t :> diff (Suc m) t |] \
  | 
| 
 | 
   306  | 
\   ==> EX t. abs t <= abs x & \
  | 
| 
 | 
   307  | 
\             f x = \
  | 
| 
 | 
   308  | 
\             sumr 0 n (%m. diff m 0 / real (fact m) * x ^ m) + \
  | 
| 
 | 
   309  | 
\             diff n t / real (fact n) * x ^ n";
  | 
| 
 | 
   310  | 
by (case_tac "n = 0" 1);
  | 
| 
 | 
   311  | 
by (Force_tac 1);
  | 
| 
 | 
   312  | 
by (case_tac "x = 0" 1);
  | 
| 
 | 
   313  | 
by (res_inst_tac [("x","0")] exI 1);
 | 
| 
 | 
   314  | 
by (Asm_full_simp_tac 1);
  | 
| 
 | 
   315  | 
by (res_inst_tac [("P","0 < n")] impE 1);
 | 
| 
 | 
   316  | 
by (assume_tac 2 THEN assume_tac 2);
  | 
| 
 | 
   317  | 
by (induct_tac "n" 1);
  | 
| 
 | 
   318  | 
by (Simp_tac 1);
  | 
| 
 | 
   319  | 
by Auto_tac;
  | 
| 
 | 
   320  | 
by (cut_inst_tac [("R1.0","x"),("R2.0","0")] real_linear 1);
 | 
| 
 | 
   321  | 
by Auto_tac;
  | 
| 
 | 
   322  | 
by (cut_inst_tac [("f","diff 0"),
 | 
| 
 | 
   323  | 
                 ("diff","diff"),
 | 
| 
 | 
   324  | 
                 ("h","x"),("n","n")] Maclaurin_objl 2);
 | 
| 
 | 
   325  | 
by (Step_tac 2);
  | 
| 
 | 
   326  | 
by (blast_tac (claset() addDs 
  | 
| 
 | 
   327  | 
    [ARITH_PROVE "[|(0::real) <= t;t <= x |] ==> abs t <= abs x"]) 2);
  | 
| 
 | 
   328  | 
by (res_inst_tac [("x","t")] exI 2);
 | 
| 
 | 
   329  | 
by (force_tac (claset() addIs 
  | 
| 
 | 
   330  | 
    [ARITH_PROVE "[| 0 < t; (t::real) < x|] ==> abs t <= abs x"],simpset()) 2);
  | 
| 
 | 
   331  | 
by (cut_inst_tac [("f","diff 0"),
 | 
| 
 | 
   332  | 
                 ("diff","diff"),
 | 
| 
 | 
   333  | 
                 ("h","x"),("n","n")] Maclaurin_minus_objl 1);
 | 
| 
 | 
   334  | 
by (Step_tac 1);
  | 
| 
 | 
   335  | 
by (blast_tac (claset() addDs 
  | 
| 
 | 
   336  | 
    [ARITH_PROVE "[|x <= t;t <= (0::real) |] ==> abs t <= abs x"]) 1);
  | 
| 
 | 
   337  | 
by (res_inst_tac [("x","t")] exI 1);
 | 
| 
 | 
   338  | 
by (force_tac (claset() addIs 
  | 
| 
 | 
   339  | 
    [ARITH_PROVE "[| x < t; (t::real) < 0|] ==> abs t <= abs x"],simpset()) 1);
  | 
| 
 | 
   340  | 
qed "Maclaurin_bi_le";
  | 
| 
 | 
   341  | 
  | 
| 
 | 
   342  | 
Goal "[| diff 0 = f; \
  | 
| 
 | 
   343  | 
\        ALL m x. DERIV (diff m) x :> diff(Suc m) x; \ 
  | 
| 
 | 
   344  | 
\       x ~= 0; 0 < n \
  | 
| 
 | 
   345  | 
\     |] ==> EX t. 0 < abs t & abs t < abs x & \
  | 
| 
 | 
   346  | 
\              f x = sumr 0 n (%m. (diff m 0 / real (fact m)) * x ^ m) + \
  | 
| 
 | 
   347  | 
\                    (diff n t / real (fact n)) * x ^ n";
  | 
| 
 | 
   348  | 
by (res_inst_tac [("R1.0","x"),("R2.0","0")] real_linear_less2 1);
 | 
| 
 | 
   349  | 
by (Blast_tac 2);
  | 
| 
 | 
   350  | 
by (dtac Maclaurin_minus 1);
  | 
| 
 | 
   351  | 
by (dtac Maclaurin 5);
  | 
| 
 | 
   352  | 
by (TRYALL(assume_tac));
  | 
| 
 | 
   353  | 
by (Blast_tac 1);
  | 
| 
 | 
   354  | 
by (Blast_tac 2);
  | 
| 
 | 
   355  | 
by (Step_tac 1);
  | 
| 
 | 
   356  | 
by (ALLGOALS(res_inst_tac [("x","t")] exI));
 | 
| 
 | 
   357  | 
by (Step_tac 1);
  | 
| 
 | 
   358  | 
by (ALLGOALS(arith_tac));
  | 
| 
 | 
   359  | 
qed "Maclaurin_all_lt";
  | 
| 
 | 
   360  | 
  | 
