| author | traytel | 
| Thu, 12 Sep 2013 16:31:42 +0200 | |
| changeset 53566 | 5ff3a2d112d7 | 
| parent 53241 | effd8fcabca2 | 
| child 58884 | be4d203d35b3 | 
| permissions | -rw-r--r-- | 
| 13020 | 1 | |
| 2 | header {* \section{The Multi-Mutator Case} *}
 | |
| 3 | ||
| 16417 | 4 | theory Mul_Gar_Coll imports Graph OG_Syntax begin | 
| 13020 | 5 | |
| 6 | text {*  The full theory takes aprox. 18 minutes.  *}
 | |
| 7 | ||
| 8 | record mut = | |
| 9 | Z :: bool | |
| 10 | R :: nat | |
| 11 | T :: nat | |
| 12 | ||
| 13 | text {* Declaration of variables: *}
 | |
| 14 | ||
| 15 | record mul_gar_coll_state = | |
| 16 | M :: nodes | |
| 17 | E :: edges | |
| 18 | bc :: "nat set" | |
| 19 | obc :: "nat set" | |
| 20 | Ma :: nodes | |
| 21 | ind :: nat | |
| 22 | k :: nat | |
| 23 | q :: nat | |
| 24 | l :: nat | |
| 25 | Muts :: "mut list" | |
| 26 | ||
| 27 | subsection {* The Mutators *}
 | |
| 28 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32960diff
changeset | 29 | definition Mul_mut_init :: "mul_gar_coll_state \<Rightarrow> nat \<Rightarrow> bool" where | 
| 13020 | 30 | "Mul_mut_init \<equiv> \<guillemotleft> \<lambda>n. n=length \<acute>Muts \<and> (\<forall>i<n. R (\<acute>Muts!i)<length \<acute>E | 
| 31 | \<and> T (\<acute>Muts!i)<length \<acute>M) \<guillemotright>" | |
| 32 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32960diff
changeset | 33 | definition Mul_Redirect_Edge :: "nat \<Rightarrow> nat \<Rightarrow> mul_gar_coll_state ann_com" where | 
| 13020 | 34 | "Mul_Redirect_Edge j n \<equiv> | 
| 53241 | 35 | \<lbrace>\<acute>Mul_mut_init n \<and> Z (\<acute>Muts!j)\<rbrace> | 
| 13020 | 36 | \<langle>IF T(\<acute>Muts!j) \<in> Reach \<acute>E THEN | 
| 37 | \<acute>E:= \<acute>E[R (\<acute>Muts!j):= (fst (\<acute>E!R(\<acute>Muts!j)), T (\<acute>Muts!j))] FI,, | |
| 38 | \<acute>Muts:= \<acute>Muts[j:= (\<acute>Muts!j) \<lparr>Z:=False\<rparr>]\<rangle>" | |
| 39 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32960diff
changeset | 40 | definition Mul_Color_Target :: "nat \<Rightarrow> nat \<Rightarrow> mul_gar_coll_state ann_com" where | 
| 13020 | 41 | "Mul_Color_Target j n \<equiv> | 
| 53241 | 42 | \<lbrace>\<acute>Mul_mut_init n \<and> \<not> Z (\<acute>Muts!j)\<rbrace> | 
| 13020 | 43 | \<langle>\<acute>M:=\<acute>M[T (\<acute>Muts!j):=Black],, \<acute>Muts:=\<acute>Muts[j:= (\<acute>Muts!j) \<lparr>Z:=True\<rparr>]\<rangle>" | 
| 44 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32960diff
changeset | 45 | definition Mul_Mutator :: "nat \<Rightarrow> nat \<Rightarrow> mul_gar_coll_state ann_com" where | 
| 13020 | 46 | "Mul_Mutator j n \<equiv> | 
| 53241 | 47 | \<lbrace>\<acute>Mul_mut_init n \<and> Z (\<acute>Muts!j)\<rbrace> | 
| 13020 | 48 | WHILE True | 
| 53241 | 49 | INV \<lbrace>\<acute>Mul_mut_init n \<and> Z (\<acute>Muts!j)\<rbrace> | 
| 13020 | 50 | DO Mul_Redirect_Edge j n ;; | 
| 51 | Mul_Color_Target j n | |
| 52 | OD" | |
| 53 | ||
| 54 | lemmas mul_mutator_defs = Mul_mut_init_def Mul_Redirect_Edge_def Mul_Color_Target_def | |
| 55 | ||
| 56 | subsubsection {* Correctness of the proof outline of one mutator *}
 | |
| 57 | ||
| 58 | lemma Mul_Redirect_Edge: "0\<le>j \<and> j<n \<Longrightarrow> | |
| 59 | \<turnstile> Mul_Redirect_Edge j n | |
| 60 | pre(Mul_Color_Target j n)" | |
| 61 | apply (unfold mul_mutator_defs) | |
| 62 | apply annhoare | |
| 63 | apply(simp_all) | |
| 64 | apply clarify | |
| 65 | apply(simp add:nth_list_update) | |
| 66 | done | |
| 67 | ||
| 68 | lemma Mul_Color_Target: "0\<le>j \<and> j<n \<Longrightarrow> | |
| 69 | \<turnstile> Mul_Color_Target j n | |
| 53241 | 70 | \<lbrace>\<acute>Mul_mut_init n \<and> Z (\<acute>Muts!j)\<rbrace>" | 
| 13020 | 71 | apply (unfold mul_mutator_defs) | 
| 72 | apply annhoare | |
| 73 | apply(simp_all) | |
| 74 | apply clarify | |
| 75 | apply(simp add:nth_list_update) | |
| 76 | done | |
| 77 | ||
| 78 | lemma Mul_Mutator: "0\<le>j \<and> j<n \<Longrightarrow> | |
| 53241 | 79 | \<turnstile> Mul_Mutator j n \<lbrace>False\<rbrace>" | 
| 13020 | 80 | apply(unfold Mul_Mutator_def) | 
| 81 | apply annhoare | |
| 82 | apply(simp_all add:Mul_Redirect_Edge Mul_Color_Target) | |
| 83 | apply(simp add:mul_mutator_defs Mul_Redirect_Edge_def) | |
| 84 | done | |
| 85 | ||
| 86 | subsubsection {* Interference freedom between mutators *}
 | |
| 87 | ||
| 88 | lemma Mul_interfree_Redirect_Edge_Redirect_Edge: | |
| 89 | "\<lbrakk>0\<le>i; i<n; 0\<le>j; j<n; i\<noteq>j\<rbrakk> \<Longrightarrow> | |
| 90 |   interfree_aux (Some (Mul_Redirect_Edge i n),{}, Some(Mul_Redirect_Edge j n))"
 | |
| 91 | apply (unfold mul_mutator_defs) | |
| 92 | apply interfree_aux | |
| 93 | apply safe | |
| 94 | apply(simp_all add: nth_list_update) | |
| 95 | done | |
| 96 | ||
| 97 | lemma Mul_interfree_Redirect_Edge_Color_Target: | |
| 98 | "\<lbrakk>0\<le>i; i<n; 0\<le>j; j<n; i\<noteq>j\<rbrakk> \<Longrightarrow> | |
| 99 |   interfree_aux (Some(Mul_Redirect_Edge i n),{},Some(Mul_Color_Target j n))"
 | |
| 100 | apply (unfold mul_mutator_defs) | |
| 101 | apply interfree_aux | |
| 102 | apply safe | |
| 103 | apply(simp_all add: nth_list_update) | |
| 104 | done | |
| 105 | ||
| 106 | lemma Mul_interfree_Color_Target_Redirect_Edge: | |
| 107 | "\<lbrakk>0\<le>i; i<n; 0\<le>j; j<n; i\<noteq>j\<rbrakk> \<Longrightarrow> | |
| 108 |   interfree_aux (Some(Mul_Color_Target i n),{},Some(Mul_Redirect_Edge j n))"
 | |
| 109 | apply (unfold mul_mutator_defs) | |
| 110 | apply interfree_aux | |
| 111 | apply safe | |
| 112 | apply(simp_all add:nth_list_update) | |
| 113 | done | |
| 114 | ||
| 115 | lemma Mul_interfree_Color_Target_Color_Target: | |
| 116 | " \<lbrakk>0\<le>i; i<n; 0\<le>j; j<n; i\<noteq>j\<rbrakk> \<Longrightarrow> | |
| 117 |   interfree_aux (Some(Mul_Color_Target i n),{},Some(Mul_Color_Target j n))"
 | |
| 118 | apply (unfold mul_mutator_defs) | |
| 119 | apply interfree_aux | |
| 120 | apply safe | |
| 121 | apply(simp_all add: nth_list_update) | |
| 122 | done | |
| 123 | ||
| 124 | lemmas mul_mutator_interfree = | |
| 125 | Mul_interfree_Redirect_Edge_Redirect_Edge Mul_interfree_Redirect_Edge_Color_Target | |
| 126 | Mul_interfree_Color_Target_Redirect_Edge Mul_interfree_Color_Target_Color_Target | |
| 127 | ||
| 128 | lemma Mul_interfree_Mutator_Mutator: "\<lbrakk>i < n; j < n; i \<noteq> j\<rbrakk> \<Longrightarrow> | |
| 129 |   interfree_aux (Some (Mul_Mutator i n), {}, Some (Mul_Mutator j n))"
 | |
| 130 | apply(unfold Mul_Mutator_def) | |
| 131 | apply(interfree_aux) | |
| 132 | apply(simp_all add:mul_mutator_interfree) | |
| 133 | apply(simp_all add: mul_mutator_defs) | |
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
45827diff
changeset | 134 | apply(tactic {* TRYALL (interfree_aux_tac @{context}) *})
 | 
| 42793 | 135 | apply(tactic {* ALLGOALS (clarify_tac @{context}) *})
 | 
| 13020 | 136 | apply (simp_all add:nth_list_update) | 
| 137 | done | |
| 138 | ||
| 139 | subsubsection {* Modular Parameterized Mutators *}
 | |
| 140 | ||
| 141 | lemma Mul_Parameterized_Mutators: "0<n \<Longrightarrow> | |
| 53241 | 142 | \<parallel>- \<lbrace>\<acute>Mul_mut_init n \<and> (\<forall>i<n. Z (\<acute>Muts!i))\<rbrace> | 
| 13020 | 143 | COBEGIN | 
| 144 | SCHEME [0\<le> j< n] | |
| 145 | Mul_Mutator j n | |
| 53241 | 146 | \<lbrace>False\<rbrace> | 
| 13020 | 147 | COEND | 
| 53241 | 148 | \<lbrace>False\<rbrace>" | 
| 13020 | 149 | apply oghoare | 
| 150 | apply(force simp add:Mul_Mutator_def mul_mutator_defs nth_list_update) | |
| 151 | apply(erule Mul_Mutator) | |
| 13187 | 152 | apply(simp add:Mul_interfree_Mutator_Mutator) | 
| 13020 | 153 | apply(force simp add:Mul_Mutator_def mul_mutator_defs nth_list_update) | 
| 154 | done | |
| 155 | ||
| 156 | subsection {* The Collector *}
 | |
| 157 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32960diff
changeset | 158 | definition Queue :: "mul_gar_coll_state \<Rightarrow> nat" where | 
| 13020 | 159 | "Queue \<equiv> \<guillemotleft> length (filter (\<lambda>i. \<not> Z i \<and> \<acute>M!(T i) \<noteq> Black) \<acute>Muts) \<guillemotright>" | 
| 160 | ||
| 161 | consts M_init :: nodes | |
| 162 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32960diff
changeset | 163 | definition Proper_M_init :: "mul_gar_coll_state \<Rightarrow> bool" where | 
| 13020 | 164 | "Proper_M_init \<equiv> \<guillemotleft> Blacks M_init=Roots \<and> length M_init=length \<acute>M \<guillemotright>" | 
| 165 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32960diff
changeset | 166 | definition Mul_Proper :: "mul_gar_coll_state \<Rightarrow> nat \<Rightarrow> bool" where | 
| 13020 | 167 | "Mul_Proper \<equiv> \<guillemotleft> \<lambda>n. Proper_Roots \<acute>M \<and> Proper_Edges (\<acute>M, \<acute>E) \<and> \<acute>Proper_M_init \<and> n=length \<acute>Muts \<guillemotright>" | 
| 168 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32960diff
changeset | 169 | definition Safe :: "mul_gar_coll_state \<Rightarrow> bool" where | 
| 13020 | 170 | "Safe \<equiv> \<guillemotleft> Reach \<acute>E \<subseteq> Blacks \<acute>M \<guillemotright>" | 
