| author | traytel | 
| Thu, 12 Sep 2013 16:31:42 +0200 | |
| changeset 53566 | 5ff3a2d112d7 | 
| parent 52729 | 412c9e0381a1 | 
| child 56740 | 5ebaa364d8ab | 
| permissions | -rw-r--r-- | 
| 50634 | 1 | (* Author: Alessandro Coglio *) | 
| 2 | ||
| 3 | theory Finite_Lattice | |
| 51115 
7dbd6832a689
consolidation of library theories on product orders
 haftmann parents: 
50634diff
changeset | 4 | imports Product_Order | 
| 50634 | 5 | begin | 
| 6 | ||
| 7 | text {* A non-empty finite lattice is a complete lattice.
 | |
| 8 | Since types are never empty in Isabelle/HOL, | |
| 9 | a type of classes @{class finite} and @{class lattice}
 | |
| 10 | should also have class @{class complete_lattice}.
 | |
| 11 | A type class is defined | |
| 12 | that extends classes @{class finite} and @{class lattice}
 | |
| 13 | with the operators @{const bot}, @{const top}, @{const Inf}, and @{const Sup},
 | |
| 14 | along with assumptions that define these operators | |
| 15 | in terms of the ones of classes @{class finite} and @{class lattice}.
 | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51489diff
changeset | 16 | The resulting class is a subclass of @{class complete_lattice}. *}
 | 
| 50634 | 17 | |
| 18 | class finite_lattice_complete = finite + lattice + bot + top + Inf + Sup + | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51489diff
changeset | 19 | assumes bot_def: "bot = Inf_fin UNIV" | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51489diff
changeset | 20 | assumes top_def: "top = Sup_fin UNIV" | 
| 50634 | 21 | assumes Inf_def: "Inf A = Finite_Set.fold inf top A" | 
| 22 | assumes Sup_def: "Sup A = Finite_Set.fold sup bot A" | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51489diff
changeset | 23 | |
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51489diff
changeset | 24 | text {* The definitional assumptions
 | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51489diff
changeset | 25 | on the operators @{const bot} and @{const top}
 | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51489diff
changeset | 26 | of class @{class finite_lattice_complete}
 | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51489diff
changeset | 27 | ensure that they yield bottom and top. *} | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51489diff
changeset | 28 | |
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51489diff
changeset | 29 | lemma finite_lattice_complete_bot_least: | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51489diff
changeset | 30 | "(bot::'a::finite_lattice_complete) \<le> x" | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51489diff
changeset | 31 | by (auto simp: bot_def intro: Inf_fin.coboundedI) | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51489diff
changeset | 32 | |
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51489diff
changeset | 33 | instance finite_lattice_complete \<subseteq> order_bot | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51489diff
changeset | 34 | proof qed (auto simp: finite_lattice_complete_bot_least) | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51489diff
changeset | 35 | |
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51489diff
changeset | 36 | lemma finite_lattice_complete_top_greatest: | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51489diff
changeset | 37 | "(top::'a::finite_lattice_complete) \<ge> x" | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51489diff
changeset | 38 | by (auto simp: top_def Sup_fin.coboundedI) | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51489diff
changeset | 39 | |
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51489diff
changeset | 40 | instance finite_lattice_complete \<subseteq> order_top | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51489diff
changeset | 41 | proof qed (auto simp: finite_lattice_complete_top_greatest) | 
| 50634 | 42 | |
| 43 | instance finite_lattice_complete \<subseteq> bounded_lattice .. | |
| 44 | ||
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51489diff
changeset | 45 | text {* The definitional assumptions
 | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51489diff
changeset | 46 | on the operators @{const Inf} and @{const Sup}
 | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51489diff
changeset | 47 | of class @{class finite_lattice_complete}
 | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51489diff
changeset | 48 | ensure that they yield infimum and supremum. *} | 
| 50634 | 49 | |
| 51489 | 50 | lemma finite_lattice_complete_Inf_empty: | 