| 
 | 
   361  | 
Goal "diff 0 = f & \
  | 
| 
 | 
   362  | 
\     (ALL m x. DERIV (diff m) x :> diff(Suc m) x) & \
  | 
| 
 | 
   363  | 
\     x ~= 0 & 0 < n \
  | 
| 
 | 
   364  | 
\     --> (EX t. 0 < abs t & abs t < abs x & \
  | 
| 
 | 
   365  | 
\              f x = sumr 0 n (%m. (diff m 0 / real (fact m)) * x ^ m) + \
  | 
| 
 | 
   366  | 
\                    (diff n t / real (fact n)) * x ^ n)";
  | 
| 
 | 
   367  | 
by (blast_tac (claset() addIs [Maclaurin_all_lt]) 1);
  | 
| 
 | 
   368  | 
qed "Maclaurin_all_lt_objl";
  | 
| 
 | 
   369  | 
  | 
| 
 | 
   370  | 
Goal "x = (0::real)  \
  | 
| 
 | 
   371  | 
\     ==> 0 < n --> \
  | 
| 
 | 
   372  | 
\         sumr 0 n (%m. (diff m (0::real) / real (fact m)) * x ^ m) = \
  | 
| 
 | 
   373  | 
\         diff 0 0";
  | 
| 
 | 
   374  | 
by (Asm_simp_tac 1);
  | 
| 
 | 
   375  | 
by (induct_tac "n" 1);
  | 
| 
 | 
   376  | 
by Auto_tac; 
  | 
| 
 | 
   377  | 
qed_spec_mp "Maclaurin_zero";
  | 
| 
 | 
   378  | 
  | 
| 
 | 
   379  | 
Goal "[| diff 0 = f; \
  | 
| 
 | 
   380  | 
\       ALL m x. DERIV (diff m) x :> diff (Suc m) x \
  | 
| 
 | 
   381  | 
\     |] ==> EX t. abs t <= abs x & \
  | 
| 
 | 
   382  | 
\             f x = sumr 0 n (%m. (diff m 0 / real (fact m)) * x ^ m) + \
  | 
| 
 | 
   383  | 
\                   (diff n t / real (fact n)) * x ^ n";
  | 
| 
 | 
   384  | 
by (cut_inst_tac [("n","n"),("m","0")] 
 | 
| 
 | 
   385  | 
       (ARITH_PROVE "n <= m | m < (n::nat)") 1);
  | 
| 
 | 
   386  | 
by (etac disjE 1);
  | 
| 
 | 
   387  | 
by (Force_tac 1);
  | 
| 
 | 
   388  | 
by (case_tac "x = 0" 1);
  | 
| 
 | 
   389  | 
by (forw_inst_tac [("diff","diff"),("n","n")] Maclaurin_zero 1);
 | 
| 
 | 
   390  | 
by (assume_tac 1);
  | 
| 
 | 
   391  | 
by (dtac (gr_implies_not0 RS  not0_implies_Suc) 1);
  | 
| 
 | 
   392  | 
by (res_inst_tac [("x","0")] exI 1);
 | 
| 
 | 
   393  | 
by (Force_tac 1);
  | 
| 
 | 
   394  | 
by (forw_inst_tac [("diff","diff"),("n","n")] Maclaurin_all_lt 1);
 | 
| 
 | 
   395  | 
by (TRYALL(assume_tac));
  | 
| 
 | 
   396  | 
by (Step_tac 1);
  | 
| 
 | 
   397  | 
by (res_inst_tac [("x","t")] exI 1);
 | 
| 
 | 
   398  | 
by Auto_tac;
  | 
| 
 | 
   399  | 
qed "Maclaurin_all_le";
  | 
| 
 | 
   400  | 
  | 
| 
 | 
   401  | 
Goal "diff 0 = f & \
  | 
| 
 | 
   402  | 
\     (ALL m x. DERIV (diff m) x :> diff (Suc m) x)  \
  | 
| 
 | 
   403  | 
\     --> (EX t. abs t <= abs x & \
  | 
| 
 | 
   404  | 
\             f x = sumr 0 n (%m. (diff m 0 / real (fact m)) * x ^ m) + \
  | 
| 
 | 
   405  | 
\                   (diff n t / real (fact n)) * x ^ n)";
  | 
| 
 | 
   406  | 
by (blast_tac (claset() addIs [Maclaurin_all_le]) 1);
  | 
| 
 | 
   407  | 
qed "Maclaurin_all_le_objl";
  | 
| 
 | 
   408  | 
  | 
| 
 | 
   409  | 
(* ------------------------------------------------------------------------- *)
  | 
| 
 | 
   410  | 
(* Version for exp.                                                          *)
  | 
| 
 | 
   411  | 
(* ------------------------------------------------------------------------- *)
  | 
| 
 | 
   412  | 
  | 
| 
 | 
   413  | 
Goal "[| x ~= 0; 0 < n |] \
  | 
| 
 | 
   414  | 
\     ==> (EX t. 0 < abs t & \
