| author | nipkow | 
| Mon, 27 Apr 2015 15:02:51 +0200 | |
| changeset 60148 | f0fc2378a479 | 
| parent 54864 | a064732223ad | 
| child 63539 | 70d4d9e5707b | 
| permissions | -rw-r--r-- | 
| 43158 | 1  | 
theory Sec_TypingT imports Sec_Type_Expr  | 
2  | 
begin  | 
|
3  | 
||
4  | 
subsection "A Termination-Sensitive Syntax Directed System"  | 
|
5  | 
||
6  | 
inductive sec_type :: "nat \<Rightarrow> com \<Rightarrow> bool" ("(_/ \<turnstile> _)" [0,0] 50) where
 | 
|
7  | 
Skip:  | 
|
8  | 
"l \<turnstile> SKIP" |  | 
|
9  | 
Assign:  | 
|
| 50342 | 10  | 
"\<lbrakk> sec x \<ge> sec a; sec x \<ge> l \<rbrakk> \<Longrightarrow> l \<turnstile> x ::= a" |  | 
| 47818 | 11  | 
Seq:  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
52382 
diff
changeset
 | 
12  | 
"l \<turnstile> c\<^sub>1 \<Longrightarrow> l \<turnstile> c\<^sub>2 \<Longrightarrow> l \<turnstile> c\<^sub>1;;c\<^sub>2" |  | 
| 43158 | 13  | 
If:  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
52382 
diff
changeset
 | 
14  | 
"\<lbrakk> max (sec b) l \<turnstile> c\<^sub>1; max (sec b) l \<turnstile> c\<^sub>2 \<rbrakk>  | 
| 
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
52382 
diff
changeset
 | 
15  | 
\<Longrightarrow> l \<turnstile> IF b THEN c\<^sub>1 ELSE c\<^sub>2" |  | 
| 43158 | 16  | 
While:  | 
| 50342 | 17  | 
"sec b = 0 \<Longrightarrow> 0 \<turnstile> c \<Longrightarrow> 0 \<turnstile> WHILE b DO c"  | 
| 43158 | 18  | 
|
19  | 
code_pred (expected_modes: i => i => bool) sec_type .  | 
|
20  | 
||
21  | 
inductive_cases [elim!]:  | 
|
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
52382 
diff
changeset
 | 
22  | 
"l \<turnstile> x ::= a" "l \<turnstile> c\<^sub>1;;c\<^sub>2" "l \<turnstile> IF b THEN c\<^sub>1 ELSE c\<^sub>2" "l \<turnstile> WHILE b DO c"  | 
| 43158 | 23  | 
|
24  | 
||
25  | 
lemma anti_mono: "l \<turnstile> c \<Longrightarrow> l' \<le> l \<Longrightarrow> l' \<turnstile> c"  | 
|
| 45015 | 26  | 
apply(induction arbitrary: l' rule: sec_type.induct)  | 
| 43158 | 27  | 
apply (metis sec_type.intros(1))  | 
28  | 
apply (metis le_trans sec_type.intros(2))  | 
|
29  | 
apply (metis sec_type.intros(3))  | 
|
30  | 
apply (metis If le_refl sup_mono sup_nat_def)  | 
|
31  | 
by (metis While le_0_eq)  | 
|
32  | 
||
33  | 
||
34  | 
lemma confinement: "(c,s) \<Rightarrow> t \<Longrightarrow> l \<turnstile> c \<Longrightarrow> s = t (< l)"  | 
|
| 45015 | 35  | 
proof(induction rule: big_step_induct)  | 
| 43158 | 36  | 
case Skip thus ?case by simp  | 
37  | 
next  | 
|
38  | 
case Assign thus ?case by auto  | 
|
39  | 
next  | 
|
| 47818 | 40  | 
case Seq thus ?case by auto  | 
| 43158 | 41  | 
next  | 
42  | 
case (IfTrue b s c1)  | 
|
| 50342 | 43  | 
hence "max (sec b) l \<turnstile> c1" by auto  | 
| 
54863
 
82acc20ded73
prefer more canonical names for lemmas on min/max
 
haftmann 
parents: 
53015 
diff
changeset
 | 
44  | 
hence "l \<turnstile> c1" by (metis max.cobounded2 anti_mono)  | 
| 45015 | 45  | 
thus ?case using IfTrue.IH by metis  | 
| 43158 | 46  | 
next  | 
47  | 
case (IfFalse b s c2)  | 
|
| 50342 | 48  | 
hence "max (sec b) l \<turnstile> c2" by auto  | 
| 
54863
 