| 51 |   "Inf {} = (top :: 'a::finite_lattice_complete)"
 | |
| 52 | by (simp add: Inf_def) | |
| 53 | ||
| 54 | lemma finite_lattice_complete_Sup_empty: | |
| 55 |   "Sup {} = (bot :: 'a::finite_lattice_complete)"
 | |
| 56 | by (simp add: Sup_def) | |
| 57 | ||
| 58 | lemma finite_lattice_complete_Inf_insert: | |
| 59 | fixes A :: "'a::finite_lattice_complete set" | |
| 60 | shows "Inf (insert x A) = inf x (Inf A)" | |
| 61 | proof - | |
| 62 | interpret comp_fun_idem "inf :: 'a \<Rightarrow> _" by (fact comp_fun_idem_inf) | |
| 63 | show ?thesis by (simp add: Inf_def) | |
| 64 | qed | |
| 65 | ||
| 66 | lemma finite_lattice_complete_Sup_insert: | |
| 67 | fixes A :: "'a::finite_lattice_complete set" | |
| 68 | shows "Sup (insert x A) = sup x (Sup A)" | |
| 69 | proof - | |
| 70 | interpret comp_fun_idem "sup :: 'a \<Rightarrow> _" by (fact comp_fun_idem_sup) | |
| 71 | show ?thesis by (simp add: Sup_def) | |
| 72 | qed | |
| 73 | ||
| 50634 | 74 | lemma finite_lattice_complete_Inf_lower: | 
| 75 | "(x::'a::finite_lattice_complete) \<in> A \<Longrightarrow> Inf A \<le> x" | |
| 51489 | 76 | using finite [of A] by (induct A) (auto simp add: finite_lattice_complete_Inf_insert intro: le_infI2) | 
| 50634 | 77 | |
| 78 | lemma finite_lattice_complete_Inf_greatest: | |
| 79 | "\<forall>x::'a::finite_lattice_complete \<in> A. z \<le> x \<Longrightarrow> z \<le> Inf A" | |
| 51489 | 80 | using finite [of A] by (induct A) (auto simp add: finite_lattice_complete_Inf_empty finite_lattice_complete_Inf_insert) | 
| 50634 | 81 | |
| 82 | lemma finite_lattice_complete_Sup_upper: | |
| 83 | "(x::'a::finite_lattice_complete) \<in> A \<Longrightarrow> Sup A \<ge> x" | |
| 51489 | 84 | using finite [of A] by (induct A) (auto simp add: finite_lattice_complete_Sup_insert intro: le_supI2) | 
| 50634 | 85 | |
| 86 | lemma finite_lattice_complete_Sup_least: | |
| 87 | "\<forall>x::'a::finite_lattice_complete \<in> A. z \<ge> x \<Longrightarrow> z \<ge> Sup A" | |
| 51489 | 88 | using finite [of A] by (induct A) (auto simp add: finite_lattice_complete_Sup_empty finite_lattice_complete_Sup_insert) | 
| 50634 | 89 | |
| 90 | instance finite_lattice_complete \<subseteq> complete_lattice | |
| 91 | proof | |
| 92 | qed (auto simp: | |
| 93 | finite_lattice_complete_Inf_lower | |
| 94 | finite_lattice_complete_Inf_greatest | |
| 95 | finite_lattice_complete_Sup_upper | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51489diff
changeset | 96 | finite_lattice_complete_Sup_least | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51489diff
changeset | 97 | finite_lattice_complete_Inf_empty | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51489diff
changeset | 98 | finite_lattice_complete_Sup_empty) | 
| 50634 | 99 | |
| 100 | text {* The product of two finite lattices is already a finite lattice. *}
 | |
| 101 | ||
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51489diff
changeset | 102 | lemma finite_bot_prod: | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51489diff
changeset | 103 |   "(bot :: ('a::finite_lattice_complete \<times> 'b::finite_lattice_complete)) =
 | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51489diff
changeset | 104 | Inf_fin UNIV" | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51489diff
changeset | 105 | by (metis Inf_fin.coboundedI UNIV_I bot.extremum_uniqueI finite_UNIV) | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51489diff
changeset | 106 | |
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51489diff
changeset | 107 | lemma finite_top_prod: | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51489diff
changeset | 108 |   "(top :: ('a::finite_lattice_complete \<times> 'b::finite_lattice_complete)) =
 | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51489diff
changeset | 109 | Sup_fin UNIV" | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51489diff
changeset | 110 | by (metis Sup_fin.coboundedI UNIV_I top.extremum_uniqueI finite_UNIV) | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51489diff
changeset | 111 | |
| 50634 | 112 | lemma finite_Inf_prod: | 
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51489diff
changeset | 113 |   "Inf(A :: ('a::finite_lattice_complete \<times> 'b::finite_lattice_complete) set) =
 | 
| 50634 | 114 | Finite_Set.fold inf top A" | 
| 115 | by (metis Inf_fold_inf finite_code) | |
| 116 | ||
| 117 | lemma finite_Sup_prod: | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51489diff
changeset | 118 |   "Sup (A :: ('a::finite_lattice_complete \<times> 'b::finite_lattice_complete) set) =
 | 