| 171 | ||
| 172 | lemmas mul_collector_defs = Proper_M_init_def Mul_Proper_def Safe_def | |
| 173 | ||
| 174 | subsubsection {* Blackening Roots *}
 | |
| 175 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32960diff
changeset | 176 | definition Mul_Blacken_Roots :: "nat \<Rightarrow> mul_gar_coll_state ann_com" where | 
| 13020 | 177 | "Mul_Blacken_Roots n \<equiv> | 
| 53241 | 178 | \<lbrace>\<acute>Mul_Proper n\<rbrace> | 
| 13020 | 179 | \<acute>ind:=0;; | 
| 53241 | 180 | \<lbrace>\<acute>Mul_Proper n \<and> \<acute>ind=0\<rbrace> | 
| 13020 | 181 | WHILE \<acute>ind<length \<acute>M | 
| 53241 | 182 | INV \<lbrace>\<acute>Mul_Proper n \<and> (\<forall>i<\<acute>ind. i\<in>Roots \<longrightarrow> \<acute>M!i=Black) \<and> \<acute>ind\<le>length \<acute>M\<rbrace> | 
| 183 | DO \<lbrace>\<acute>Mul_Proper n \<and> (\<forall>i<\<acute>ind. i\<in>Roots \<longrightarrow> \<acute>M!i=Black) \<and> \<acute>ind<length \<acute>M\<rbrace> | |
| 13020 | 184 | IF \<acute>ind\<in>Roots THEN | 
| 53241 | 185 | \<lbrace>\<acute>Mul_Proper n \<and> (\<forall>i<\<acute>ind. i\<in>Roots \<longrightarrow> \<acute>M!i=Black) \<and> \<acute>ind<length \<acute>M \<and> \<acute>ind\<in>Roots\<rbrace> | 
| 13020 | 186 | \<acute>M:=\<acute>M[\<acute>ind:=Black] FI;; | 
| 53241 | 187 | \<lbrace>\<acute>Mul_Proper n \<and> (\<forall>i<\<acute>ind+1. i\<in>Roots \<longrightarrow> \<acute>M!i=Black) \<and> \<acute>ind<length \<acute>M\<rbrace> | 
| 13020 | 188 | \<acute>ind:=\<acute>ind+1 | 
| 189 | OD" | |
| 190 | ||
| 191 | lemma Mul_Blacken_Roots: | |
| 192 | "\<turnstile> Mul_Blacken_Roots n | |
| 53241 | 193 | \<lbrace>\<acute>Mul_Proper n \<and> Roots \<subseteq> Blacks \<acute>M\<rbrace>" | 
| 13020 | 194 | apply (unfold Mul_Blacken_Roots_def) | 
| 195 | apply annhoare | |
| 196 | apply(simp_all add:mul_collector_defs Graph_defs) | |
| 197 | apply safe | |
| 198 | apply(simp_all add:nth_list_update) | |
| 199 | apply (erule less_SucE) | |
| 200 | apply simp+ | |
| 201 | apply force | |
| 202 | apply force | |
| 203 | done | |
| 204 | ||
| 205 | subsubsection {* Propagating Black *} 
 | |
| 206 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32960diff
changeset | 207 | definition Mul_PBInv :: "mul_gar_coll_state \<Rightarrow> bool" where | 
| 13020 | 208 | "Mul_PBInv \<equiv> \<guillemotleft>\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>M \<or> \<acute>l<\<acute>Queue | 
| 209 | \<or> (\<forall>i<\<acute>ind. \<not>BtoW(\<acute>E!i,\<acute>M)) \<and> \<acute>l\<le>\<acute>Queue\<guillemotright>" | |
| 210 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32960diff
changeset | 211 | definition Mul_Auxk :: "mul_gar_coll_state \<Rightarrow> bool" where | 
| 13020 | 212 | "Mul_Auxk \<equiv> \<guillemotleft>\<acute>l<\<acute>Queue \<or> \<acute>M!\<acute>k\<noteq>Black \<or> \<not>BtoW(\<acute>E!\<acute>ind, \<acute>M) \<or> \<acute>obc\<subset>Blacks \<acute>M\<guillemotright>" | 
| 213 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32960diff
changeset | 214 | definition Mul_Propagate_Black :: "nat \<Rightarrow> mul_gar_coll_state ann_com" where | 
| 13020 | 215 | "Mul_Propagate_Black n \<equiv> | 
| 53241 | 216 | \<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M | 
| 217 | \<and> (\<acute>Safe \<or> \<acute>l\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M)\<rbrace> | |
| 13020 | 218 | \<acute>ind:=0;; | 
| 53241 | 219 | \<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M | 
| 13020 | 220 | \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> Blacks \<acute>M\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M | 
| 53241 | 221 | \<and> (\<acute>Safe \<or> \<acute>l\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M) \<and> \<acute>ind=0\<rbrace> | 
| 13020 | 222 | WHILE \<acute>ind<length \<acute>E | 
| 53241 | 223 | INV \<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M | 
| 13020 | 224 | \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M | 
| 53241 | 225 | \<and> \<acute>Mul_PBInv \<and> \<acute>ind\<le>length \<acute>E\<rbrace> | 
| 226 | DO \<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M | |
| 13020 | 227 | \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M | 
| 53241 | 228 | \<and> \<acute>Mul_PBInv \<and> \<acute>ind<length \<acute>E\<rbrace> | 
| 13020 | 229 | IF \<acute>M!(fst (\<acute>E!\<acute>ind))=Black THEN | 
| 53241 | 230 | \<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M | 
| 13020 | 231 | \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M | 
| 53241 | 232 | \<and> \<acute>Mul_PBInv \<and> (\<acute>M!fst(\<acute>E!\<acute>ind))=Black \<and> \<acute>ind<length \<acute>E\<rbrace> | 
| 13020 | 233 | \<acute>k:=snd(\<acute>E!\<acute>ind);; | 
| 53241 | 234 | \<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M | 
| 13020 | 235 | \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M | 
| 236 | \<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>M \<or> \<acute>l<\<acute>Queue \<or> (\<forall>i<\<acute>ind. \<not>BtoW(\<acute>E!i,\<acute>M)) | |
| 237 | \<and> \<acute>l\<le>\<acute>Queue \<and> \<acute>Mul_Auxk ) \<and> \<acute>k<length \<acute>M \<and> \<acute>M!fst(\<acute>E!\<acute>ind)=Black | |
| 53241 | 238 | \<and> \<acute>ind<length \<acute>E\<rbrace> | 
| 13020 | 239 | \<langle>\<acute>M:=\<acute>M[\<acute>k:=Black],,\<acute>ind:=\<acute>ind+1\<rangle> | 
| 53241 | 240 | ELSE \<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M | 
| 13020 | 241 | \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M | 
| 53241 | 242 | \<and> \<acute>Mul_PBInv \<and> \<acute>ind<length \<acute>E\<rbrace> | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32687diff
changeset | 243 | \<langle>IF \<acute>M!(fst (\<acute>E!\<acute>ind))\<noteq>Black THEN \<acute>ind:=\<acute>ind+1 FI\<rangle> FI | 
| 13020 | 244 | OD" | 
| 245 | ||
| 246 | lemma Mul_Propagate_Black: | |
| 247 | "\<turnstile> Mul_Propagate_Black n | |
| 53241 | 248 | \<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M | 
| 249 | \<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>M \<or> \<acute>l<\<acute>Queue \<and> (\<acute>l\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M))\<rbrace>" | |
| 13020 | 250 | apply(unfold Mul_Propagate_Black_def) | 
| 251 | apply annhoare | |
| 252 | apply(simp_all add:Mul_PBInv_def mul_collector_defs Mul_Auxk_def Graph6 Graph7 Graph8 Graph12 mul_collector_defs Queue_def) | |
| 253 | --{* 8 subgoals left *}
 | |
| 254 | apply force | |
| 255 | apply force | |
| 256 | apply force | |
| 257 | apply(force simp add:BtoW_def Graph_defs) | |
| 258 | --{* 4 subgoals left *}
 | |
| 259 | apply clarify | |
| 260 | apply(simp add: mul_collector_defs Graph12 Graph6 Graph7 Graph8) | |
| 261 | apply(disjE_tac) | |
| 262 | apply(simp_all add:Graph12 Graph13) | |
| 263 | apply(case_tac "M x! k x=Black") | |
| 264 | apply(simp add: Graph10) | |
| 265 | apply(rule disjI2, rule disjI1, erule subset_psubset_trans, erule Graph11, force) | |
| 266 | apply(case_tac "M x! k x=Black") | |
| 267 | apply(simp add: Graph10 BtoW_def) | |
| 268 | apply(rule disjI2, clarify, erule less_SucE, force) | |
| 269 | apply(case_tac "M x!snd(E x! ind x)=Black") | |
| 270 | apply(force) | |
| 271 | apply(force) | |
| 272 | apply(rule disjI2, rule disjI1, erule subset_psubset_trans, erule Graph11, force) | |
| 273 | --{* 2 subgoals left *}
 | |
| 274 | apply clarify | |
| 275 | apply(conjI_tac) | |
| 276 | apply(disjE_tac) | |
| 277 | apply (simp_all) | |
| 278 | apply clarify | |
| 279 | apply(erule less_SucE) | |
| 280 | apply force | |
| 281 | apply (simp add:BtoW_def) | |
| 13022 
b115b305612f
New order in the loading of theories (Quote-antiquote right before the OG_Syntax and RG_Syntax respectively)
 prensani parents: 
13020diff
changeset | 282 | --{* 1 subgoal left *}
 | 
| 13020 | 283 | apply clarify | 
| 284 | apply simp | |
| 285 | apply(disjE_tac) | |
| 286 | apply (simp_all) | |
| 287 | apply(rule disjI1 , rule Graph1) | |
| 288 | apply simp_all | |
| 289 | done | |
| 290 | ||
| 291 | subsubsection {* Counting Black Nodes *}
 | |
| 292 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32960diff
changeset | 293 | definition Mul_CountInv :: "mul_gar_coll_state \<Rightarrow> nat \<Rightarrow> bool" where | 
| 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32960diff
changeset | 294 |   "Mul_CountInv \<equiv> \<guillemotleft> \<lambda>ind. {i. i<ind \<and> \<acute>Ma!i=Black}\<subseteq>\<acute>bc \<guillemotright>"
 | 
| 13020 | 295 | |
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32960diff
changeset | 296 | definition Mul_Count :: "nat \<Rightarrow> mul_gar_coll_state ann_com" where | 
| 13020 | 297 | "Mul_Count n \<equiv> | 
| 53241 | 298 | \<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M | 
| 13020 | 299 | \<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M | 
| 300 | \<and> length \<acute>Ma=length \<acute>M | |
| 301 | \<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>Ma \<or> \<acute>l<\<acute>q \<and> (\<acute>q\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M) ) | |
