19761
|
1 |
(* Title: CTT/ex/Equality.thy
|
|
2 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
|
|
3 |
Copyright 1991 University of Cambridge
|
|
4 |
*)
|
|
5 |
|
58889
|
6 |
section "Equality reasoning by rewriting"
|
19761
|
7 |
|
|
8 |
theory Equality
|
58974
|
9 |
imports "../CTT"
|
19761
|
10 |
begin
|
|
11 |
|
58977
|
12 |
lemma split_eq: "p : Sum(A,B) \<Longrightarrow> split(p,pair) = p : Sum(A,B)"
|
19761
|
13 |
apply (rule EqE)
|
|
14 |
apply (rule elim_rls, assumption)
|
58972
|
15 |
apply rew
|
19761
|
16 |
done
|
|
17 |
|
58977
|
18 |
lemma when_eq: "\<lbrakk>A type; B type; p : A+B\<rbrakk> \<Longrightarrow> when(p,inl,inr) = p : A + B"
|
19761
|
19 |
apply (rule EqE)
|
|
20 |
apply (rule elim_rls, assumption)
|
58972
|
21 |
apply rew
|
19761
|
22 |
done
|
|
23 |
|
|
24 |
(*in the "rec" formulation of addition, 0+n=n *)
|
58977
|
25 |
lemma "p:N \<Longrightarrow> rec(p,0, \<lambda>y z. succ(y)) = p : N"
|
19761
|
26 |
apply (rule EqE)
|
|
27 |
apply (rule elim_rls, assumption)
|
58972
|
28 |
apply rew
|
19761
|
29 |
done
|
|
30 |
|
|
31 |
(*the harder version, n+0=n: recursive, uses induction hypothesis*)
|
58977
|
32 |
lemma "p:N \<Longrightarrow> rec(p,0, \<lambda>y z. succ(z)) = p : N"
|
19761
|
33 |
apply (rule EqE)
|
|
34 |
apply (rule elim_rls, assumption)
|
58972
|
35 |
apply hyp_rew
|
19761
|
36 |
done
|
|
37 |
|
|
38 |
(*Associativity of addition*)
|
58977
|
39 |
lemma "\<lbrakk>a:N; b:N; c:N\<rbrakk>
|
|
40 |
\<Longrightarrow> rec(rec(a, b, \<lambda>x y. succ(y)), c, \<lambda>x y. succ(y)) =
|
|
41 |
rec(a, rec(b, c, \<lambda>x y. succ(y)), \<lambda>x y. succ(y)) : N"
|
58972
|
42 |
apply (NE a)
|
|
43 |
apply hyp_rew
|
19761
|
44 |
done
|
|
45 |
|
61391
|
46 |
(*Martin-Löf (1984) page 62: pairing is surjective*)
|
58977
|
47 |
lemma "p : Sum(A,B) \<Longrightarrow> <split(p,\<lambda>x y. x), split(p,\<lambda>x y. y)> = p : Sum(A,B)"
|
19761
|
48 |
apply (rule EqE)
|
|
49 |
apply (rule elim_rls, assumption)
|
69593
|
50 |
apply (tactic \<open>DEPTH_SOLVE_1 (rew_tac \<^context> [])\<close>) (*!!!!!!!*)
|
19761
|
51 |
done
|
|
52 |
|
61391
|
53 |
lemma "\<lbrakk>a : A; b : B\<rbrakk> \<Longrightarrow> (\<^bold>\<lambda>u. split(u, \<lambda>v w.<w,v>)) ` <a,b> = <b,a> : \<Sum>x:B. A"
|
58972
|
54 |
apply rew
|
19761
|
55 |
done
|
|
56 |
|
|
57 |
(*a contrived, complicated simplication, requires sum-elimination also*)
|
61391
|
58 |
lemma "(\<^bold>\<lambda>f. \<^bold>\<lambda>x. f`(f`x)) ` (\<^bold>\<lambda>u. split(u, \<lambda>v w.<w,v>)) =
|
|
59 |
\<^bold>\<lambda>x. x : \<Prod>x:(\<Sum>y:N. N). (\<Sum>y:N. N)"
|
19761
|
60 |
apply (rule reduction_rls)
|
|
61 |
apply (rule_tac [3] intrL_rls)
|
|
62 |
apply (rule_tac [4] EqE)
|
58972
|
63 |
apply (erule_tac [4] SumE)
|
19761
|
64 |
(*order of unifiers is essential here*)
|
58972
|
65 |
apply rew
|
19761
|
66 |
done
|
|
67 |
|
|
68 |
end
|