| author | wenzelm | 
| Mon, 31 Mar 2014 15:28:14 +0200 | |
| changeset 56336 | 60434514ec0a | 
| parent 47101 | ded5cc757bc9 | 
| child 60770 | 240563fbf41d | 
| permissions | -rw-r--r-- | 
| 12776 | 1 | (* Title: ZF/AC/Cardinal_aux.thy | 
| 2 | Author: Krzysztof Grabczewski | |
| 3 | ||
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
16417diff
changeset | 4 | Auxiliary lemmas concerning cardinalities. | 
| 12776 | 5 | *) | 
| 6 | ||
| 16417 | 7 | theory Cardinal_aux imports AC_Equiv begin | 
| 12776 | 8 | |
| 9 | lemma Diff_lepoll: "[| A \<lesssim> succ(m); B \<subseteq> A; B\<noteq>0 |] ==> A-B \<lesssim> m" | |
| 12820 | 10 | apply (rule not_emptyE, assumption) | 
| 12776 | 11 | apply (blast intro: lepoll_trans [OF subset_imp_lepoll Diff_sing_lepoll]) | 
| 12 | done | |
| 13 | ||
| 14 | ||
| 15 | (* ********************************************************************** *) | |
| 16 | (* Lemmas involving ordinals and cardinalities used in the proofs *) | |
| 17 | (* concerning AC16 and DC *) | |
| 18 | (* ********************************************************************** *) | |
| 19 | ||
| 20 | ||
| 21 | (* j=|A| *) | |
| 22 | lemma lepoll_imp_ex_le_eqpoll: | |
| 46822 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 paulson parents: 
36319diff
changeset | 23 | "[| A \<lesssim> i; Ord(i) |] ==> \<exists>j. j \<le> i & A \<approx> j" | 
| 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 paulson parents: 
36319diff
changeset | 24 | by (blast intro!: lepoll_cardinal_le well_ord_Memrel | 
| 12776 | 25 | well_ord_cardinal_eqpoll [THEN eqpoll_sym] | 
| 13339 
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
 paulson parents: 
12820diff
changeset | 26 | dest: lepoll_well_ord) | 
| 12776 | 27 | |
| 28 | (* j=|A| *) | |
| 46822 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 paulson parents: 
36319diff
changeset | 29 | lemma lesspoll_imp_ex_lt_eqpoll: | 
| 12776 | 30 | "[| A \<prec> i; Ord(i) |] ==> \<exists>j. j<i & A \<approx> j" | 
| 31 | by (unfold lesspoll_def, blast dest!: lepoll_imp_ex_le_eqpoll elim!: leE) | |
| 32 | ||
| 33 | lemma Un_eqpoll_Inf_Ord: | |
| 47101 | 34 | assumes A: "A \<approx> i" and B: "B \<approx> i" and NFI: "\<not> Finite(i)" and i: "Ord(i)" | 
| 35 | shows "A \<union> B \<approx> i" | |
| 36 | proof (rule eqpollI) | |
| 37 | have AB: "A \<approx> B" using A B by (blast intro: eqpoll_sym eqpoll_trans) | |
| 38 | have "2 \<lesssim> nat" | |
| 39 | by (rule subset_imp_lepoll) (rule OrdmemD [OF nat_2I Ord_nat]) | |
| 40 | also have "... \<lesssim> i" | |
| 41 | by (simp add: nat_le_infinite_Ord le_imp_lepoll NFI i)+ | |
| 42 | also have "... \<approx> A" by (blast intro: eqpoll_sym A) | |
| 43 | finally have "2 \<lesssim> A" . | |
| 44 | have ICI: "InfCard(|i|)" | |
| 45 | by (simp add: Inf_Card_is_InfCard Finite_cardinal_iff NFI i) | |
| 46 | have "A \<union> B \<lesssim> A + B" by (rule Un_lepoll_sum) | |
| 47 | also have "... \<lesssim> A \<times> B" | |
| 48 | by (rule lepoll_imp_sum_lepoll_prod [OF AB [THEN eqpoll_imp_lepoll] `2 \<lesssim> A`]) | |
| 49 | also have "... \<approx> i \<times> i" | |
| 50 | by (blast intro: prod_eqpoll_cong eqpoll_imp_lepoll A B) | |
| 51 | also have "... \<approx> i" | |
| 52 | by (blast intro: well_ord_InfCard_square_eq well_ord_Memrel ICI i) | |
| 53 | finally show "A \<union> B \<lesssim> i" . | |
| 54 | next | |