| 53241 | 302 |     \<and> \<acute>q<n+1 \<and> \<acute>bc={}\<rbrace>
 | 
| 13020 | 303 | \<acute>ind:=0;; | 
| 53241 | 304 | \<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M | 
| 13020 | 305 | \<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M | 
| 306 | \<and> length \<acute>Ma=length \<acute>M | |
| 307 | \<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>Ma \<or> \<acute>l<\<acute>q \<and> (\<acute>q\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M) ) | |
| 53241 | 308 |     \<and> \<acute>q<n+1 \<and> \<acute>bc={} \<and> \<acute>ind=0\<rbrace>
 | 
| 13020 | 309 | WHILE \<acute>ind<length \<acute>M | 
| 53241 | 310 | INV \<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M | 
| 13020 | 311 | \<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M | 
| 312 | \<and> length \<acute>Ma=length \<acute>M \<and> \<acute>Mul_CountInv \<acute>ind | |
| 313 | \<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>Ma \<or> \<acute>l<\<acute>q \<and> (\<acute>q\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M)) | |
| 53241 | 314 | \<and> \<acute>q<n+1 \<and> \<acute>ind\<le>length \<acute>M\<rbrace> | 
| 315 | DO \<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M | |
| 13020 | 316 | \<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M | 
| 317 | \<and> length \<acute>Ma=length \<acute>M \<and> \<acute>Mul_CountInv \<acute>ind | |
| 318 | \<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>Ma \<or> \<acute>l<\<acute>q \<and> (\<acute>q\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M)) | |
| 53241 | 319 | \<and> \<acute>q<n+1 \<and> \<acute>ind<length \<acute>M\<rbrace> | 
| 13020 | 320 | IF \<acute>M!\<acute>ind=Black | 
| 53241 | 321 | THEN \<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M | 
| 13020 | 322 | \<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M | 
| 323 | \<and> length \<acute>Ma=length \<acute>M \<and> \<acute>Mul_CountInv \<acute>ind | |
| 324 | \<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>Ma \<or> \<acute>l<\<acute>q \<and> (\<acute>q\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M)) | |
| 53241 | 325 | \<and> \<acute>q<n+1 \<and> \<acute>ind<length \<acute>M \<and> \<acute>M!\<acute>ind=Black\<rbrace> | 
| 13020 | 326 | \<acute>bc:=insert \<acute>ind \<acute>bc | 
| 327 | FI;; | |
| 53241 | 328 | \<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M | 
| 13020 | 329 | \<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M | 
| 330 | \<and> length \<acute>Ma=length \<acute>M \<and> \<acute>Mul_CountInv (\<acute>ind+1) | |
| 331 | \<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>Ma \<or> \<acute>l<\<acute>q \<and> (\<acute>q\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M)) | |
| 53241 | 332 | \<and> \<acute>q<n+1 \<and> \<acute>ind<length \<acute>M\<rbrace> | 
| 13020 | 333 | \<acute>ind:=\<acute>ind+1 | 
| 334 | OD" | |
| 335 | ||
| 336 | lemma Mul_Count: | |
| 337 | "\<turnstile> Mul_Count n | |
| 53241 | 338 | \<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M | 
| 13020 | 339 | \<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M | 
| 340 | \<and> length \<acute>Ma=length \<acute>M \<and> Blacks \<acute>Ma\<subseteq>\<acute>bc | |
| 341 | \<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>Ma \<or> \<acute>l<\<acute>q \<and> (\<acute>q\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M)) | |
| 53241 | 342 | \<and> \<acute>q<n+1\<rbrace>" | 
| 13020 | 343 | apply (unfold Mul_Count_def) | 
| 344 | apply annhoare | |
| 345 | apply(simp_all add:Mul_CountInv_def mul_collector_defs Mul_Auxk_def Graph6 Graph7 Graph8 Graph12 mul_collector_defs Queue_def) | |
| 346 | --{* 7 subgoals left *}
 | |
| 347 | apply force | |
| 348 | apply force | |
| 349 | apply force | |
| 350 | --{* 4 subgoals left *}
 | |
| 351 | apply clarify | |
| 352 | apply(conjI_tac) | |
| 353 | apply(disjE_tac) | |
| 354 | apply simp_all | |
| 355 | apply(simp add:Blacks_def) | |
| 356 | apply clarify | |
| 357 | apply(erule less_SucE) | |
| 358 | back | |
| 359 | apply force | |
| 360 | apply force | |
| 361 | --{* 3 subgoals left *}
 | |
| 362 | apply clarify | |
| 363 | apply(conjI_tac) | |
| 364 | apply(disjE_tac) | |
| 365 | apply simp_all | |
| 366 | apply clarify | |
| 367 | apply(erule less_SucE) | |
| 368 | back | |
| 369 | apply force | |
| 370 | apply simp | |
| 371 | apply(rotate_tac -1) | |
| 372 | apply (force simp add:Blacks_def) | |
| 373 | --{* 2 subgoals left *}
 | |
| 374 | apply force | |
| 13022 
b115b305612f
New order in the loading of theories (Quote-antiquote right before the OG_Syntax and RG_Syntax respectively)
 prensani parents: 
13020diff
changeset | 375 | --{* 1 subgoal left *}
 | 
| 13020 | 376 | apply clarify | 
| 26316 
9e9e67e33557
removed redundant less_trans, less_linear, le_imp_less_or_eq, le_less_trans, less_le_trans (cf. Orderings.thy);
 wenzelm parents: 
24742diff
changeset | 377 | apply(drule_tac x = "ind x" in le_imp_less_or_eq) | 
| 13020 | 378 | apply (simp_all add:Blacks_def) | 
| 379 | done | |
| 380 | ||
| 381 | subsubsection {* Appending garbage nodes to the free list *}
 | |
| 382 | ||
| 45827 | 383 | axiomatization Append_to_free :: "nat \<times> edges \<Rightarrow> edges" | 
| 384 | where | |
| 385 | Append_to_free0: "length (Append_to_free (i, e)) = length e" and | |
| 386 | Append_to_free1: "Proper_Edges (m, e) | |
| 387 | \<Longrightarrow> Proper_Edges (m, Append_to_free(i, e))" and | |
| 388 | Append_to_free2: "i \<notin> Reach e | |
| 13020 | 389 | \<Longrightarrow> n \<in> Reach (Append_to_free(i, e)) = ( n = i \<or> n \<in> Reach e)" | 
| 390 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32960diff
changeset | 391 | definition Mul_AppendInv :: "mul_gar_coll_state \<Rightarrow> nat \<Rightarrow> bool" where | 
| 13020 | 392 | "Mul_AppendInv \<equiv> \<guillemotleft> \<lambda>ind. (\<forall>i. ind\<le>i \<longrightarrow> i<length \<acute>M \<longrightarrow> i\<in>Reach \<acute>E \<longrightarrow> \<acute>M!i=Black)\<guillemotright>" | 
| 393 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32960diff
changeset | 394 | definition Mul_Append :: "nat \<Rightarrow> mul_gar_coll_state ann_com" where | 
| 13020 | 395 | "Mul_Append n \<equiv> | 
| 53241 | 396 | \<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>Safe\<rbrace> | 
| 13020 | 397 | \<acute>ind:=0;; | 
| 53241 | 398 | \<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>Safe \<and> \<acute>ind=0\<rbrace> | 
| 13020 | 399 | WHILE \<acute>ind<length \<acute>M | 
| 53241 | 400 | INV \<lbrace>\<acute>Mul_Proper n \<and> \<acute>Mul_AppendInv \<acute>ind \<and> \<acute>ind\<le>length \<acute>M\<rbrace> | 
| 401 | DO \<lbrace>\<acute>Mul_Proper n \<and> \<acute>Mul_AppendInv \<acute>ind \<and> \<acute>ind<length \<acute>M\<rbrace> | |
| 13020 | 402 | IF \<acute>M!\<acute>ind=Black THEN | 
| 53241 | 403 | \<lbrace>\<acute>Mul_Proper n \<and> \<acute>Mul_AppendInv \<acute>ind \<and> \<acute>ind<length \<acute>M \<and> \<acute>M!\<acute>ind=Black\<rbrace> | 
| 13020 | 404 | \<acute>M:=\<acute>M[\<acute>ind:=White] | 
| 405 | ELSE | |
| 53241 | 406 | \<lbrace>\<acute>Mul_Proper n \<and> \<acute>Mul_AppendInv \<acute>ind \<and> \<acute>ind<length \<acute>M \<and> \<acute>ind\<notin>Reach \<acute>E\<rbrace> | 
| 13020 | 407 | \<acute>E:=Append_to_free(\<acute>ind,\<acute>E) | 
| 408 | FI;; | |
| 53241 | 409 | \<lbrace>\<acute>Mul_Proper n \<and> \<acute>Mul_AppendInv (\<acute>ind+1) \<and> \<acute>ind<length \<acute>M\<rbrace> | 
| 13020 | 410 | \<acute>ind:=\<acute>ind+1 | 
| 411 | OD" | |
| 412 | ||
| 413 | lemma Mul_Append: | |
| 414 | "\<turnstile> Mul_Append n | |
| 53241 | 415 | \<lbrace>\<acute>Mul_Proper n\<rbrace>" | 
| 13020 | 416 | apply(unfold Mul_Append_def) | 
| 417 | apply annhoare | |
| 418 | apply(simp_all add: mul_collector_defs Mul_AppendInv_def | |
| 419 | Graph6 Graph7 Graph8 Append_to_free0 Append_to_free1 Graph12) | |
| 420 | apply(force simp add:Blacks_def) | |
| 421 | apply(force simp add:Blacks_def) | |
| 422 | apply(force simp add:Blacks_def) | |
| 423 | apply(force simp add:Graph_defs) | |
| 424 | apply force | |
| 425 | apply(force simp add:Append_to_free1 Append_to_free2) | |
| 426 | apply force | |
| 427 | apply force | |
| 428 | done | |
| 429 | ||
| 430 | subsubsection {* Collector *}
 | |
| 431 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32960diff
changeset | 432 | definition Mul_Collector :: "nat \<Rightarrow> mul_gar_coll_state ann_com" where | 
| 13020 | 433 | "Mul_Collector n \<equiv> | 
| 53241 | 434 | \<lbrace>\<acute>Mul_Proper n\<rbrace> | 
| 435 | WHILE True INV \<lbrace>\<acute>Mul_Proper n\<rbrace> | |
| 13020 | 436 | DO | 
| 437 | Mul_Blacken_Roots n ;; | |
| 53241 | 438 | \<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M\<rbrace> | 
| 13020 | 439 |  \<acute>obc:={};; 
 | 
| 53241 | 440 | \<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc={}\<rbrace>  
 | 
| 13020 | 441 | \<acute>bc:=Roots;; | 
| 53241 | 442 | \<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc={} \<and> \<acute>bc=Roots\<rbrace> 
 | 
| 13020 | 443 | \<acute>l:=0;; | 