  | 
| 
 | 
   415  | 
\               abs t < abs x & \
  | 
| 
 | 
   416  | 
\               exp x = sumr 0 n (%m. (x ^ m) / real (fact m)) + \
  | 
| 
 | 
   417  | 
\                       (exp t / real (fact n)) * x ^ n)";
  | 
| 
 | 
   418  | 
by (cut_inst_tac [("diff","%n. exp"),("f","exp"),("x","x"),("n","n")] 
 | 
| 
 | 
   419  | 
    Maclaurin_all_lt_objl 1);
  | 
| 
 | 
   420  | 
by Auto_tac;
  | 
| 
 | 
   421  | 
qed "Maclaurin_exp_lt";
  | 
| 
 | 
   422  | 
  | 
| 
 | 
   423  | 
Goal "EX t. abs t <= abs x & \
  | 
| 
 | 
   424  | 
\           exp x = sumr 0 n (%m. (x ^ m) / real (fact m)) + \
  | 
| 
 | 
   425  | 
\                      (exp t / real (fact n)) * x ^ n";
  | 
| 
 | 
   426  | 
by (cut_inst_tac [("diff","%n. exp"),("f","exp"),("x","x"),("n","n")] 
 | 
| 
 | 
   427  | 
    Maclaurin_all_le_objl 1);
  | 
| 
 | 
   428  | 
by Auto_tac;
  | 
| 
 | 
   429  | 
qed "Maclaurin_exp_le";
  | 
| 
 | 
   430  | 
  | 
| 
 | 
   431  | 
(* ------------------------------------------------------------------------- *)
  | 
| 
 | 
   432  | 
(* Version for sin function                                                  *)
  | 
| 
 | 
   433  | 
(* ------------------------------------------------------------------------- *)
  | 
| 
 | 
   434  | 
  | 
| 
 | 
   435  | 
Goal "[| a < b; ALL x. a <= x & x <= b --> DERIV f x :> f'(x) |] \
  | 
| 
 | 
   436  | 
\     ==> EX z. a < z & z < b & (f b - f a = (b - a) * f'(z))";
  | 
| 
 | 
   437  | 
by (dtac MVT 1);
  | 
| 
 | 
   438  | 
by (blast_tac (claset() addIs [DERIV_isCont]) 1);
  | 
| 
 | 
   439  | 
by (force_tac (claset() addDs [order_less_imp_le],
  | 
| 
 | 
   440  | 
    simpset() addsimps [differentiable_def]) 1);
  | 
| 
 | 
   441  | 
by (blast_tac (claset() addDs [DERIV_unique,order_less_imp_le]) 1);
  | 
| 
 | 
   442  | 
qed "MVT2";
  | 
| 
 | 
   443  | 
  | 
| 
 | 
   444  | 
Goal "d < (4::nat) ==> d = 0 | d = 1 | d = 2 | d = 3";
  | 
| 
 | 
   445  | 
by (case_tac "d" 1 THEN Auto_tac);
  | 
| 
 | 
   446  | 
by (case_tac "nat" 1 THEN Auto_tac);
  | 
| 
 | 
   447  | 
by (case_tac "nata" 1 THEN Auto_tac);
  | 
| 
 | 
   448  | 
qed "lemma_exhaust_less_4";
  | 
| 
 | 
   449  | 
  | 
| 
 | 
   450  | 
bind_thm ("real_mult_le_lemma",
 | 
| 
 | 
   451  | 
          simplify (simpset()) (inst "y" "1" real_mult_le_le_mono2));
  | 
| 
 | 
   452  | 
  | 
| 
 | 
   453  | 
  | 
| 
 | 
   454  | 
Goal "abs(sin x - \
  | 
| 
 | 
   455  | 
\          sumr 0 n (%m. (if even m then 0 \
  | 
| 
 | 
   456  | 
\                         else ((- 1) ^ ((m - (Suc 0)) div 2)) / real (fact m)) * \
  | 
| 
 | 
   457  | 
\                         x ^ m)) \
  | 
| 
 | 
   458  | 
\      <= inverse(real (fact n)) * abs(x) ^ n";
  | 
| 
 | 
   459  | 
by (cut_inst_tac [("f","sin"),("n","n"),("x","x"),
 | 
| 
 | 
   460  | 
       ("diff","%n x. if n mod 4 = 0 then sin(x) \
 | 
| 
 | 
   461  | 
\                     else if n mod 4 = 1 then cos(x) \
  | 
| 
 | 
   462  | 
\                     else if n mod 4 = 2 then -sin(x) \
  | 
| 
 | 
   463  | 
\                     else -cos(x)")] Maclaurin_all_le_objl 1);
  | 
| 
 | 
   464  | 
by (Step_tac 1);
  | 
| 
 | 
   465  | 