82acc20ded73
prefer more canonical names for lemmas on min/max
 
haftmann 
parents: 
53015 
diff
changeset
 | 
49  | 
hence "l \<turnstile> c2" by (metis max.cobounded2 anti_mono)  | 
| 45015 | 50  | 
thus ?case using IfFalse.IH by metis  | 
| 43158 | 51  | 
next  | 
52  | 
case WhileFalse thus ?case by auto  | 
|
53  | 
next  | 
|
54  | 
case (WhileTrue b s1 c)  | 
|
55  | 
hence "l \<turnstile> c" by auto  | 
|
56  | 
thus ?case using WhileTrue by metis  | 
|
57  | 
qed  | 
|
58  | 
||
59  | 
lemma termi_if_non0: "l \<turnstile> c \<Longrightarrow> l \<noteq> 0 \<Longrightarrow> \<exists> t. (c,s) \<Rightarrow> t"  | 
|
| 45015 | 60  | 
apply(induction arbitrary: s rule: sec_type.induct)  | 
| 43158 | 61  | 
apply (metis big_step.Skip)  | 
62  | 
apply (metis big_step.Assign)  | 
|
| 47818 | 63  | 
apply (metis big_step.Seq)  | 
| 
54863
 
82acc20ded73
prefer more canonical names for lemmas on min/max
 
haftmann 
parents: 
53015 
diff
changeset
 | 
64  | 
apply (metis IfFalse IfTrue le0 le_antisym max.cobounded2)  | 
| 43158 | 65  | 
apply simp  | 
66  | 
done  | 
|
67  | 
||
68  | 
theorem noninterference: "(c,s) \<Rightarrow> s' \<Longrightarrow> 0 \<turnstile> c \<Longrightarrow> s = t (\<le> l)  | 
|
69  | 
\<Longrightarrow> \<exists> t'. (c,t) \<Rightarrow> t' \<and> s' = t' (\<le> l)"  | 
|
| 45015 | 70  | 
proof(induction arbitrary: t rule: big_step_induct)  | 
| 43158 | 71  | 
case Skip thus ?case by auto  | 
72  | 
next  | 
|
73  | 
case (Assign x a s)  | 
|
| 50342 | 74  | 
have "sec x >= sec a" using `0 \<turnstile> x ::= a` by auto  | 
| 43158 | 75  | 
have "(x ::= a,t) \<Rightarrow> t(x := aval a t)" by auto  | 
76  | 
moreover  | 
|
77  | 
have "s(x := aval a s) = t(x := aval a t) (\<le> l)"  | 
|
78  | 
proof auto  | 
|
79  | 
assume "sec x \<le> l"  | 
|
| 50342 | 80  | 
with `sec x \<ge> sec a` have "sec a \<le> l" by arith  | 
| 43158 | 81  | 
thus "aval a s = aval a t"  | 
82  | 
by (rule aval_eq_if_eq_le[OF `s = t (\<le> l)`])  | 
|
83  | 
next  | 
|
84  | 
fix y assume "y \<noteq> x" "sec y \<le> l"  | 
|
85  | 
thus "s y = t y" using `s = t (\<le> l)` by simp  | 
|
86  | 
qed  | 
|
87  | 
ultimately show ?case by blast  | 
|
88  | 
next  | 
|
| 47818 | 89  | 
case Seq thus ?case by blast  | 
| 43158 | 90  | 
next  | 
91  | 
case (IfTrue b s c1 s' c2)  | 
|
| 52382 | 92  | 
have "sec b \<turnstile> c1" "sec b \<turnstile> c2" using `0 \<turnstile> IF b THEN c1 ELSE c2` by auto  | 
| 43158 | 93  | 
obtain t' where t': "(c1, t) \<Rightarrow> t'" "s' = t' (\<le> l)"  | 
| 52382 | 94  | 
using IfTrue.IH[OF anti_mono[OF `sec b \<turnstile> c1`] `s = t (\<le> l)`] by blast  | 
| 43158 | 95  | 
show ?case  | 
96  | 
proof cases  | 
|
| 50342 | 97  | 
assume "sec b \<le> l"  | 
98  | 
hence "s = t (\<le> sec b)" using `s = t (\<le> l)` by auto  | 
|
| 43158 | 99  | 
hence "bval b t" using `bval b s` by(simp add: bval_eq_if_eq_le)  | 
100  | 
thus ?thesis by (metis t' big_step.IfTrue)  | 
|
101  | 
next  | 
|
| 50342 | 102  | 
assume "\<not> sec b \<le> l"  | 
103  | 
hence 0: "sec b \<noteq> 0" by arith  | 
|
104  | 
have 1: "sec b \<turnstile> IF b THEN c1 ELSE c2"  | 
|
105  | 
by(rule sec_type.intros)(simp_all add: `sec b \<turnstile> c1` `sec b \<turnstile> c2`)  | 
|
106  | 
from confinement[OF big_step.IfTrue[OF IfTrue(1,2)] 1] `\<not> sec b \<le> l`  | 
|
| 43158 | 107  | 
have "s = s' (\<le> l)" by auto  | 
108  | 
moreover  | 
|
109  | 
from termi_if_non0[OF 1 0, of t] obtain t' where  | 
|
110  | 
"(IF b THEN c1 ELSE c2,t) \<Rightarrow> t'" ..  | 
|
111  | 
moreover  | 
|
| 50342 | 112  | 
from confinement[OF this 1] `\<not> sec b \<le> l`  | 
| 43158 | 113  | 
have "t = t' (\<le> l)" by auto  | 
114  | 
ultimately  | 
|
115  | 
show ?case using `s = t (\<le> l)` by auto  | 
|
116  | 
qed  | 
|
117  | 
next  | 
|
118  | 
case (IfFalse b s c2 s' c1)  | 
|
| 52382 | 119  | 
have "sec b \<turnstile> c1" "sec b \<turnstile> c2" using `0 \<turnstile> IF b THEN c1 ELSE c2` by auto  | 
| 43158 | 120  | 
obtain t' where t': "(c2, t) \<Rightarrow> t'" "s' = t' (\<le> l)"  | 
| 52382 | 121  | 
using IfFalse.IH[OF anti_mono[OF `sec b \<turnstile> c2`] `s = t (\<le> l)`] by blast  | 
| 43158 | 122  | 
show ?case  | 
123  | 
proof cases  | 
|
| 50342 | 124  | 