| 53241 | 444 | \<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc={} \<and> \<acute>bc=Roots \<and> \<acute>l=0\<rbrace> 
 | 
| 13020 | 445 | WHILE \<acute>l<n+1 | 
| 53241 | 446 | INV \<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M \<and> | 
| 447 | (\<acute>Safe \<or> (\<acute>l\<le>\<acute>Queue \<or> \<acute>bc\<subset>Blacks \<acute>M) \<and> \<acute>l<n+1)\<rbrace> | |
| 448 | DO \<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M | |
| 449 | \<and> (\<acute>Safe \<or> \<acute>l\<le>\<acute>Queue \<or> \<acute>bc\<subset>Blacks \<acute>M)\<rbrace> | |
| 13020 | 450 | \<acute>obc:=\<acute>bc;; | 
| 451 | Mul_Propagate_Black n;; | |
| 53241 | 452 | \<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M | 
| 13020 | 453 | \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M | 
| 454 | \<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>M \<or> \<acute>l<\<acute>Queue | |
| 53241 | 455 | \<and> (\<acute>l\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M))\<rbrace> | 
| 13020 | 456 |     \<acute>bc:={};;
 | 
| 53241 | 457 | \<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M | 
| 13020 | 458 | \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M | 
| 459 | \<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>M \<or> \<acute>l<\<acute>Queue | |
| 53241 | 460 |       \<and> (\<acute>l\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M)) \<and> \<acute>bc={}\<rbrace> 
 | 
| 13020 | 461 | \<langle> \<acute>Ma:=\<acute>M,, \<acute>q:=\<acute>Queue \<rangle>;; | 
| 462 | Mul_Count n;; | |
| 53241 | 463 | \<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M | 
| 13020 | 464 | \<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M | 
| 465 | \<and> length \<acute>Ma=length \<acute>M \<and> Blacks \<acute>Ma\<subseteq>\<acute>bc | |
| 466 | \<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>Ma \<or> \<acute>l<\<acute>q \<and> (\<acute>q\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M)) | |
| 53241 | 467 | \<and> \<acute>q<n+1\<rbrace> | 
| 13020 | 468 | IF \<acute>obc=\<acute>bc THEN | 
| 53241 | 469 | \<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M | 
| 13020 | 470 | \<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M | 
| 471 | \<and> length \<acute>Ma=length \<acute>M \<and> Blacks \<acute>Ma\<subseteq>\<acute>bc | |
| 472 | \<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>Ma \<or> \<acute>l<\<acute>q \<and> (\<acute>q\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M)) | |
| 53241 | 473 | \<and> \<acute>q<n+1 \<and> \<acute>obc=\<acute>bc\<rbrace> | 
| 13020 | 474 | \<acute>l:=\<acute>l+1 | 
| 53241 | 475 | ELSE \<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M | 
| 13020 | 476 | \<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M | 
| 477 | \<and> length \<acute>Ma=length \<acute>M \<and> Blacks \<acute>Ma\<subseteq>\<acute>bc | |
| 478 | \<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>Ma \<or> \<acute>l<\<acute>q \<and> (\<acute>q\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M)) | |
| 53241 | 479 | \<and> \<acute>q<n+1 \<and> \<acute>obc\<noteq>\<acute>bc\<rbrace> | 
| 13020 | 480 | \<acute>l:=0 FI | 
| 481 | OD;; | |
| 482 | Mul_Append n | |
| 483 | OD" | |
| 484 | ||
| 485 | lemmas mul_modules = Mul_Redirect_Edge_def Mul_Color_Target_def | |
| 486 | Mul_Blacken_Roots_def Mul_Propagate_Black_def | |
| 487 | Mul_Count_def Mul_Append_def | |
| 488 | ||
| 489 | lemma Mul_Collector: | |
| 490 | "\<turnstile> Mul_Collector n | |
| 53241 | 491 | \<lbrace>False\<rbrace>" | 
| 13020 | 492 | apply(unfold Mul_Collector_def) | 
| 493 | apply annhoare | |
| 494 | apply(simp_all only:pre.simps Mul_Blacken_Roots | |
| 495 | Mul_Propagate_Black Mul_Count Mul_Append) | |
| 496 | apply(simp_all add:mul_modules) | |
| 497 | apply(simp_all add:mul_collector_defs Queue_def) | |
| 498 | apply force | |
| 499 | apply force | |
| 500 | apply force | |
| 15247 | 501 | apply (force simp add: less_Suc_eq_le) | 
| 13020 | 502 | apply force | 
| 503 | apply (force dest:subset_antisym) | |
| 504 | apply force | |
| 505 | apply force | |
| 506 | apply force | |
| 507 | done | |
| 508 | ||
| 509 | subsection {* Interference Freedom *}
 | |
| 510 | ||
| 511 | lemma le_length_filter_update[rule_format]: | |
| 512 | "\<forall>i. (\<not>P (list!i) \<or> P j) \<and> i<length list | |
| 513 | \<longrightarrow> length(filter P list) \<le> length(filter P (list[i:=j]))" | |
| 514 | apply(induct_tac "list") | |
| 515 | apply(simp) | |
| 516 | apply(clarify) | |
| 517 | apply(case_tac i) | |
| 518 | apply(simp) | |
| 519 | apply(simp) | |
| 520 | done | |
| 521 | ||
| 522 | lemma less_length_filter_update [rule_format]: | |
| 523 | "\<forall>i. P j \<and> \<not>(P (list!i)) \<and> i<length list | |
| 524 | \<longrightarrow> length(filter P list) < length(filter P (list[i:=j]))" | |
| 525 | apply(induct_tac "list") | |
| 526 | apply(simp) | |
| 527 | apply(clarify) | |
| 528 | apply(case_tac i) | |
| 529 | apply(simp) | |
| 530 | apply(simp) | |
| 531 | done | |
| 532 | ||
| 533 | lemma Mul_interfree_Blacken_Roots_Redirect_Edge: "\<lbrakk>0\<le>j; j<n\<rbrakk> \<Longrightarrow> | |
| 534 |   interfree_aux (Some(Mul_Blacken_Roots n),{},Some(Mul_Redirect_Edge j n))"
 | |
| 535 | apply (unfold mul_modules) | |
| 536 | apply interfree_aux | |
| 537 | apply safe | |
| 538 | apply(simp_all add:Graph6 Graph9 Graph12 nth_list_update mul_mutator_defs mul_collector_defs) | |
| 539 | done | |
| 540 | ||
| 541 | lemma Mul_interfree_Redirect_Edge_Blacken_Roots: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow> | |
| 542 |   interfree_aux (Some(Mul_Redirect_Edge j n ),{},Some (Mul_Blacken_Roots n))"
 | |
| 543 | apply (unfold mul_modules) | |
| 544 | apply interfree_aux | |
| 545 | apply safe | |
| 546 | apply(simp_all add:mul_mutator_defs nth_list_update) | |
| 547 | done | |
| 548 | ||
| 549 | lemma Mul_interfree_Blacken_Roots_Color_Target: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow> | |
| 550 |   interfree_aux (Some(Mul_Blacken_Roots n),{},Some (Mul_Color_Target j n ))"
 | |
| 551 | apply (unfold mul_modules) | |
| 552 | apply interfree_aux | |
| 553 | apply safe | |
| 554 | apply(simp_all add:mul_mutator_defs mul_collector_defs nth_list_update Graph7 Graph8 Graph9 Graph12) | |
| 555 | done | |
| 556 | ||
| 557 | lemma Mul_interfree_Color_Target_Blacken_Roots: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow> | |
| 558 |   interfree_aux (Some(Mul_Color_Target j n ),{},Some (Mul_Blacken_Roots n ))"
 | |
| 559 | apply (unfold mul_modules) | |
| 560 | apply interfree_aux | |
| 561 | apply safe | |
| 562 | apply(simp_all add:mul_mutator_defs nth_list_update) | |
| 563 | done | |
| 564 | ||
| 565 | lemma Mul_interfree_Propagate_Black_Redirect_Edge: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow> | |
| 566 |   interfree_aux (Some(Mul_Propagate_Black n),{},Some (Mul_Redirect_Edge j n ))"
 | |
| 567 | apply (unfold mul_modules) | |
| 568 | apply interfree_aux | |
| 569 | apply(simp_all add:mul_mutator_defs mul_collector_defs Mul_PBInv_def nth_list_update Graph6) | |
| 570 | --{* 7 subgoals left *}
 | |
| 571 | apply clarify | |
| 572 | apply(disjE_tac) | |
| 573 | apply(simp_all add:Graph6) | |
| 574 | apply(rule impI,rule disjI1,rule subset_trans,erule Graph3,simp,simp) | |
| 575 | apply(rule conjI) | |
| 576 | apply(rule impI,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 577 | apply(rule impI,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 578 | --{* 6 subgoals left *}
 | |
| 579 | apply clarify | |
| 580 | apply(disjE_tac) | |
| 581 | apply(simp_all add:Graph6) | |
| 582 | apply(rule impI,rule disjI1,rule subset_trans,erule Graph3,simp,simp) | |
| 583 | apply(rule conjI) | |
| 584 | apply(rule impI,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 585 | apply(rule impI,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 586 | --{* 5 subgoals left *}
 | |
| 587 | apply clarify | |
| 588 | apply(disjE_tac) | |
| 589 | apply(simp_all add:Graph6) | |
| 590 | apply(rule impI,rule disjI1,rule subset_trans,erule Graph3,simp,simp) | |
| 591 | apply(rule conjI) | |
| 592 | apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule less_le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 593 | apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule less_le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 594 | apply(erule conjE) | |
| 595 | apply(case_tac "M x!(T (Muts x!j))=Black") | |
| 596 | apply(rule conjI) | |
| 597 | apply(rule impI,(rule disjI2)+,rule conjI) | |
| 598 | apply clarify | |
| 599 | apply(case_tac "R (Muts x! j)=i") | |
| 600 | apply (force simp add: nth_list_update BtoW_def) | |
| 601 | apply (force simp add: nth_list_update) | |
| 602 | apply(erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 603 | apply(rule impI,(rule disjI2)+, erule le_trans) | |
| 604 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 605 | apply(rule conjI) | |
| 606 | apply(rule impI,rule disjI2,rule disjI2,rule disjI1, erule le_less_trans) | |
| 607 | apply(force simp add:Queue_def less_Suc_eq_le less_length_filter_update) | |