by (Asm_full_simp_tac 1);
  | 
| 
 | 
   466  | 
by (rtac (mod_Suc_eq_Suc_mod RS ssubst) 1);
  | 
| 
 | 
   467  | 
by (cut_inst_tac [("m1","m")] (CLAIM "0 < (4::nat)" RS mod_less_divisor
 | 
| 
 | 
   468  | 
    RS lemma_exhaust_less_4) 1);
  | 
| 
 | 
   469  | 
by (Step_tac 1);
  | 
| 
 | 
   470  | 
by (Asm_simp_tac 1);
  | 
| 
 | 
   471  | 
by (Asm_simp_tac 1);
  | 
| 
 | 
   472  | 
by (Asm_simp_tac 1);
  | 
| 
 | 
   473  | 
by (rtac DERIV_minus 1 THEN Simp_tac 1);
  | 
| 
 | 
   474  | 
by (Asm_simp_tac 1);
  | 
| 
 | 
   475  | 
by (rtac lemma_DERIV_subst 1 THEN rtac DERIV_minus 1 THEN rtac DERIV_cos 1);
  | 
| 
 | 
   476  | 
by (Simp_tac 1);
  | 
| 
 | 
   477  | 
by (dtac ssubst 1 THEN assume_tac 2);
  | 
| 
 | 
   478  | 
by (rtac (ARITH_PROVE "[|x = y; abs u <= (v::real) |] ==> abs ((x + u) - y) <= v") 1);
  | 
| 
 | 
   479  | 
by (rtac sumr_fun_eq 1);
  | 
| 
 | 
   480  | 
by (Step_tac 1);
  | 
| 
 | 
   481  | 
by (rtac (CLAIM "x = y ==> x * z = y * (z::real)") 1);
  | 
| 
 | 
   482  | 
by (rtac (even_even_mod_4_iff RS ssubst) 1);
  | 
| 
 | 
   483  | 
by (cut_inst_tac [("m1","r")] (CLAIM "0 < (4::nat)" RS mod_less_divisor
 | 
| 
 | 
   484  | 
    RS lemma_exhaust_less_4) 1);
  | 
| 
 | 
   485  | 
by (Step_tac 1);
  | 
| 
 | 
   486  | 
by (Asm_simp_tac 1);
  | 
| 
 | 
   487  | 
by (asm_simp_tac (simpset() addsimps [even_num_iff]) 2);
  | 
| 
 | 
   488  | 
by (asm_simp_tac (simpset() addsimps [even_num_iff]) 1);
  | 
| 
 | 
   489  | 
by (asm_simp_tac (simpset() addsimps [even_num_iff]) 2);
  | 
| 
 | 
   490  | 
by (dtac lemma_even_mod_4_div_2 1);
  | 
| 
 | 
   491  | 
by (asm_full_simp_tac (simpset() addsimps [numeral_2_eq_2,real_divide_def]) 1);
  | 
| 
 | 
   492  | 
by (dtac lemma_odd_mod_4_div_2 1);
  | 
| 
 | 
   493  | 
by (asm_full_simp_tac (simpset() addsimps [numeral_2_eq_2, real_divide_def]) 1);
  | 
| 
 | 
   494  | 
by (auto_tac (claset() addSIs [real_mult_le_lemma,real_mult_le_le_mono2],
  | 
| 
12330
 | 
   495  | 
      simpset() addsimps [real_divide_def,abs_mult,abs_inverse,realpow_abs RS
  | 
| 
 | 
   496  | 
sym]));
  | 
| 
12224
 | 
   497  | 
qed "Maclaurin_sin_bound";
  | 
| 
 | 
   498  | 
  | 
| 
 | 
   499  | 
Goal "0 < n --> Suc (Suc (2 * n - 2)) = 2*n";
  | 
| 
 | 
   500  | 
by (induct_tac "n" 1);
  | 
| 
 | 
   501  | 
by Auto_tac;
  | 
| 
 | 
   502  | 
qed_spec_mp "Suc_Suc_mult_two_diff_two";
  | 
| 
 | 
   503  | 
Addsimps [Suc_Suc_mult_two_diff_two];
  | 
| 
 | 
   504  | 
  | 
| 
 | 
   505  | 
Goal "0 < n --> Suc (Suc (4*n - 2)) = 4*n";
  | 
| 
 | 
   506  | 
by (induct_tac "n" 1);
  | 
| 
 | 
   507  | 
by Auto_tac;
  | 
| 
 | 
   508  | 
qed_spec_mp "lemma_Suc_Suc_4n_diff_2";
  | 
| 
 | 
   509  | 
Addsimps [lemma_Suc_Suc_4n_diff_2];
  | 
| 
 | 
   510  | 
  | 
| 
 | 
   511  | 
Goal "0 < n --> Suc (2 * n - 1) = 2*n";
  | 
| 
 | 
   512  | 
by (induct_tac "n" 1);
  | 
| 
 | 
   513  | 
by Auto_tac;
  | 
| 
 | 
   514  | 
qed_spec_mp "Suc_mult_two_diff_one";
  | 
| 
 | 
   515  | 
Addsimps [Suc_mult_two_diff_one];
  | 
| 
 | 
   516  | 
  | 
| 
 | 
   517  | 
Goal "EX t. sin x = \
  | 
| 
 | 
   518  | 
\      (sumr 0 n (%m. (if even m then 0 \
  | 
| 
 | 
   519  | 