| 50634 | 119 | Finite_Set.fold sup bot A" | 
| 120 | by (metis Sup_fold_sup finite_code) | |
| 121 | ||
| 122 | instance prod :: | |
| 123 | (finite_lattice_complete, finite_lattice_complete) finite_lattice_complete | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51489diff
changeset | 124 | proof | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51489diff
changeset | 125 | qed (auto simp: finite_bot_prod finite_top_prod finite_Inf_prod finite_Sup_prod) | 
| 50634 | 126 | |
| 127 | text {* Functions with a finite domain and with a finite lattice as codomain
 | |
| 128 | already form a finite lattice. *} | |
| 129 | ||
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51489diff
changeset | 130 | lemma finite_bot_fun: | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51489diff
changeset | 131 |   "(bot :: ('a::finite \<Rightarrow> 'b::finite_lattice_complete)) = Inf_fin UNIV"
 | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51489diff
changeset | 132 | by (metis Inf_UNIV Inf_fin_Inf empty_not_UNIV finite_code) | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51489diff
changeset | 133 | |
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51489diff
changeset | 134 | lemma finite_top_fun: | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51489diff
changeset | 135 |   "(top :: ('a::finite \<Rightarrow> 'b::finite_lattice_complete)) = Sup_fin UNIV"
 | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51489diff
changeset | 136 | by (metis Sup_UNIV Sup_fin_Sup empty_not_UNIV finite_code) | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51489diff
changeset | 137 | |
| 50634 | 138 | lemma finite_Inf_fun: | 
| 139 |   "Inf (A::('a::finite \<Rightarrow> 'b::finite_lattice_complete) set) =
 | |
| 140 | Finite_Set.fold inf top A" | |
| 141 | by (metis Inf_fold_inf finite_code) | |
| 142 | ||
| 143 | lemma finite_Sup_fun: | |
| 144 |   "Sup (A::('a::finite \<Rightarrow> 'b::finite_lattice_complete) set) =
 | |
| 145 | Finite_Set.fold sup bot A" | |
| 146 | by (metis Sup_fold_sup finite_code) | |
| 147 | ||
| 148 | instance "fun" :: (finite, finite_lattice_complete) finite_lattice_complete | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51489diff
changeset | 149 | proof | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51489diff
changeset | 150 | qed (auto simp: finite_bot_fun finite_top_fun finite_Inf_fun finite_Sup_fun) | 
| 50634 | 151 | |
| 152 | ||
| 153 | subsection {* Finite Distributive Lattices *}
 | |
| 154 | ||
| 155 | text {* A finite distributive lattice is a complete lattice
 | |
| 156 | whose @{const inf} and @{const sup} operators
 | |
| 157 | distribute over @{const Sup} and @{const Inf}. *}
 | |
| 158 | ||
| 159 | class finite_distrib_lattice_complete = | |
| 160 | distrib_lattice + finite_lattice_complete | |
| 161 | ||
| 162 | lemma finite_distrib_lattice_complete_sup_Inf: | |
| 163 | "sup (x::'a::finite_distrib_lattice_complete) (Inf A) = (INF y:A. sup x y)" | |
| 164 | apply (rule finite_induct) | |
| 165 | apply (metis finite_code) | |
| 166 | apply (metis INF_empty Inf_empty sup_top_right) | |
| 167 | apply (metis INF_insert Inf_insert sup_inf_distrib1) | |
| 168 | done | |
| 169 | ||
| 170 | lemma finite_distrib_lattice_complete_inf_Sup: | |
| 171 | "inf (x::'a::finite_distrib_lattice_complete) (Sup A) = (SUP y:A. inf x y)" | |
| 172 | apply (rule finite_induct) | |
| 173 | apply (metis finite_code) | |
| 174 | apply (metis SUP_empty Sup_empty inf_bot_right) | |
| 175 | apply (metis SUP_insert Sup_insert inf_sup_distrib1) | |
| 176 | done | |
| 177 | ||
| 178 | instance finite_distrib_lattice_complete \<subseteq> complete_distrib_lattice | |
| 179 | proof | |
| 180 | qed (auto simp: | |
| 181 | finite_distrib_lattice_complete_sup_Inf | |
| 182 | finite_distrib_lattice_complete_inf_Sup) | |
| 183 | ||
| 184 | text {* The product of two finite distributive lattices
 | |
| 185 | is already a finite distributive lattice. *} | |
| 186 | ||
| 187 | instance prod :: | |
| 188 | (finite_distrib_lattice_complete, finite_distrib_lattice_complete) | |
| 189 | finite_distrib_lattice_complete | |
| 190 | .. | |
| 191 | ||
| 192 | text {* Functions with a finite domain
 | |
| 193 | and with a finite distributive lattice as codomain | |
| 194 | already form a finite distributive lattice. *} | |
| 195 | ||
| 196 | instance "fun" :: | |
| 197 | (finite, finite_distrib_lattice_complete) finite_distrib_lattice_complete | |
| 198 | .. | |
| 199 | ||
| 200 | ||
| 201 | subsection {* Linear Orders *}
 | |
| 202 | ||
| 203 | text {* A linear order is a distributive lattice.
 | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51489diff
changeset | 204 | A type class is defined | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51489diff
changeset | 205 | that extends class @{class linorder}
 | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51489diff
changeset | 206 | with the operators @{const inf} and @{const sup},
 | 
| 50634 | 207 | along with assumptions that define these operators | 
| 208 | in terms of the ones of class @{class linorder}.
 | |
| 209 | The resulting class is a subclass of @{class distrib_lattice}. *}
 | |
| 210 | ||
| 211 | class linorder_lattice = linorder + inf + sup + | |
| 212 | assumes inf_def: "inf x y = (if x \<le> y then x else y)" | |
| 213 | assumes sup_def: "sup x y = (if x \<ge> y then x else y)" | |
| 214 | ||
| 215 | text {* The definitional assumptions
 | |
| 216 | on the operators @{const inf} and @{const sup}
 | |
| 217 | of class @{class linorder_lattice}
 | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51489diff
changeset | 218 | ensure that they yield infimum and supremum | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51489diff
changeset | 219 | and that they distribute over each other. *} | 
| 50634 | 220 | |
| 221 | lemma linorder_lattice_inf_le1: "inf (x::'a::linorder_lattice) y \<le> x" | |
| 222 | unfolding inf_def by (metis (full_types) linorder_linear) | |
| 223 | ||
| 224 | lemma linorder_lattice_inf_le2: "inf (x::'a::linorder_lattice) y \<le> y" | |
| 225 | unfolding inf_def by (metis (full_types) linorder_linear) | |
| 226 | ||
| 227 | lemma linorder_lattice_inf_greatest: | |
| 228 | "(x::'a::linorder_lattice) \<le> y \<Longrightarrow> x \<le> z \<Longrightarrow> x \<le> inf y z" | |
| 229 | unfolding inf_def by (metis (full_types)) | |
| 230 | ||
| 231 | lemma linorder_lattice_sup_ge1: "sup (x::'a::linorder_lattice) y \<ge> x" | |
| 232 | unfolding sup_def by (metis (full_types) linorder_linear) | |
| 233 | ||
| 234 | lemma linorder_lattice_sup_ge2: "sup (x::'a::linorder_lattice) y \<ge> y" | |
| 235 | unfolding sup_def by (metis (full_types) linorder_linear) | |
| 236 | ||
| 237 | lemma linorder_lattice_sup_least: | |
| 238 | "(x::'a::linorder_lattice) \<ge> y \<Longrightarrow> x \<ge> z \<Longrightarrow> x \<ge> sup y z" | |
| 239 | by (auto simp: sup_def) | |
| 240 | ||
| 241 | lemma linorder_lattice_sup_inf_distrib1: | |
| 242 | "sup (x::'a::linorder_lattice) (inf y z) = inf (sup x y) (sup x z)" | |
| 243 | by (auto simp: inf_def sup_def) | |
| 244 | ||
| 245 | instance linorder_lattice \<subseteq> distrib_lattice | |
| 246 | proof | |
| 247 | qed (auto simp: | |
| 248 | linorder_lattice_inf_le1 | |
| 249 | linorder_lattice_inf_le2 | |
| 250 | linorder_lattice_inf_greatest | |
| 251 | linorder_lattice_sup_ge1 | |
| 252 | linorder_lattice_sup_ge2 | |
| 253 | linorder_lattice_sup_least | |
| 254 | linorder_lattice_sup_inf_distrib1) | |
| 255 | ||
| 256 | ||
| 257 | subsection {* Finite Linear Orders *}
 | |
| 258 | ||
| 259 | text {* A (non-empty) finite linear order is a complete linear order. *}
 | |
| 260 | ||
| 261 | class finite_linorder_complete = linorder_lattice + finite_lattice_complete | |
| 262 | ||
| 263 | instance finite_linorder_complete \<subseteq> complete_linorder .. | |
| 264 | ||
| 265 | text {* A (non-empty) finite linear order is a complete lattice
 | |
| 266 | whose @{const inf} and @{const sup} operators
 | |
| 267 | distribute over @{const Sup} and @{const Inf}. *}
 | |
| 268 | ||
| 269 | instance finite_linorder_complete \<subseteq> finite_distrib_lattice_complete .. | |
| 270 | ||
| 271 | ||
| 272 | end | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51489diff
changeset | 273 |