| 55 | have "i \<approx> A" by (blast intro: A eqpoll_sym) | |
| 56 | also have "... \<lesssim> A \<union> B" by (blast intro: subset_imp_lepoll) | |
| 57 | finally show "i \<lesssim> A \<union> B" . | |
| 58 | qed | |
| 12776 | 59 | |
| 36319 | 60 | schematic_lemma paired_bij: "?f \<in> bij({{y,z}. y \<in> x}, x)"
 | 
| 12776 | 61 | apply (rule RepFun_bijective) | 
| 62 | apply (simp add: doubleton_eq_iff, blast) | |
| 63 | done | |
| 64 | ||
| 65 | lemma paired_eqpoll: "{{y,z}. y \<in> x} \<approx> x"
 | |
| 66 | by (unfold eqpoll_def, fast intro!: paired_bij) | |
| 67 | ||
| 46822 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 paulson parents: 
36319diff
changeset | 68 | lemma ex_eqpoll_disjoint: "\<exists>B. B \<approx> A & B \<inter> C = 0" | 
| 12776 | 69 | by (fast intro!: paired_eqpoll equals0I elim: mem_asym) | 
| 70 | ||
| 47101 | 71 | (*Finally we reach this result. Surely there's a simpler proof?*) | 
| 12776 | 72 | lemma Un_lepoll_Inf_Ord: | 
| 46822 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 paulson parents: 
36319diff
changeset | 73 | "[| A \<lesssim> i; B \<lesssim> i; ~Finite(i); Ord(i) |] ==> A \<union> B \<lesssim> i" | 
| 13339 
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
 paulson parents: 
12820diff
changeset | 74 | apply (rule_tac A1 = i and C1 = i in ex_eqpoll_disjoint [THEN exE]) | 
| 12776 | 75 | apply (erule conjE) | 
| 46822 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 paulson parents: 
36319diff
changeset | 76 | apply (drule lepoll_trans) | 
| 12776 | 77 | apply (erule eqpoll_sym [THEN eqpoll_imp_lepoll]) | 
| 78 | apply (rule Un_lepoll_Un [THEN lepoll_trans], (assumption+)) | |
| 46822 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 paulson parents: 
36319diff
changeset | 79 | apply (blast intro: eqpoll_refl Un_eqpoll_Inf_Ord eqpoll_imp_lepoll) | 
| 12776 | 80 | done | 
| 81 | ||
| 82 | lemma Least_in_Ord: "[| P(i); i \<in> j; Ord(j) |] ==> (LEAST i. P(i)) \<in> j" | |
| 83 | apply (erule Least_le [THEN leE]) | |
| 84 | apply (erule Ord_in_Ord, assumption) | |
| 85 | apply (erule ltE) | |
| 86 | apply (fast dest: OrdmemD) | |
| 87 | apply (erule subst_elem, assumption) | |
| 88 | done | |
| 1196 | 89 | |
| 12776 | 90 | lemma Diff_first_lepoll: | 
| 46822 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 paulson parents: 
36319diff
changeset | 91 | "[| well_ord(x,r); y \<subseteq> x; y \<lesssim> succ(n); n \<in> nat |] | 
| 12776 | 92 |       ==> y - {THE b. first(b,y,r)} \<lesssim> n"
 | 
| 46822 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 paulson parents: 
36319diff
changeset | 93 | apply (case_tac "y=0", simp add: empty_lepollI) | 
| 12776 | 94 | apply (fast intro!: Diff_sing_lepoll the_first_in) | 
| 95 | done | |
| 96 | ||
| 97 | lemma UN_subset_split: | |
| 46822 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 paulson parents: 
36319diff
changeset | 98 | "(\<Union>x \<in> X. P(x)) \<subseteq> (\<Union>x \<in> X. P(x)-Q(x)) \<union> (\<Union>x \<in> X. Q(x))" | 
| 12776 | 99 | by blast | 
| 100 | ||
| 101 | lemma UN_sing_lepoll: "Ord(a) ==> (\<Union>x \<in> a. {P(x)}) \<lesssim> a"
 | |
| 102 | apply (unfold lepoll_def) | |
| 103 | apply (rule_tac x = "\<lambda>z \<in> (\<Union>x \<in> a. {P (x) }) . (LEAST i. P (i) =z) " in exI)
 | |
| 104 | apply (rule_tac d = "%z. P (z) " in lam_injective) | |
| 105 | apply (fast intro!: Least_in_Ord) | |