| 608 | apply(rule impI,rule disjI2,rule disjI2,rule disjI1, erule le_less_trans) | |
| 609 | apply(force simp add:Queue_def less_Suc_eq_le less_length_filter_update) | |
| 610 | --{* 4 subgoals left *}
 | |
| 611 | apply clarify | |
| 612 | apply(disjE_tac) | |
| 613 | apply(simp_all add:Graph6) | |
| 614 | apply(rule impI,rule disjI1,rule subset_trans,erule Graph3,simp,simp) | |
| 615 | apply(rule conjI) | |
| 616 | apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule less_le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 617 | apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule less_le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 618 | apply(erule conjE) | |
| 619 | apply(case_tac "M x!(T (Muts x!j))=Black") | |
| 620 | apply(rule conjI) | |
| 621 | apply(rule impI,(rule disjI2)+,rule conjI) | |
| 622 | apply clarify | |
| 623 | apply(case_tac "R (Muts x! j)=i") | |
| 624 | apply (force simp add: nth_list_update BtoW_def) | |
| 625 | apply (force simp add: nth_list_update) | |
| 626 | apply(erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 627 | apply(rule impI,(rule disjI2)+, erule le_trans) | |
| 628 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 629 | apply(rule conjI) | |
| 630 | apply(rule impI,rule disjI2,rule disjI2,rule disjI1, erule le_less_trans) | |
| 631 | apply(force simp add:Queue_def less_Suc_eq_le less_length_filter_update) | |
| 632 | apply(rule impI,rule disjI2,rule disjI2,rule disjI1, erule le_less_trans) | |
| 633 | apply(force simp add:Queue_def less_Suc_eq_le less_length_filter_update) | |
| 634 | --{* 3 subgoals left *}
 | |
| 635 | apply clarify | |
| 636 | apply(disjE_tac) | |
| 637 | apply(simp_all add:Graph6) | |
| 638 | apply (rule impI) | |
| 639 | apply(rule conjI) | |
| 640 | apply(rule disjI1,rule subset_trans,erule Graph3,simp,simp) | |
| 641 | apply(case_tac "R (Muts x ! j)= ind x") | |
| 642 | apply(simp add:nth_list_update) | |
| 643 | apply(simp add:nth_list_update) | |
| 644 | apply(case_tac "R (Muts x ! j)= ind x") | |
| 645 | apply(simp add:nth_list_update) | |
| 646 | apply(simp add:nth_list_update) | |
| 647 | apply(case_tac "M x!(T (Muts x!j))=Black") | |
| 648 | apply(rule conjI) | |
| 649 | apply(rule impI) | |
| 650 | apply(rule conjI) | |
| 651 | apply(rule disjI2,rule disjI2,rule disjI1, erule less_le_trans) | |
| 652 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 653 | apply(case_tac "R (Muts x ! j)= ind x") | |
| 654 | apply(simp add:nth_list_update) | |
| 655 | apply(simp add:nth_list_update) | |
| 656 | apply(rule impI) | |
| 657 | apply(rule disjI2,rule disjI2,rule disjI1, erule less_le_trans) | |
| 658 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 659 | apply(rule conjI) | |
| 660 | apply(rule impI) | |
| 661 | apply(rule conjI) | |
| 662 | apply(rule disjI2,rule disjI2,rule disjI1, erule less_le_trans) | |
| 663 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 664 | apply(case_tac "R (Muts x ! j)= ind x") | |
| 665 | apply(simp add:nth_list_update) | |
| 666 | apply(simp add:nth_list_update) | |
| 667 | apply(rule impI) | |
| 668 | apply(rule disjI2,rule disjI2,rule disjI1, erule less_le_trans) | |
| 669 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 670 | apply(erule conjE) | |
| 671 | apply(rule conjI) | |
| 672 | apply(case_tac "M x!(T (Muts x!j))=Black") | |
| 673 | apply(rule impI,rule conjI,(rule disjI2)+,rule conjI) | |
| 674 | apply clarify | |
| 675 | apply(case_tac "R (Muts x! j)=i") | |
| 676 | apply (force simp add: nth_list_update BtoW_def) | |
| 677 | apply (force simp add: nth_list_update) | |
| 678 | apply(erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 679 | apply(case_tac "R (Muts x ! j)= ind x") | |
| 680 | apply(simp add:nth_list_update) | |
| 681 | apply(simp add:nth_list_update) | |
| 682 | apply(rule impI,rule conjI) | |
| 683 | apply(rule disjI2,rule disjI2,rule disjI1, erule le_less_trans) | |
| 684 | apply(force simp add:Queue_def less_Suc_eq_le less_length_filter_update) | |
| 685 | apply(case_tac "R (Muts x! j)=ind x") | |
| 686 | apply (force simp add: nth_list_update) | |
| 687 | apply (force simp add: nth_list_update) | |
| 688 | apply(rule impI, (rule disjI2)+, erule le_trans) | |
| 689 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 690 | --{* 2 subgoals left *}
 | |
| 691 | apply clarify | |
| 692 | apply(rule conjI) | |
| 693 | apply(disjE_tac) | |
| 694 | apply(simp_all add:Mul_Auxk_def Graph6) | |
| 695 | apply (rule impI) | |
| 696 | apply(rule conjI) | |
| 697 | apply(rule disjI1,rule subset_trans,erule Graph3,simp,simp) | |
| 698 | apply(case_tac "R (Muts x ! j)= ind x") | |
| 699 | apply(simp add:nth_list_update) | |
| 700 | apply(simp add:nth_list_update) | |
| 701 | apply(case_tac "R (Muts x ! j)= ind x") | |
| 702 | apply(simp add:nth_list_update) | |
| 703 | apply(simp add:nth_list_update) | |
| 704 | apply(case_tac "M x!(T (Muts x!j))=Black") | |
| 705 | apply(rule impI) | |
| 706 | apply(rule conjI) | |
| 707 | apply(rule disjI2,rule disjI2,rule disjI1, erule less_le_trans) | |
| 708 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 709 | apply(case_tac "R (Muts x ! j)= ind x") | |
| 710 | apply(simp add:nth_list_update) | |
| 711 | apply(simp add:nth_list_update) | |
| 712 | apply(rule impI) | |
| 713 | apply(rule conjI) | |
| 714 | apply(rule disjI2,rule disjI2,rule disjI1, erule less_le_trans) | |
| 715 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 716 | apply(case_tac "R (Muts x ! j)= ind x") | |
| 717 | apply(simp add:nth_list_update) | |
| 718 | apply(simp add:nth_list_update) | |
| 719 | apply(rule impI) | |
| 720 | apply(rule conjI) | |
| 721 | apply(erule conjE)+ | |
| 722 | apply(case_tac "M x!(T (Muts x!j))=Black") | |
| 723 | apply((rule disjI2)+,rule conjI) | |
| 724 | apply clarify | |
| 725 | apply(case_tac "R (Muts x! j)=i") | |
| 726 | apply (force simp add: nth_list_update BtoW_def) | |
| 727 | apply (force simp add: nth_list_update) | |
| 728 | apply(rule conjI) | |
| 729 | apply(erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 730 | apply(rule impI) | |
| 731 | apply(case_tac "R (Muts x ! j)= ind x") | |
| 732 | apply(simp add:nth_list_update BtoW_def) | |
| 733 | apply (simp add:nth_list_update) | |
| 734 | apply(rule impI) | |
| 735 | apply simp | |
| 736 | apply(disjE_tac) | |
| 737 | apply(rule disjI1, erule less_le_trans) | |
| 738 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 739 | apply force | |
| 740 | apply(rule disjI2,rule disjI2,rule disjI1, erule le_less_trans) | |
| 741 | apply(force simp add:Queue_def less_Suc_eq_le less_length_filter_update) | |
| 742 | apply(case_tac "R (Muts x ! j)= ind x") | |
| 743 | apply(simp add:nth_list_update) | |
| 744 | apply(simp add:nth_list_update) | |
| 745 | apply(disjE_tac) | |
| 746 | apply simp_all | |
| 747 | apply(conjI_tac) | |
| 748 | apply(rule impI) | |
| 749 | apply(rule disjI2,rule disjI2,rule disjI1, erule less_le_trans) | |
| 750 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 751 | apply(erule conjE)+ | |
| 752 | apply(rule impI,(rule disjI2)+,rule conjI) | |
| 753 | apply(erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 754 | apply(rule impI)+ | |
| 755 | apply simp | |
| 756 | apply(disjE_tac) | |
| 757 | apply(rule disjI1, erule less_le_trans) | |
| 758 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 759 | apply force | |
| 13022 
b115b305612f
New order in the loading of theories (Quote-antiquote right before the OG_Syntax and RG_Syntax respectively)
 prensani parents: 
13020diff
changeset | 760 | --{* 1 subgoal left *} 
 | 
| 13020 | 761 | apply clarify | 
| 762 | apply(disjE_tac) | |
| 763 | apply(simp_all add:Graph6) | |
| 764 | apply(rule impI,rule disjI1,rule subset_trans,erule Graph3,simp,simp) | |
| 765 | apply(rule conjI) | |
| 766 | apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule less_le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 767 | apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule less_le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 768 | apply(erule conjE) | |
| 769 | apply(case_tac "M x!(T (Muts x!j))=Black") | |
| 770 | apply(rule conjI) | |
| 771 | apply(rule impI,(rule disjI2)+,rule conjI) | |
| 772 | apply clarify | |
| 773 | apply(case_tac "R (Muts x! j)=i") | |
| 774 | apply (force simp add: nth_list_update BtoW_def) | |
| 775 | apply (force simp add: nth_list_update) | |
| 776 | apply(erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 777 | apply(rule impI,(rule disjI2)+, erule le_trans) | |
| 778 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 779 | apply(rule conjI) | |
| 780 | apply(rule impI,rule disjI2,rule disjI2,rule disjI1, erule le_less_trans) | |
| 781 | apply(force simp add:Queue_def less_Suc_eq_le less_length_filter_update) | |
| 782 | apply(rule impI,rule disjI2,rule disjI2,rule disjI1, erule le_less_trans) | |
| 783 | apply(force simp add:Queue_def less_Suc_eq_le less_length_filter_update) | |
| 784 | done | |
| 785 | ||
| 786 | lemma Mul_interfree_Redirect_Edge_Propagate_Black: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow> | |