\                      else ((- 1) ^ ((m - (Suc 0)) div 2)) / real (fact m)) * \
  | 
| 
 | 
   520  | 
\                      x ^ m)) \
  | 
| 
 | 
   521  | 
\     + ((sin(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)";
  | 
| 
 | 
   522  | 
by (cut_inst_tac [("f","sin"),("n","n"),("x","x"),
 | 
| 
 | 
   523  | 
       ("diff","%n x. sin(x + 1/2*real (n)*pi)")] 
 | 
| 
 | 
   524  | 
       Maclaurin_all_lt_objl 1);
  | 
| 
 | 
   525  | 
by (Step_tac 1);
  | 
| 
 | 
   526  | 
by (Simp_tac 1);
  | 
| 
 | 
   527  | 
by (Simp_tac 1);
  | 
| 
 | 
   528  | 
by (case_tac "n" 1);
  | 
| 
 | 
   529  | 
by (Clarify_tac 1); 
  | 
| 
 | 
   530  | 
by (Asm_full_simp_tac 1);
  | 
| 
 | 
   531  | 
by (dres_inst_tac [("x","0")] spec 1 THEN Asm_full_simp_tac 1);
 | 
| 
 | 
   532  | 
by (Asm_full_simp_tac 1);
  | 
| 
 | 
   533  | 
by (rtac ccontr 1);
  | 
| 
 | 
   534  | 
by (Asm_full_simp_tac 1);
  | 
| 
 | 
   535  | 
by (dres_inst_tac [("x","x")] spec 1 THEN Asm_full_simp_tac 1);
 | 
| 
 | 
   536  | 
by (dtac ssubst 1 THEN assume_tac 2);
  | 
| 
 | 
   537  | 
by (res_inst_tac [("x","t")] exI 1);
 | 
| 
 | 
   538  | 
by (rtac (CLAIM "[|x = y; x' = y'|] ==> x + x' = y + (y'::real)") 1);
  | 
| 
 | 
   539  | 
by (rtac sumr_fun_eq 1);
  | 
| 
 | 
   540  | 
by (auto_tac (claset(),simpset() addsimps [odd_not_even RS sym]));
  | 
| 
 | 
   541  | 
by (auto_tac (claset(),simpset() addsimps [odd_Suc_mult_two_ex,
  | 
| 
 | 
   542  | 
    even_mult_two_ex] delsimps [fact_Suc,realpow_Suc]));
  | 
| 
 | 
   543  | 
qed "Maclaurin_sin_expansion";
  | 
| 
 | 
   544  | 
  | 
| 
 | 
   545  | 
Goal "EX t. abs t <= abs x &  \
  | 
| 
 | 
   546  | 
\      sin x = \
  | 
| 
 | 
   547  | 
\      (sumr 0 n (%m. (if even m then 0 \
  | 
| 
 | 
   548  | 
\                      else ((- 1) ^ ((m - (Suc 0)) div 2)) / real (fact m)) * \
  | 
| 
 | 
   549  | 
\                      x ^ m)) \
  | 
| 
 | 
   550  | 
\     + ((sin(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)";
  | 
| 
 | 
   551  | 
  | 
| 
 | 
   552  | 
by (cut_inst_tac [("f","sin"),("n","n"),("x","x"),
 | 
| 
 | 
   553  | 
       ("diff","%n x. sin(x + 1/2*real (n)*pi)")] 
 | 
| 
 | 
   554  | 
       Maclaurin_all_lt_objl 1);
  | 
| 
 | 
   555  | 
by (Step_tac 1);
  | 
| 
 | 
   556  | 
by (Simp_tac 1);
  | 
| 
 | 
   557  | 
by (Simp_tac 1);
  | 
| 
 | 
   558  | 
by (case_tac "n" 1);
  | 
| 
 | 
   559  | 
by (Clarify_tac 1); 
  | 
| 
 | 
   560  | 
by (Asm_full_simp_tac 1);
  | 
| 
 | 
   561  | 
by (Asm_full_simp_tac 1);
  | 
| 
 | 
   562  | 
by (rtac ccontr 1);
  | 
| 
 | 
   563  | 
by (Asm_full_simp_tac 1);
  | 
| 
 | 
   564  | 
by (dres_inst_tac [("x","x")] spec 1 THEN Asm_full_simp_tac 1);
 | 
| 
 | 
   565  | 
by (dtac ssubst 1 THEN assume_tac 2);
  | 
| 
 | 
   566  | 
by (res_inst_tac [("x","t")] exI 1);
 | 
| 
 | 
   567  | 
by (rtac conjI 1);
  | 
| 
 | 
   568  | 
by (arith_tac 1);
  | 
| 
 | 
   569  | 
by (rtac (CLAIM "[|x = y; x' = y'|] ==> x + x' = y + (y'::real)") 1);
  | 
| 
 | 
   570  | 
by (rtac sumr_fun_eq 1);
  | 
| 
 | 
   571  | 
by (auto_tac (claset(),simpset() addsimps [odd_not_even RS sym]));
  | 
| 
 | 
   572  | 
by (auto_tac (claset(),simpset() addsimps [odd_Suc_mult_two_ex,
  | 