assume "sec b \<le> l"  | 
125  | 
hence "s = t (\<le> sec b)" using `s = t (\<le> l)` by auto  | 
|
| 43158 | 126  | 
hence "\<not> bval b t" using `\<not> bval b s` by(simp add: bval_eq_if_eq_le)  | 
127  | 
thus ?thesis by (metis t' big_step.IfFalse)  | 
|
128  | 
next  | 
|
| 50342 | 129  | 
assume "\<not> sec b \<le> l"  | 
130  | 
hence 0: "sec b \<noteq> 0" by arith  | 
|
131  | 
have 1: "sec b \<turnstile> IF b THEN c1 ELSE c2"  | 
|
132  | 
by(rule sec_type.intros)(simp_all add: `sec b \<turnstile> c1` `sec b \<turnstile> c2`)  | 
|
133  | 
from confinement[OF big_step.IfFalse[OF IfFalse(1,2)] 1] `\<not> sec b \<le> l`  | 
|
| 43158 | 134  | 
have "s = s' (\<le> l)" by auto  | 
135  | 
moreover  | 
|
136  | 
from termi_if_non0[OF 1 0, of t] obtain t' where  | 
|
137  | 
"(IF b THEN c1 ELSE c2,t) \<Rightarrow> t'" ..  | 
|
138  | 
moreover  | 
|
| 50342 | 139  | 
from confinement[OF this 1] `\<not> sec b \<le> l`  | 
| 43158 | 140  | 
have "t = t' (\<le> l)" by auto  | 
141  | 
ultimately  | 
|
142  | 
show ?case using `s = t (\<le> l)` by auto  | 
|
143  | 
qed  | 
|
144  | 
next  | 
|
145  | 
case (WhileFalse b s c)  | 
|
| 50342 | 146  | 
hence [simp]: "sec b = 0" by auto  | 
147  | 
have "s = t (\<le> sec b)" using `s = t (\<le> l)` by auto  | 
|
| 43158 | 148  | 
hence "\<not> bval b t" using `\<not> bval b s` by (metis bval_eq_if_eq_le le_refl)  | 
149  | 
with WhileFalse.prems(2) show ?case by auto  | 
|
150  | 
next  | 
|
151  | 
case (WhileTrue b s c s'' s')  | 
|
152  | 
let ?w = "WHILE b DO c"  | 
|
| 50342 | 153  | 
from `0 \<turnstile> ?w` have [simp]: "sec b = 0" by auto  | 
| 52382 | 154  | 
have "0 \<turnstile> c" using `0 \<turnstile> WHILE b DO c` by auto  | 
155  | 
from WhileTrue.IH(1)[OF this `s = t (\<le> l)`]  | 
|
| 43158 | 156  | 
obtain t'' where "(c,t) \<Rightarrow> t''" and "s'' = t'' (\<le>l)" by blast  | 
| 45015 | 157  | 
from WhileTrue.IH(2)[OF `0 \<turnstile> ?w` this(2)]  | 
| 43158 | 158  | 
obtain t' where "(?w,t'') \<Rightarrow> t'" and "s' = t' (\<le>l)" by blast  | 
159  | 
from `bval b s` have "bval b t"  | 
|
160  | 
using bval_eq_if_eq_le[OF `s = t (\<le>l)`] by auto  | 
|
161  | 
show ?case  | 
|
162  | 
using big_step.WhileTrue[OF `bval b t` `(c,t) \<Rightarrow> t''` `(?w,t'') \<Rightarrow> t'`]  | 
|
163  | 
by (metis `s' = t' (\<le> l)`)  | 
|
164  | 
qed  | 
|
165  | 
||
166  | 
subsection "The Standard Termination-Sensitive System"  | 
|
167  | 
||
168  | 
text{* The predicate @{prop"l \<turnstile> c"} is nicely intuitive and executable. The
 | 
|
169  | 
standard formulation, however, is slightly different, replacing the maximum  | 
|
170  | 
computation by an antimonotonicity rule. We introduce the standard system now  | 
|
171  | 
and show the equivalence with our formulation. *}  | 
|
172  | 
||
173  | 
inductive sec_type' :: "nat \<Rightarrow> com \<Rightarrow> bool" ("(_/ \<turnstile>'' _)" [0,0] 50) where
 | 
|
174  | 
Skip':  | 
|
175  | 
"l \<turnstile>' SKIP" |  | 
|
176  | 
Assign':  | 
|
| 50342 | 177  | 
"\<lbrakk> sec x \<ge> sec a; sec x \<ge> l \<rbrakk> \<Longrightarrow> l \<turnstile>' x ::= a" |  | 
| 47818 | 178  | 
Seq':  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
52382 
diff
changeset
 | 
179  | 
"l \<turnstile>' c\<^sub>1 \<Longrightarrow> l \<turnstile>' c\<^sub>2 \<Longrightarrow> l \<turnstile>' c\<^sub>1;;c\<^sub>2" |  | 
| 43158 | 180  | 
If':  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
52382 
diff
changeset
 | 
181  | 
"\<lbrakk> sec b \<le> l; l \<turnstile>' c\<^sub>1; l \<turnstile>' c\<^sub>2 \<rbrakk> \<Longrightarrow> l \<turnstile>' IF b THEN c\<^sub>1 ELSE c\<^sub>2" |  | 
| 43158 | 182  | 
While':  | 
| 50342 | 183  | 
"\<lbrakk> sec b = 0; 0 \<turnstile>' c \<rbrakk> \<Longrightarrow> 0 \<turnstile>' WHILE b DO c" |  | 
| 43158 | 184  | 
anti_mono':  | 
185  | 
"\<lbrakk> l \<turnstile>' c; l' \<le> l \<rbrakk> \<Longrightarrow> l' \<turnstile>' c"  | 
|
186  | 
||
| 51456 | 187  | 
lemma sec_type_sec_type':  | 
188  | 
"l \<turnstile> c \<Longrightarrow> l \<turnstile>' c"  | 
|
| 45015 | 189  | 
apply(induction rule: sec_type.induct)  | 
| 43158 | 190  | 
apply (metis Skip')  | 
191  | 
apply (metis Assign')  | 
|
| 47818 | 192  | 
apply (metis Seq')  | 
| 
54864
 