| 787 |   interfree_aux (Some(Mul_Redirect_Edge j n ),{},Some (Mul_Propagate_Black n))"
 | |
| 788 | apply (unfold mul_modules) | |
| 789 | apply interfree_aux | |
| 790 | apply safe | |
| 791 | apply(simp_all add:mul_mutator_defs nth_list_update) | |
| 792 | done | |
| 793 | ||
| 794 | lemma Mul_interfree_Propagate_Black_Color_Target: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow> | |
| 795 |   interfree_aux (Some(Mul_Propagate_Black n),{},Some (Mul_Color_Target j n ))"
 | |
| 796 | apply (unfold mul_modules) | |
| 797 | apply interfree_aux | |
| 798 | apply(simp_all add: mul_collector_defs mul_mutator_defs) | |
| 799 | --{* 7 subgoals left *}
 | |
| 800 | apply clarify | |
| 801 | apply (simp add:Graph7 Graph8 Graph12) | |
| 802 | apply(disjE_tac) | |
| 803 | apply(simp add:Graph7 Graph8 Graph12) | |
| 804 | apply(case_tac "M x!(T (Muts x!j))=Black") | |
| 805 | apply(rule disjI2,rule disjI1, erule le_trans) | |
| 806 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10) | |
| 807 | apply((rule disjI2)+,erule subset_psubset_trans, erule Graph11, simp) | |
| 808 | apply((rule disjI2)+,erule psubset_subset_trans, simp add: Graph9) | |
| 809 | --{* 6 subgoals left *}
 | |
| 810 | apply clarify | |
| 811 | apply (simp add:Graph7 Graph8 Graph12) | |
| 812 | apply(disjE_tac) | |
| 813 | apply(simp add:Graph7 Graph8 Graph12) | |
| 814 | apply(case_tac "M x!(T (Muts x!j))=Black") | |
| 815 | apply(rule disjI2,rule disjI1, erule le_trans) | |
| 816 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10) | |
| 817 | apply((rule disjI2)+,erule subset_psubset_trans, erule Graph11, simp) | |
| 818 | apply((rule disjI2)+,erule psubset_subset_trans, simp add: Graph9) | |
| 819 | --{* 5 subgoals left *}
 | |
| 820 | apply clarify | |
| 821 | apply (simp add:mul_collector_defs Mul_PBInv_def Graph7 Graph8 Graph12) | |
| 822 | apply(disjE_tac) | |
| 823 | apply(simp add:Graph7 Graph8 Graph12) | |
| 824 | apply(rule disjI2,rule disjI1, erule psubset_subset_trans,simp add:Graph9) | |
| 825 | apply(case_tac "M x!(T (Muts x!j))=Black") | |
| 826 | apply(rule disjI2,rule disjI2,rule disjI1, erule less_le_trans) | |
| 827 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10) | |
| 828 | apply(rule disjI2,rule disjI1,erule subset_psubset_trans, erule Graph11, simp) | |
| 829 | apply(erule conjE) | |
| 830 | apply(case_tac "M x!(T (Muts x!j))=Black") | |
| 831 | apply((rule disjI2)+) | |
| 832 | apply (rule conjI) | |
| 833 | apply(simp add:Graph10) | |
| 834 | apply(erule le_trans) | |
| 835 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10) | |
| 836 | apply(rule disjI2,rule disjI1,erule subset_psubset_trans, erule Graph11, simp) | |
| 837 | --{* 4 subgoals left *}
 | |
| 838 | apply clarify | |
| 839 | apply (simp add:mul_collector_defs Mul_PBInv_def Graph7 Graph8 Graph12) | |
| 840 | apply(disjE_tac) | |
| 841 | apply(simp add:Graph7 Graph8 Graph12) | |
| 842 | apply(rule disjI2,rule disjI1, erule psubset_subset_trans,simp add:Graph9) | |
| 843 | apply(case_tac "M x!(T (Muts x!j))=Black") | |
| 844 | apply(rule disjI2,rule disjI2,rule disjI1, erule less_le_trans) | |
| 845 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10) | |
| 846 | apply(rule disjI2,rule disjI1,erule subset_psubset_trans, erule Graph11, simp) | |
| 847 | apply(erule conjE) | |
| 848 | apply(case_tac "M x!(T (Muts x!j))=Black") | |
| 849 | apply((rule disjI2)+) | |
| 850 | apply (rule conjI) | |
| 851 | apply(simp add:Graph10) | |
| 852 | apply(erule le_trans) | |
| 853 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10) | |
| 854 | apply(rule disjI2,rule disjI1,erule subset_psubset_trans, erule Graph11, simp) | |
| 855 | --{* 3 subgoals left *}
 | |
| 856 | apply clarify | |
| 857 | apply (simp add:mul_collector_defs Mul_PBInv_def Graph7 Graph8 Graph12) | |
| 858 | apply(case_tac "M x!(T (Muts x!j))=Black") | |
| 859 | apply(simp add:Graph10) | |
| 860 | apply(disjE_tac) | |
| 861 | apply simp_all | |
| 862 | apply(rule disjI2, rule disjI2, rule disjI1,erule less_le_trans) | |
| 863 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10) | |
| 864 | apply(erule conjE) | |
| 865 | apply((rule disjI2)+,erule le_trans) | |
| 866 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10) | |
| 867 | apply(rule conjI) | |
| 868 | apply(rule disjI2,rule disjI1, erule subset_psubset_trans,simp add:Graph11) | |
| 869 | apply (force simp add:nth_list_update) | |
| 870 | --{* 2 subgoals left *}
 | |
| 871 | apply clarify | |
| 872 | apply(simp add:Mul_Auxk_def Graph7 Graph8 Graph12) | |
| 873 | apply(case_tac "M x!(T (Muts x!j))=Black") | |
| 874 | apply(simp add:Graph10) | |
| 875 | apply(disjE_tac) | |
| 876 | apply simp_all | |
| 877 | apply(rule disjI2, rule disjI2, rule disjI1,erule less_le_trans) | |
| 878 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10) | |
| 879 | apply(erule conjE)+ | |
| 880 | apply((rule disjI2)+,rule conjI, erule le_trans) | |
| 881 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10) | |
| 882 | apply((rule impI)+) | |
| 883 | apply simp | |
| 884 | apply(erule disjE) | |
| 885 | apply(rule disjI1, erule less_le_trans) | |
| 886 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10) | |
| 887 | apply force | |
| 888 | apply(rule conjI) | |
| 889 | apply(rule disjI2,rule disjI1, erule subset_psubset_trans,simp add:Graph11) | |
| 890 | apply (force simp add:nth_list_update) | |
| 13022 
b115b305612f
New order in the loading of theories (Quote-antiquote right before the OG_Syntax and RG_Syntax respectively)
 prensani parents: 
13020diff
changeset | 891 | --{* 1 subgoal left *}
 | 
| 13020 | 892 | apply clarify | 
| 893 | apply (simp add:mul_collector_defs Mul_PBInv_def Graph7 Graph8 Graph12) | |
| 894 | apply(case_tac "M x!(T (Muts x!j))=Black") | |
| 895 | apply(simp add:Graph10) | |
| 896 | apply(disjE_tac) | |
| 897 | apply simp_all | |
| 898 | apply(rule disjI2, rule disjI2, rule disjI1,erule less_le_trans) | |
| 899 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10) | |
| 900 | apply(erule conjE) | |
| 901 | apply((rule disjI2)+,erule le_trans) | |
| 902 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10) | |
| 903 | apply(rule disjI2,rule disjI1, erule subset_psubset_trans,simp add:Graph11) | |
| 904 | done | |
| 905 | ||
| 906 | lemma Mul_interfree_Color_Target_Propagate_Black: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow> | |
| 907 |   interfree_aux (Some(Mul_Color_Target j n),{},Some(Mul_Propagate_Black n ))"
 | |
| 908 | apply (unfold mul_modules) | |
| 909 | apply interfree_aux | |
| 910 | apply safe | |
| 911 | apply(simp_all add:mul_mutator_defs nth_list_update) | |
| 912 | done | |
| 913 | ||
| 914 | lemma Mul_interfree_Count_Redirect_Edge: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow> | |
| 915 |   interfree_aux (Some(Mul_Count n ),{},Some(Mul_Redirect_Edge j n))"
 | |
| 916 | apply (unfold mul_modules) | |
| 917 | apply interfree_aux | |
| 918 | --{* 9 subgoals left *}
 | |
| 919 | apply(simp add:mul_mutator_defs mul_collector_defs Mul_CountInv_def Graph6) | |
| 920 | apply clarify | |
| 921 | apply disjE_tac | |
| 922 | apply(simp add:Graph6) | |
| 923 | apply(rule impI,rule disjI1,rule subset_trans,erule Graph3,simp,simp) | |
| 924 | apply(simp add:Graph6) | |
| 925 | apply clarify | |
| 926 | apply disjE_tac | |
| 927 | apply(simp add:Graph6) | |
| 928 | apply(rule conjI) | |
| 929 | apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 930 | apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 931 | apply(simp add:Graph6) | |
| 932 | --{* 8 subgoals left *}
 | |
| 933 | apply(simp add:mul_mutator_defs nth_list_update) | |
| 934 | --{* 7 subgoals left *}
 | |
| 935 | apply(simp add:mul_mutator_defs mul_collector_defs) | |
| 936 | apply clarify | |
| 937 | apply disjE_tac | |
| 938 | apply(simp add:Graph6) | |
| 939 | apply(rule impI,rule disjI1,rule subset_trans,erule Graph3,simp,simp) | |
| 940 | apply(simp add:Graph6) | |
| 941 | apply clarify | |
| 942 | apply disjE_tac | |
| 943 | apply(simp add:Graph6) | |
| 944 | apply(rule conjI) | |
| 945 | apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 946 | apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 947 | apply(simp add:Graph6) | |
| 948 | --{* 6 subgoals left *}
 | |
| 949 | apply(simp add:mul_mutator_defs mul_collector_defs Mul_CountInv_def) | |
| 950 | apply clarify | |
| 951 | apply disjE_tac | |
| 952 | apply(simp add:Graph6 Queue_def) | |
| 953 | apply(rule impI,rule disjI1,rule subset_trans,erule Graph3,simp,simp) | |
| 954 | apply(simp add:Graph6) | |
| 955 | apply clarify | |
| 956 | apply disjE_tac | |
| 957 | apply(simp add:Graph6) | |
| 958 | apply(rule conjI) | |
| 959 | apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 960 | apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 961 | apply(simp add:Graph6) | |
| 962 | --{* 5 subgoals left *}
 | |
| 963 | apply(simp add:mul_mutator_defs mul_collector_defs Mul_CountInv_def) | |
| 964 | apply clarify | |
| 965 | apply disjE_tac | |
| 966 | apply(simp add:Graph6) | |