| 
 | 
   573  | 
    even_mult_two_ex] delsimps [fact_Suc,realpow_Suc]));
  | 
| 
 | 
   574  | 
qed "Maclaurin_sin_expansion2";
  | 
| 
 | 
   575  | 
  | 
| 
 | 
   576  | 
Goal "[| 0 < n; 0 < x |] ==> \
  | 
| 
 | 
   577  | 
\      EX t. 0 < t & t < x & \
  | 
| 
 | 
   578  | 
\      sin x = \
  | 
| 
 | 
   579  | 
\      (sumr 0 n (%m. (if even m then 0 \
  | 
| 
 | 
   580  | 
\                      else ((- 1) ^ ((m - (Suc 0)) div 2)) / real (fact m)) * \
  | 
| 
 | 
   581  | 
\                      x ^ m)) \
  | 
| 
 | 
   582  | 
\     + ((sin(t + 1/2 * real(n) *pi) / real (fact n)) * x ^ n)";
  | 
| 
 | 
   583  | 
by (cut_inst_tac [("f","sin"),("n","n"),("h","x"),
 | 
| 
 | 
   584  | 
       ("diff","%n x. sin(x + 1/2*real (n)*pi)")] 
 | 
| 
 | 
   585  | 
       Maclaurin_objl 1);
  | 
| 
 | 
   586  | 
by (Step_tac 1);
  | 
| 
 | 
   587  | 
by (Asm_full_simp_tac 1);
  | 
| 
 | 
   588  | 
by (Simp_tac 1);
  | 
| 
 | 
   589  | 
by (dtac ssubst 1 THEN assume_tac 2);
  | 
| 
 | 
   590  | 
by (res_inst_tac [("x","t")] exI 1);
 | 
| 
 | 
   591  | 
by (rtac conjI 1 THEN rtac conjI 2);
  | 
| 
 | 
   592  | 
by (assume_tac 1 THEN assume_tac 1);
  | 
| 
 | 
   593  | 
by (rtac (CLAIM "[|x = y; x' = y'|] ==> x + x' = y + (y'::real)") 1);
  | 
| 
 | 
   594  | 
by (rtac sumr_fun_eq 1);
  | 
| 
 | 
   595  | 
by (auto_tac (claset(),simpset() addsimps [odd_not_even RS sym]));
  | 
| 
 | 
   596  | 
by (auto_tac (claset(),simpset() addsimps [odd_Suc_mult_two_ex,
  | 
| 
 | 
   597  | 
    even_mult_two_ex] delsimps [fact_Suc,realpow_Suc]));
  | 
| 
 | 
   598  | 
qed "Maclaurin_sin_expansion3";
  | 
| 
 | 
   599  | 
  | 
| 
 | 
   600  | 
Goal "0 < x ==> \
  | 
| 
 | 
   601  | 
\      EX t. 0 < t & t <= x & \
  | 
| 
 | 
   602  | 
\      sin x = \
  | 
| 
 | 
   603  | 
\      (sumr 0 n (%m. (if even m then 0 \
  | 
| 
 | 
   604  | 
\                      else ((- 1) ^ ((m - (Suc 0)) div 2)) / real (fact m)) * \
  | 
| 
 | 
   605  | 
\                      x ^ m)) \
  | 
| 
 | 
   606  | 
\     + ((sin(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)";
  | 
| 
 | 
   607  | 
by (cut_inst_tac [("f","sin"),("n","n"),("h","x"),
 | 
| 
 | 
   608  | 
       ("diff","%n x. sin(x + 1/2*real (n)*pi)")] 
 | 
| 
 | 
   609  | 
       Maclaurin2_objl 1);
  | 
| 
 | 
   610  | 
by (Step_tac 1);
  | 
| 
 | 
   611  | 
by (Asm_full_simp_tac 1);
  | 
| 
 | 
   612  | 
by (Simp_tac 1);
  | 
| 
 | 
   613  | 
by (dtac ssubst 1 THEN assume_tac 2);
  | 
| 
 | 
   614  | 
by (res_inst_tac [("x","t")] exI 1);
 | 
| 
 | 
   615  | 
by (rtac conjI 1 THEN rtac conjI 2);
  | 
| 
 | 
   616  | 
by (assume_tac 1 THEN assume_tac 1);
  | 
| 
 | 
   617  | 
by (rtac (CLAIM "[|x = y; x' = y'|] ==> x + x' = y + (y'::real)") 1);
  | 
| 
 | 
   618  | 
by (rtac sumr_fun_eq 1);
  | 
| 
 | 
   619  | 
by (auto_tac (claset(),simpset() addsimps [odd_not_even RS sym]));
  | 
| 
 | 
   620  | 
by (auto_tac (claset(),simpset() addsimps [odd_Suc_mult_two_ex,
  | 
| 
 | 
   621  | 
    even_mult_two_ex] delsimps [fact_Suc,realpow_Suc]));
  | 
| 
 | 
   622  | 
qed "Maclaurin_sin_expansion4";
  | 
| 
 | 
   623  | 
  | 
| 
 | 
   624  | 