a064732223ad
abolished slightly odd global lattice interpretation for min/max
 
haftmann 
parents: 
54863 
diff
changeset
 | 
193  | 
apply (metis max.commute max.absorb_iff2 nat_le_linear If' anti_mono')  | 
| 43158 | 194  | 
by (metis While')  | 
195  | 
||
196  | 
||
| 51456 | 197  | 
lemma sec_type'_sec_type:  | 
198  | 
"l \<turnstile>' c \<Longrightarrow> l \<turnstile> c"  | 
|
| 45015 | 199  | 
apply(induction rule: sec_type'.induct)  | 
| 43158 | 200  | 
apply (metis Skip)  | 
201  | 
apply (metis Assign)  | 
|
| 47818 | 202  | 
apply (metis Seq)  | 
| 
54863
 
82acc20ded73
prefer more canonical names for lemmas on min/max
 
haftmann 
parents: 
53015 
diff
changeset
 | 
203  | 
apply (metis max.absorb2 If)  | 
| 43158 | 204  | 
apply (metis While)  | 
205  | 
by (metis anti_mono)  | 
|
206  | 
||
| 51456 | 207  | 
corollary sec_type_eq: "l \<turnstile> c \<longleftrightarrow> l \<turnstile>' c"  | 
208  | 
by (metis sec_type'_sec_type sec_type_sec_type')  | 
|
209  | 
||
| 43158 | 210  | 
end  |