| 967 | apply(rule impI,rule disjI1,rule subset_trans,erule Graph3,simp,simp) | |
| 968 | apply(simp add:Graph6) | |
| 969 | apply clarify | |
| 970 | apply disjE_tac | |
| 971 | apply(simp add:Graph6) | |
| 972 | apply(rule conjI) | |
| 973 | apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 974 | apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 975 | apply(simp add:Graph6) | |
| 976 | --{* 4 subgoals left *}
 | |
| 977 | apply(simp add:mul_mutator_defs mul_collector_defs Mul_CountInv_def) | |
| 978 | apply clarify | |
| 979 | apply disjE_tac | |
| 980 | apply(simp add:Graph6) | |
| 981 | apply(rule impI,rule disjI1,rule subset_trans,erule Graph3,simp,simp) | |
| 982 | apply(simp add:Graph6) | |
| 983 | apply clarify | |
| 984 | apply disjE_tac | |
| 985 | apply(simp add:Graph6) | |
| 986 | apply(rule conjI) | |
| 987 | apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 988 | apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 989 | apply(simp add:Graph6) | |
| 990 | --{* 3 subgoals left *}
 | |
| 991 | apply(simp add:mul_mutator_defs nth_list_update) | |
| 992 | --{* 2 subgoals left *}
 | |
| 993 | apply(simp add:mul_mutator_defs mul_collector_defs Mul_CountInv_def) | |
| 994 | apply clarify | |
| 995 | apply disjE_tac | |
| 996 | apply(simp add:Graph6) | |
| 997 | apply(rule impI,rule disjI1,rule subset_trans,erule Graph3,simp,simp) | |
| 998 | apply(simp add:Graph6) | |
| 999 | apply clarify | |
| 1000 | apply disjE_tac | |
| 1001 | apply(simp add:Graph6) | |
| 1002 | apply(rule conjI) | |
| 1003 | apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 1004 | apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 1005 | apply(simp add:Graph6) | |
| 13022 
b115b305612f
New order in the loading of theories (Quote-antiquote right before the OG_Syntax and RG_Syntax respectively)
 prensani parents: 
13020diff
changeset | 1006 | --{* 1 subgoal left *}
 | 
| 13020 | 1007 | apply(simp add:mul_mutator_defs nth_list_update) | 
| 1008 | done | |
| 1009 | ||
| 1010 | lemma Mul_interfree_Redirect_Edge_Count: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow> | |
| 1011 |   interfree_aux (Some(Mul_Redirect_Edge j n),{},Some(Mul_Count n ))"
 | |
| 1012 | apply (unfold mul_modules) | |
| 1013 | apply interfree_aux | |
| 1014 | apply safe | |
| 1015 | apply(simp_all add:mul_mutator_defs nth_list_update) | |
| 1016 | done | |
| 1017 | ||
| 1018 | lemma Mul_interfree_Count_Color_Target: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow> | |
| 1019 |   interfree_aux (Some(Mul_Count n ),{},Some(Mul_Color_Target j n))"
 | |
| 1020 | apply (unfold mul_modules) | |
| 1021 | apply interfree_aux | |
| 1022 | apply(simp_all add:mul_collector_defs mul_mutator_defs Mul_CountInv_def) | |
| 1023 | --{* 6 subgoals left *}
 | |
| 1024 | apply clarify | |
| 1025 | apply disjE_tac | |
| 1026 | apply (simp add: Graph7 Graph8 Graph12) | |
| 1027 | apply (simp add: Graph7 Graph8 Graph12) | |
| 1028 | apply clarify | |
| 1029 | apply disjE_tac | |
| 1030 | apply (simp add: Graph7 Graph8 Graph12) | |
| 1031 | apply(case_tac "M x!(T (Muts x!j))=Black") | |
| 1032 | apply(rule disjI2,rule disjI2, rule disjI1, erule le_trans) | |
| 1033 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10) | |
| 1034 | apply((rule disjI2)+,(erule subset_psubset_trans)+, simp add: Graph11) | |
| 1035 | apply (simp add: Graph7 Graph8 Graph12) | |
| 1036 | apply((rule disjI2)+,erule psubset_subset_trans, simp add: Graph9) | |
| 1037 | --{* 5 subgoals left *}
 | |
| 1038 | apply clarify | |
| 1039 | apply disjE_tac | |
| 1040 | apply (simp add: Graph7 Graph8 Graph12) | |
| 1041 | apply (simp add: Graph7 Graph8 Graph12) | |
| 1042 | apply clarify | |
| 1043 | apply disjE_tac | |
| 1044 | apply (simp add: Graph7 Graph8 Graph12) | |
| 1045 | apply(case_tac "M x!(T (Muts x!j))=Black") | |
| 1046 | apply(rule disjI2,rule disjI2, rule disjI1, erule le_trans) | |
| 1047 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10) | |
| 1048 | apply((rule disjI2)+,(erule subset_psubset_trans)+, simp add: Graph11) | |
| 1049 | apply (simp add: Graph7 Graph8 Graph12) | |
| 1050 | apply((rule disjI2)+,erule psubset_subset_trans, simp add: Graph9) | |
| 1051 | --{* 4 subgoals left *}
 | |
| 1052 | apply clarify | |
| 1053 | apply disjE_tac | |
| 1054 | apply (simp add: Graph7 Graph8 Graph12) | |
| 1055 | apply (simp add: Graph7 Graph8 Graph12) | |
| 1056 | apply clarify | |
| 1057 | apply disjE_tac | |
| 1058 | apply (simp add: Graph7 Graph8 Graph12) | |
| 1059 | apply(case_tac "M x!(T (Muts x!j))=Black") | |
| 1060 | apply(rule disjI2,rule disjI2, rule disjI1, erule le_trans) | |
| 1061 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10) | |
| 1062 | apply((rule disjI2)+,(erule subset_psubset_trans)+, simp add: Graph11) | |
| 1063 | apply (simp add: Graph7 Graph8 Graph12) | |
| 1064 | apply((rule disjI2)+,erule psubset_subset_trans, simp add: Graph9) | |
| 1065 | --{* 3 subgoals left *}
 | |
| 1066 | apply clarify | |
| 1067 | apply disjE_tac | |
| 1068 | apply (simp add: Graph7 Graph8 Graph12) | |
| 1069 | apply (simp add: Graph7 Graph8 Graph12) | |
| 1070 | apply clarify | |
| 1071 | apply disjE_tac | |
| 1072 | apply (simp add: Graph7 Graph8 Graph12) | |
| 1073 | apply(case_tac "M x!(T (Muts x!j))=Black") | |
| 1074 | apply(rule disjI2,rule disjI2, rule disjI1, erule le_trans) | |
| 1075 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10) | |
| 1076 | apply((rule disjI2)+,(erule subset_psubset_trans)+, simp add: Graph11) | |
| 1077 | apply (simp add: Graph7 Graph8 Graph12) | |
| 1078 | apply((rule disjI2)+,erule psubset_subset_trans, simp add: Graph9) | |
| 1079 | --{* 2 subgoals left *}
 | |
| 1080 | apply clarify | |
| 1081 | apply disjE_tac | |
| 1082 | apply (simp add: Graph7 Graph8 Graph12 nth_list_update) | |
| 1083 | apply (simp add: Graph7 Graph8 Graph12 nth_list_update) | |
| 1084 | apply clarify | |
| 1085 | apply disjE_tac | |
| 1086 | apply (simp add: Graph7 Graph8 Graph12) | |
| 1087 | apply(rule conjI) | |
| 1088 | apply(case_tac "M x!(T (Muts x!j))=Black") | |
| 1089 | apply(rule disjI2,rule disjI2, rule disjI1, erule le_trans) | |
| 1090 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10) | |
| 1091 | apply((rule disjI2)+,(erule subset_psubset_trans)+, simp add: Graph11) | |
| 1092 | apply (simp add: nth_list_update) | |
| 1093 | apply (simp add: Graph7 Graph8 Graph12) | |
| 1094 | apply(rule conjI) | |
| 1095 | apply((rule disjI2)+,erule psubset_subset_trans, simp add: Graph9) | |
| 1096 | apply (simp add: nth_list_update) | |
| 13022 
b115b305612f
New order in the loading of theories (Quote-antiquote right before the OG_Syntax and RG_Syntax respectively)
 prensani parents: 
13020diff
changeset | 1097 | --{* 1 subgoal left *}
 | 
| 13020 | 1098 | apply clarify | 
| 1099 | apply disjE_tac | |
| 1100 | apply (simp add: Graph7 Graph8 Graph12) | |
| 1101 | apply (simp add: Graph7 Graph8 Graph12) | |
| 1102 | apply clarify | |
| 1103 | apply disjE_tac | |
| 1104 | apply (simp add: Graph7 Graph8 Graph12) | |
| 1105 | apply(case_tac "M x!(T (Muts x!j))=Black") | |
| 1106 | apply(rule disjI2,rule disjI2, rule disjI1, erule le_trans) | |
| 1107 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10) | |
| 1108 | apply((rule disjI2)+,(erule subset_psubset_trans)+, simp add: Graph11) | |
| 1109 | apply (simp add: Graph7 Graph8 Graph12) | |
| 1110 | apply((rule disjI2)+,erule psubset_subset_trans, simp add: Graph9) | |
| 1111 | done | |
| 1112 | ||
| 1113 | lemma Mul_interfree_Color_Target_Count: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow> | |
| 1114 |   interfree_aux (Some(Mul_Color_Target j n),{}, Some(Mul_Count n ))"
 | |
| 1115 | apply (unfold mul_modules) | |
| 1116 | apply interfree_aux | |
| 1117 | apply safe | |
| 1118 | apply(simp_all add:mul_mutator_defs nth_list_update) | |
| 1119 | done | |
| 1120 | ||
| 1121 | lemma Mul_interfree_Append_Redirect_Edge: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow> | |
| 1122 |   interfree_aux (Some(Mul_Append n),{}, Some(Mul_Redirect_Edge j n))"
 | |
| 1123 | apply (unfold mul_modules) | |
| 1124 | apply interfree_aux | |
| 42793 | 1125 | apply(tactic {* ALLGOALS (clarify_tac @{context}) *})
 | 
| 13020 | 1126 | apply(simp_all add:Graph6 Append_to_free0 Append_to_free1 mul_collector_defs mul_mutator_defs Mul_AppendInv_def) | 
| 1127 | apply(erule_tac x=j in allE, force dest:Graph3)+ | |
| 1128 | done | |
| 1129 | ||
| 1130 | lemma Mul_interfree_Redirect_Edge_Append: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow> | |
| 1131 |   interfree_aux (Some(Mul_Redirect_Edge j n),{},Some(Mul_Append n))"
 | |
| 1132 | apply (unfold mul_modules) | |
| 1133 | apply interfree_aux | |
| 42793 | 1134 | apply(tactic {* ALLGOALS (clarify_tac @{context}) *})
 | 
| 13020 | 1135 | apply(simp_all add:mul_collector_defs Append_to_free0 Mul_AppendInv_def mul_mutator_defs nth_list_update) | 
| 1136 | done | |
| 1137 | ||
| 1138 | lemma Mul_interfree_Append_Color_Target: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow> | |