(*-----------------------------------------------------------------------------*)
  | 
| 
 | 
   625  | 
(* Maclaurin expansion for cos                                                 *)
  | 
| 
 | 
   626  | 
(*-----------------------------------------------------------------------------*)
  | 
| 
 | 
   627  | 
  | 
| 
 | 
   628  | 
Goal "sumr 0 (Suc n) \
  | 
| 
 | 
   629  | 
\        (%m. (if even m \
  | 
| 
 | 
   630  | 
\              then (- 1) ^ (m div 2)/(real  (fact m)) \
  | 
| 
 | 
   631  | 
\              else 0) * \
  | 
| 
 | 
   632  | 
\             0 ^ m) = 1";
  | 
| 
 | 
   633  | 
by (induct_tac "n" 1);
  | 
| 
 | 
   634  | 
by Auto_tac;
  | 
| 
 | 
   635  | 
qed "sumr_cos_zero_one";
  | 
| 
 | 
   636  | 
Addsimps [sumr_cos_zero_one];
  | 
| 
 | 
   637  | 
  | 
| 
 | 
   638  | 
Goal "EX t. abs t <= abs x & \
  | 
| 
 | 
   639  | 
\      cos x = \
  | 
| 
 | 
   640  | 
\      (sumr 0 n (%m. (if even m \
  | 
| 
 | 
   641  | 
\                      then (- 1) ^ (m div 2)/(real (fact m)) \
  | 
| 
 | 
   642  | 
\                      else 0) * \
  | 
| 
 | 
   643  | 
\                      x ^ m)) \
  | 
| 
 | 
   644  | 
\     + ((cos(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)";
  | 
| 
 | 
   645  | 
by (cut_inst_tac [("f","cos"),("n","n"),("x","x"),
 | 
| 
 | 
   646  | 
       ("diff","%n x. cos(x + 1/2*real (n)*pi)")] 
 | 
| 
 | 
   647  | 
       Maclaurin_all_lt_objl 1);
  | 
| 
 | 
   648  | 
by (Step_tac 1);
  | 
| 
 | 
   649  | 
by (Simp_tac 1);
  | 
| 
 | 
   650  | 
by (Simp_tac 1);
  | 
| 
 | 
   651  | 
by (case_tac "n" 1);
  | 
| 
 | 
   652  | 
by (Asm_full_simp_tac 1);
  | 
| 
 | 
   653  | 
by (asm_full_simp_tac (simpset() delsimps [sumr_Suc]) 1);
  | 
| 
 | 
   654  | 
by (rtac ccontr 1);
  | 
| 
 | 
   655  | 
by (Asm_full_simp_tac 1);
  | 
| 
 | 
   656  | 
by (dres_inst_tac [("x","x")] spec 1 THEN Asm_full_simp_tac 1);
 | 
| 
 | 
   657  | 
by (dtac ssubst 1 THEN assume_tac 2);
  | 
| 
 | 
   658  | 
by (res_inst_tac [("x","t")] exI 1);
 | 
| 
 | 
   659  | 
by (rtac conjI 1);
  | 
| 
 | 
   660  | 
by (arith_tac 1);
  | 
| 
 | 
   661  | 
by (rtac (CLAIM "[|x = y; x' = y'|] ==> x + x' = y + (y'::real)") 1);
  | 
| 
 | 
   662  | 
by (rtac sumr_fun_eq 1);
  | 
| 
 | 
   663  | 
by (auto_tac (claset(),simpset() addsimps [odd_not_even RS sym]));
  | 
| 
 | 
   664  | 
by (auto_tac (claset(),simpset() addsimps [odd_Suc_mult_two_ex,
  | 
| 
 | 
   665  | 
    even_mult_two_ex,real_add_mult_distrib,cos_add]  delsimps 
  | 
| 
 | 
   666  | 
    [fact_Suc,realpow_Suc]));
  | 
| 
 | 
   667  | 
by (auto_tac (claset(),simpset() addsimps [real_mult_commute]));
  | 
| 
 | 
   668  | 
qed "Maclaurin_cos_expansion";
  | 
| 
 | 
   669  | 
  | 
| 
 | 
   670  | 
Goal "[| 0 < x; 0 < n |] ==> \
  | 
| 
 | 
   671  | 
\      EX t. 0 < t & t < x & \
  | 
| 
 | 
   672  | 
\      cos x = \
  | 
| 
 | 
   673  | 
\      (sumr 0 n (%m. (if even m \
  | 
| 
 | 
   674  | 
\                      then (- 1) ^ (m div 2)/(real (fact m)) \
  | 
| 
 | 
   675  | 
\                      else 0) * \
  | 
| 
 | 
   676  | 
\                      x ^ m)) \
  | 
| 
 | 
   677  | 
\     + ((cos(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)";
  | 
| 