| 106 | apply (fast intro: LeastI elim!: Ord_in_Ord) | |
| 107 | done | |
| 108 | ||
| 109 | lemma UN_fun_lepoll_lemma [rule_format]: | |
| 46822 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 paulson parents: 
36319diff
changeset | 110 | "[| well_ord(T, R); ~Finite(a); Ord(a); n \<in> nat |] | 
| 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 paulson parents: 
36319diff
changeset | 111 | ==> \<forall>f. (\<forall>b \<in> a. f`b \<lesssim> n & f`b \<subseteq> T) \<longrightarrow> (\<Union>b \<in> a. f`b) \<lesssim> a" | 
| 12776 | 112 | apply (induct_tac "n") | 
| 113 | apply (rule allI) | |
| 114 | apply (rule impI) | |
| 115 | apply (rule_tac b = "\<Union>b \<in> a. f`b" in subst) | |
| 116 | apply (rule_tac [2] empty_lepollI) | |
| 46822 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 paulson parents: 
36319diff
changeset | 117 | apply (rule equals0I [symmetric], clarify) | 
| 12776 | 118 | apply (fast dest: lepoll_0_is_0 [THEN subst]) | 
| 119 | apply (rule allI) | |
| 120 | apply (rule impI) | |
| 121 | apply (erule_tac x = "\<lambda>x \<in> a. f`x - {THE b. first (b,f`x,R) }" in allE)
 | |
| 122 | apply (erule impE, simp) | |
| 123 | apply (fast intro!: Diff_first_lepoll, simp) | |
| 124 | apply (rule UN_subset_split [THEN subset_imp_lepoll, THEN lepoll_trans]) | |
| 46822 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 paulson parents: 
36319diff
changeset | 125 | apply (fast intro: Un_lepoll_Inf_Ord UN_sing_lepoll) | 
| 12776 | 126 | done | 
| 127 | ||
| 128 | lemma UN_fun_lepoll: | |
| 46822 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 paulson parents: 
36319diff
changeset | 129 | "[| \<forall>b \<in> a. f`b \<lesssim> n & f`b \<subseteq> T; well_ord(T, R); | 
| 12776 | 130 | ~Finite(a); Ord(a); n \<in> nat |] ==> (\<Union>b \<in> a. f`b) \<lesssim> a" | 
| 46822 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 paulson parents: 
36319diff
changeset | 131 | by (blast intro: UN_fun_lepoll_lemma) | 
| 12776 | 132 | |
| 133 | lemma UN_lepoll: | |
| 46822 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 paulson parents: 
36319diff
changeset | 134 | "[| \<forall>b \<in> a. F(b) \<lesssim> n & F(b) \<subseteq> T; well_ord(T, R); | 
| 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 paulson parents: 
36319diff
changeset | 135 | ~Finite(a); Ord(a); n \<in> nat |] | 
| 12776 | 136 | ==> (\<Union>b \<in> a. F(b)) \<lesssim> a" | 
| 46822 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 paulson parents: 
36319diff
changeset | 137 | apply (rule rev_mp) | 
| 12820 | 138 | apply (rule_tac f="\<lambda>b \<in> a. F (b)" in UN_fun_lepoll) | 
| 12776 | 139 | apply auto | 
| 140 | done | |
| 141 | ||
| 142 | lemma UN_eq_UN_Diffs: | |
| 143 | "Ord(a) ==> (\<Union>b \<in> a. F(b)) = (\<Union>b \<in> a. F(b) - (\<Union>c \<in> b. F(c)))" | |
| 144 | apply (rule equalityI) | |
| 145 | prefer 2 apply fast | |
| 146 | apply (rule subsetI) | |
| 147 | apply (erule UN_E) | |
| 148 | apply (rule UN_I) | |
| 149 | apply (rule_tac P = "%z. x \<in> F (z) " in Least_in_Ord, (assumption+)) | |
| 150 | apply (rule DiffI, best intro: Ord_in_Ord LeastI, clarify) | |
| 13339 
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
 paulson parents: 
12820diff
changeset | 151 | apply (erule_tac P = "%z. x \<in> F (z) " and i = c in less_LeastE) | 
| 12776 | 152 | apply (blast intro: Ord_Least ltI) | 