| 1139 |   interfree_aux (Some(Mul_Append n),{}, Some(Mul_Color_Target j n))"
 | |
| 1140 | apply (unfold mul_modules) | |
| 1141 | apply interfree_aux | |
| 42793 | 1142 | apply(tactic {* ALLGOALS (clarify_tac @{context}) *})
 | 
| 13020 | 1143 | apply(simp_all add:mul_mutator_defs mul_collector_defs Mul_AppendInv_def Graph7 Graph8 Append_to_free0 Append_to_free1 | 
| 1144 | Graph12 nth_list_update) | |
| 1145 | done | |
| 1146 | ||
| 1147 | lemma Mul_interfree_Color_Target_Append: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow> | |
| 1148 |   interfree_aux (Some(Mul_Color_Target j n),{}, Some(Mul_Append n))"
 | |
| 1149 | apply (unfold mul_modules) | |
| 1150 | apply interfree_aux | |
| 42793 | 1151 | apply(tactic {* ALLGOALS (clarify_tac @{context}) *})
 | 
| 13020 | 1152 | apply(simp_all add: mul_mutator_defs nth_list_update) | 
| 1153 | apply(simp add:Mul_AppendInv_def Append_to_free0) | |
| 1154 | done | |
| 1155 | ||
| 1156 | subsubsection {* Interference freedom Collector-Mutator *}
 | |
| 1157 | ||
| 1158 | lemmas mul_collector_mutator_interfree = | |
| 1159 | Mul_interfree_Blacken_Roots_Redirect_Edge Mul_interfree_Blacken_Roots_Color_Target | |
| 1160 | Mul_interfree_Propagate_Black_Redirect_Edge Mul_interfree_Propagate_Black_Color_Target | |
| 1161 | Mul_interfree_Count_Redirect_Edge Mul_interfree_Count_Color_Target | |
| 1162 | Mul_interfree_Append_Redirect_Edge Mul_interfree_Append_Color_Target | |
| 1163 | Mul_interfree_Redirect_Edge_Blacken_Roots Mul_interfree_Color_Target_Blacken_Roots | |
| 1164 | Mul_interfree_Redirect_Edge_Propagate_Black Mul_interfree_Color_Target_Propagate_Black | |
| 1165 | Mul_interfree_Redirect_Edge_Count Mul_interfree_Color_Target_Count | |
| 1166 | Mul_interfree_Redirect_Edge_Append Mul_interfree_Color_Target_Append | |
| 1167 | ||
| 1168 | lemma Mul_interfree_Collector_Mutator: "j<n \<Longrightarrow> | |
| 1169 |   interfree_aux (Some (Mul_Collector n), {}, Some (Mul_Mutator j n))"
 | |
| 1170 | apply(unfold Mul_Collector_def Mul_Mutator_def) | |
| 1171 | apply interfree_aux | |
| 1172 | apply(simp_all add:mul_collector_mutator_interfree) | |
| 1173 | apply(unfold mul_modules mul_collector_defs mul_mutator_defs) | |
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
45827diff
changeset | 1174 | apply(tactic  {* TRYALL (interfree_aux_tac @{context}) *})
 | 
| 13020 | 1175 | --{* 42 subgoals left *}
 | 
| 1176 | apply (clarify,simp add:Graph6 Graph7 Graph8 Append_to_free0 Append_to_free1 Graph12)+ | |
| 1177 | --{* 24 subgoals left *}
 | |
| 1178 | apply(simp_all add:Graph6 Graph7 Graph8 Append_to_free0 Append_to_free1 Graph12) | |
| 1179 | --{* 14 subgoals left *}
 | |
| 42793 | 1180 | apply(tactic {* TRYALL (clarify_tac @{context}) *})
 | 
| 13020 | 1181 | apply(simp_all add:Graph6 Graph7 Graph8 Append_to_free0 Append_to_free1 Graph12) | 
| 1182 | apply(tactic {* TRYALL (rtac conjI) *})
 | |
| 1183 | apply(tactic {* TRYALL (rtac impI) *})
 | |
| 1184 | apply(tactic {* TRYALL (etac disjE) *})
 | |
| 1185 | apply(tactic {* TRYALL (etac conjE) *})
 | |
| 1186 | apply(tactic {* TRYALL (etac disjE) *})
 | |
| 1187 | apply(tactic {* TRYALL (etac disjE) *})
 | |
| 1188 | --{* 72 subgoals left *}
 | |
| 1189 | apply(simp_all add:Graph6 Graph7 Graph8 Append_to_free0 Append_to_free1 Graph12) | |
| 1190 | --{* 35 subgoals left *}
 | |
| 42793 | 1191 | apply(tactic {* TRYALL(EVERY'[rtac disjI1,rtac subset_trans,etac @{thm Graph3},force_tac @{context}, assume_tac]) *})
 | 
| 13020 | 1192 | --{* 28 subgoals left *}
 | 
| 1193 | apply(tactic {* TRYALL (etac conjE) *})
 | |
| 1194 | apply(tactic {* TRYALL (etac disjE) *})
 | |
| 1195 | --{* 34 subgoals left *}
 | |
| 1196 | apply(rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 1197 | apply(rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 27095 | 1198 | apply(case_tac [!] "M x!(T (Muts x ! j))=Black") | 
| 13020 | 1199 | apply(simp_all add:Graph10) | 
| 1200 | --{* 47 subgoals left *}
 | |
| 42793 | 1201 | apply(tactic {* TRYALL(EVERY'[REPEAT o (rtac disjI2),etac @{thm subset_psubset_trans}, etac @{thm Graph11},force_tac @{context}]) *})
 | 
| 13020 | 1202 | --{* 41 subgoals left *}
 | 
| 42793 | 1203 | apply(tactic {* TRYALL(EVERY'[rtac disjI2, rtac disjI1, etac @{thm le_trans},
 | 
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
45827diff
changeset | 1204 |     force_tac (@{context} addsimps
 | 
| 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
45827diff
changeset | 1205 |       [@{thm Queue_def}, @{thm less_Suc_eq_le}, @{thm le_length_filter_update}])]) *})
 | 
| 13020 | 1206 | --{* 35 subgoals left *}
 | 
| 42793 | 1207 | apply(tactic {* TRYALL(EVERY'[rtac disjI2,rtac disjI1,etac @{thm psubset_subset_trans},rtac @{thm Graph9},force_tac @{context}]) *})
 | 
| 13020 | 1208 | --{* 31 subgoals left *}
 | 
| 42793 | 1209 | apply(tactic {* TRYALL(EVERY'[rtac disjI2,rtac disjI1,etac @{thm subset_psubset_trans},etac @{thm Graph11},force_tac @{context}]) *})
 | 
| 13020 | 1210 | --{* 29 subgoals left *}
 | 
| 42793 | 1211 | apply(tactic {* TRYALL(EVERY'[REPEAT o (rtac disjI2),etac @{thm subset_psubset_trans},etac @{thm subset_psubset_trans},etac @{thm Graph11},force_tac @{context}]) *})
 | 
| 13020 | 1212 | --{* 25 subgoals left *}
 | 
| 42793 | 1213 | apply(tactic {* TRYALL(EVERY'[rtac disjI2, rtac disjI2, rtac disjI1, etac @{thm le_trans},
 | 
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
45827diff
changeset | 1214 |     force_tac (@{context} addsimps
 | 
| 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
45827diff
changeset | 1215 |       [@{thm Queue_def}, @{thm less_Suc_eq_le}, @{thm le_length_filter_update}])]) *})
 | 
| 13020 | 1216 | --{* 10 subgoals left *}
 | 
| 1217 | apply(rule disjI2,rule disjI2,rule conjI,erule less_le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update, rule disjI1, rule less_imp_le, erule less_le_trans, force simp add:Queue_def less_Suc_eq_le le_length_filter_update)+ | |
| 1218 | done | |
| 1219 | ||
| 1220 | subsubsection {* Interference freedom Mutator-Collector *}
 | |
| 1221 | ||
| 1222 | lemma Mul_interfree_Mutator_Collector: " j < n \<Longrightarrow> | |
| 1223 |   interfree_aux (Some (Mul_Mutator j n), {}, Some (Mul_Collector n))"
 | |
| 1224 | apply(unfold Mul_Collector_def Mul_Mutator_def) | |
| 1225 | apply interfree_aux | |
| 1226 | apply(simp_all add:mul_collector_mutator_interfree) | |
| 1227 | apply(unfold mul_modules mul_collector_defs mul_mutator_defs) | |
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
45827diff
changeset | 1228 | apply(tactic  {* TRYALL (interfree_aux_tac @{context}) *})
 | 
| 13020 | 1229 | --{* 76 subgoals left *}
 | 
| 32687 
27530efec97a
tuned proofs; be more cautios wrt. default simp rules
 haftmann parents: 
32621diff
changeset | 1230 | apply (clarsimp simp add: nth_list_update)+ | 
| 13020 | 1231 | --{* 56 subgoals left *}
 | 
| 32687 
27530efec97a
tuned proofs; be more cautios wrt. default simp rules
 haftmann parents: 
32621diff
changeset | 1232 | apply (clarsimp simp add: Mul_AppendInv_def Append_to_free0 nth_list_update)+ | 
| 13020 | 1233 | done | 
| 1234 | ||
| 1235 | subsubsection {* The Multi-Mutator Garbage Collection Algorithm *}
 | |
| 1236 | ||
| 1237 | text {* The total number of verification conditions is 328 *}
 | |
| 1238 | ||
| 1239 | lemma Mul_Gar_Coll: | |
| 53241 | 1240 | "\<parallel>- \<lbrace>\<acute>Mul_Proper n \<and> \<acute>Mul_mut_init n \<and> (\<forall>i<n. Z (\<acute>Muts!i))\<rbrace> | 
| 13020 | 1241 | COBEGIN | 
| 1242 | Mul_Collector n | |
| 53241 | 1243 | \<lbrace>False\<rbrace> | 
| 13020 | 1244 | \<parallel> | 
| 1245 | SCHEME [0\<le> j< n] | |
| 1246 | Mul_Mutator j n | |
| 53241 | 1247 | \<lbrace>False\<rbrace> | 
| 13020 | 1248 | COEND | 
| 53241 | 1249 | \<lbrace>False\<rbrace>" | 
| 13020 | 1250 | apply oghoare | 
| 1251 | --{* Strengthening the precondition *}
 | |
| 1252 | apply(rule Int_greatest) | |
| 1253 | apply (case_tac n) | |
| 1254 | apply(force simp add: Mul_Collector_def mul_mutator_defs mul_collector_defs nth_append) | |
| 1255 | apply(simp add: Mul_Mutator_def mul_collector_defs mul_mutator_defs nth_append) | |
| 1256 | apply force | |
| 1257 | apply clarify | |
| 32133 | 1258 | apply(case_tac i) | 
| 13020 | 1259 | apply(simp add:Mul_Collector_def mul_mutator_defs mul_collector_defs nth_append) | 
| 1260 | apply(simp add: Mul_Mutator_def mul_mutator_defs mul_collector_defs nth_append nth_map_upt) | |
| 1261 | --{* Collector *}
 | |
| 1262 | apply(rule Mul_Collector) | |
| 1263 | --{* Mutator *}
 | |
| 1264 | apply(erule Mul_Mutator) | |
| 1265 | --{* Interference freedom *}
 | |
| 1266 | apply(simp add:Mul_interfree_Collector_Mutator) | |
| 1267 | apply(simp add:Mul_interfree_Mutator_Collector) | |
| 1268 | apply(simp add:Mul_interfree_Mutator_Mutator) | |
| 1269 | --{* Weakening of the postcondition *}
 | |
| 1270 | apply(case_tac n) | |
| 1271 | apply(simp add:Mul_Collector_def mul_mutator_defs mul_collector_defs nth_append) | |
| 1272 | apply(simp add:Mul_Mutator_def mul_mutator_defs mul_collector_defs nth_append) | |
| 1273 | done | |
| 1274 | ||
| 13187 | 1275 | end |