 | 
   678  | 
by (cut_inst_tac [("f","cos"),("n","n"),("h","x"),
 | 
| 
 | 
   679  | 
       ("diff","%n x. cos(x + 1/2*real (n)*pi)")] 
 | 
| 
 | 
   680  | 
       Maclaurin_objl 1);
  | 
| 
 | 
   681  | 
by (Step_tac 1);
  | 
| 
 | 
   682  | 
by (Asm_full_simp_tac 1);
  | 
| 
 | 
   683  | 
by (Simp_tac 1);
  | 
| 
 | 
   684  | 
by (dtac ssubst 1 THEN assume_tac 2);
  | 
| 
 | 
   685  | 
by (res_inst_tac [("x","t")] exI 1);
 | 
| 
 | 
   686  | 
by (rtac conjI 1 THEN rtac conjI 2);
  | 
| 
 | 
   687  | 
by (assume_tac 1 THEN assume_tac 1);
  | 
| 
 | 
   688  | 
by (rtac (CLAIM "[|x = y; x' = y'|] ==> x + x' = y + (y'::real)") 1);
  | 
| 
 | 
   689  | 
by (rtac sumr_fun_eq 1);
  | 
| 
 | 
   690  | 
by (auto_tac (claset(),simpset() addsimps [odd_not_even RS sym]));
  | 
| 
 | 
   691  | 
by (auto_tac (claset(),simpset() addsimps [odd_Suc_mult_two_ex,
  | 
| 
 | 
   692  | 
    even_mult_two_ex,real_add_mult_distrib,cos_add]  delsimps 
  | 
| 
 | 
   693  | 
    [fact_Suc,realpow_Suc]));
  | 
| 
 | 
   694  | 
by (auto_tac (claset(),simpset() addsimps [real_mult_commute]));
  | 
| 
 | 
   695  | 
qed "Maclaurin_cos_expansion2";
  | 
| 
 | 
   696  | 
  | 
| 
 | 
   697  | 
Goal "[| x < 0; 0 < n |] ==> \
  | 
| 
 | 
   698  | 
\      EX t. x < t & t < 0 & \
  | 
| 
 | 
   699  | 
\      cos x = \
  | 
| 
 | 
   700  | 
\      (sumr 0 n (%m. (if even m \
  | 
| 
 | 
   701  | 
\                      then (- 1) ^ (m div 2)/(real (fact m)) \
  | 
| 
 | 
   702  | 
\                      else 0) * \
  | 
| 
 | 
   703  | 
\                      x ^ m)) \
  | 
| 
 | 
   704  | 
\     + ((cos(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)";
  | 
| 
 | 
   705  | 
by (cut_inst_tac [("f","cos"),("n","n"),("h","x"),
 | 
| 
 | 
   706  | 
       ("diff","%n x. cos(x + 1/2*real (n)*pi)")] 
 | 
| 
 | 
   707  | 
       Maclaurin_minus_objl 1);
  | 
| 
 | 
   708  | 
by (Step_tac 1);
  | 
| 
 | 
   709  | 
by (Asm_full_simp_tac 1);
  | 
| 
 | 
   710  | 
by (Simp_tac 1);
  | 
| 
 | 
   711  | 
by (dtac ssubst 1 THEN assume_tac 2);
  | 
| 
 | 
   712  | 
by (res_inst_tac [("x","t")] exI 1);
 | 
| 
 | 
   713  | 
by (rtac conjI 1 THEN rtac conjI 2);
  | 
| 
 | 
   714  | 
by (assume_tac 1 THEN assume_tac 1);
  | 
| 
 | 
   715  | 
by (rtac (CLAIM "[|x = y; x' = y'|] ==> x + x' = y + (y'::real)") 1);
  | 
| 
 | 
   716  | 
by (rtac sumr_fun_eq 1);
  | 
| 
 | 
   717  | 
by (auto_tac (claset(),simpset() addsimps [odd_not_even RS sym]));
  | 
| 
 | 
   718  | 
by (auto_tac (claset(),simpset() addsimps [odd_Suc_mult_two_ex,
  | 
| 
 | 
   719  | 
    even_mult_two_ex,real_add_mult_distrib,cos_add]  delsimps 
  | 
| 
 | 
   720  | 
    [fact_Suc,realpow_Suc]));
  | 
| 
 | 
   721  | 
by (auto_tac (claset(),simpset() addsimps [real_mult_commute]));
  | 
| 
 | 
   722  | 
qed "Maclaurin_minus_cos_expansion";
  | 
| 
 | 
   723  | 
  | 
| 
 | 
   724  | 
(* ------------------------------------------------------------------------- *)
  | 
| 
 | 
   725  | 
(* Version for ln(1 +/- x). Where is it??                                    *)
  | 
| 
 | 
   726  | 
(* ------------------------------------------------------------------------- *)
  | 
| 
 | 
   727  | 
  |