| 153 | done | |
| 154 | ||
| 46822 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 paulson parents: 
36319diff
changeset | 155 | lemma lepoll_imp_eqpoll_subset: | 
| 12776 | 156 | "a \<lesssim> X ==> \<exists>Y. Y \<subseteq> X & a \<approx> Y" | 
| 46822 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 paulson parents: 
36319diff
changeset | 157 | apply (unfold lepoll_def eqpoll_def, clarify) | 
| 12776 | 158 | apply (blast intro: restrict_bij | 
| 46822 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 paulson parents: 
36319diff
changeset | 159 | dest: inj_is_fun [THEN fun_is_rel, THEN image_subset]) | 
| 12776 | 160 | done | 
| 161 | ||
| 162 | (* ********************************************************************** *) | |
| 163 | (* Diff_lesspoll_eqpoll_Card *) | |
| 164 | (* ********************************************************************** *) | |
| 165 | ||
| 166 | lemma Diff_lesspoll_eqpoll_Card_lemma: | |
| 167 | "[| A\<approx>a; ~Finite(a); Card(a); B \<prec> a; A-B \<prec> a |] ==> P" | |
| 168 | apply (elim lesspoll_imp_ex_lt_eqpoll [THEN exE] Card_is_Ord conjE) | |
| 169 | apply (frule_tac j=xa in Un_upper1_le [OF lt_Ord lt_Ord], assumption) | |
| 170 | apply (frule_tac j=xa in Un_upper2_le [OF lt_Ord lt_Ord], assumption) | |
| 171 | apply (drule Un_least_lt, assumption) | |
| 46822 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 paulson parents: 
36319diff
changeset | 172 | apply (drule eqpoll_imp_lepoll [THEN lepoll_trans], | 
| 12776 | 173 | rule le_imp_lepoll, assumption)+ | 
| 46822 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 paulson parents: 
36319diff
changeset | 174 | apply (case_tac "Finite(x \<union> xa)") | 
| 12776 | 175 | txt{*finite case*}
 | 
| 46822 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 paulson parents: 
36319diff
changeset | 176 | apply (drule Finite_Un [OF lepoll_Finite lepoll_Finite], assumption+) | 
| 12776 | 177 | apply (drule subset_Un_Diff [THEN subset_imp_lepoll, THEN lepoll_Finite]) | 
| 178 | apply (fast dest: eqpoll_sym [THEN eqpoll_imp_lepoll, THEN lepoll_Finite]) | |
| 179 | txt{*infinite case*}
 | |
| 180 | apply (drule Un_lepoll_Inf_Ord, (assumption+)) | |
| 46822 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 paulson parents: 
36319diff
changeset | 181 | apply (blast intro: le_Ord2) | 
| 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 paulson parents: 
36319diff
changeset | 182 | apply (drule lesspoll_trans1 | 
| 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 paulson parents: 
36319diff
changeset | 183 | [OF subset_Un_Diff [THEN subset_imp_lepoll, THEN lepoll_trans] | 
| 12776 | 184 | lt_Card_imp_lesspoll], assumption+) | 
| 46822 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 paulson parents: 
36319diff
changeset | 185 | apply (simp add: lesspoll_def) | 
| 12776 | 186 | done | 
| 187 | ||
| 188 | lemma Diff_lesspoll_eqpoll_Card: | |
| 189 | "[| A \<approx> a; ~Finite(a); Card(a); B \<prec> a |] ==> A - B \<approx> a" | |
| 190 | apply (rule ccontr) | |
| 191 | apply (rule Diff_lesspoll_eqpoll_Card_lemma, (assumption+)) | |
| 46822 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 paulson parents: 
36319diff
changeset | 192 | apply (blast intro: lesspoll_def [THEN def_imp_iff, THEN iffD2] | 
| 12776 | 193 | subset_imp_lepoll eqpoll_imp_lepoll lepoll_trans) | 
| 194 | done | |
| 195 | ||
| 196 | end |